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Message from the Program Chair

Welcome to Goa and the 12th International Conference on High Performance Com-
puting!

This year, we were delighted to receive 362 submissions to this conference from
more than 30 different countries, including (besides India!) countries in North and
South America, Europe, Asia, Africa, and Australia. This is a major increase compared
with last year (253 submissions from 25 countries). Eventually, 50 submissions from
12 different countries were selected for presentation at the conference and publication
in the conference proceedings.

This sharp increase in the number of submissions meant we had to adapt the regu-
lar selection process used in previous years. First, all submitted papers were carefully
considered by the Program Chair and Vice-Chairs to check their consistency with the
minimal syntactic requirements for acceptance. At the end of this first stage, we were
left with 271 submissions, which were further considered by the Program Committee.
Each of these papers was reviewed by three Program Committee members. As many as
785 reviews were collected (2.90 per paper on average) and each paper was discussed at
the online Program Committee meeting. Finally, 50 out of 271 (18.5%) were accepted
for presentation and publication in the proceedings.

Among them, two outstanding papers were selected as “Best Papers”; one focusing
on the Systems Software area (“Preemption Adaptivity in Time-Published Queue-Based
Spin Locks,” by Bijun He, William N. Scherer III, and Michael L. Scott) and the other
focusing on the Architecture area (“Criticality Driven Energy Aware Speculation for
Speculative Multithreaded Processors,” by Rahul Nagpal and Anasua Bhowmik). They
will be presented in a separate plenary session, and each paper will be awarded a prize
sponsored by InfoSys.

Here is a general summary of the results with respect to the origin of the submissions:

Submission origin Reviewed Accepted Acceptance rate

Overall 362 50 13.8%

India 56.4% 28% 6.9%
Asia except India 19.3% 10% 7.1%
North America (mainly USA) 14.4% 46% 44%
Elsewhere (mainly Europe) 9.9% 16% 22%
Total 100% 100%

These figures show that the selection process was highly competitive. We are pleased
to accommodate ten (parallel) technical sessions of high-quality contributed papers,
plus the special plenary “Best Papers” session. In addition, this year’s conference also
features a poster session, industrial exhibits, five keynote addresses, five tutorials and
four workshops.

It has been a pleasure putting together this program with the help of five excellent
Program Vice-Chairs and their 70 Program Committee members. The hard work of
all the Program Committee members has been deeply appreciated. I especially wish



VI Preface

to acknowledge the dedicated effort put forth by the Vice-Chairs: Michael A. Bender
(Algorithms), Zhiwei Xu (Applications), José Duato (Architecture), M. Cristina Pinotti
(Communication Networks), and Satoshi Matsuoka (System Software). Without their
help and timely work, the quality of this program would not be as high nor would the
process have run so smoothly.

I thank the other organizers who have contributed to assembling this program, in-
cluding those who organized the keynotes, tutorials, workshops, awards, poster session,
industry exhibits, and those who performed the administrative functions that have been
essential to the success of this conference. The work of Sushil K. Prasad in putting to-
gether the conference proceedings is also acknowledged, as well as the support provided
by Kamesh Madduri and Vaddadi Chandu, Ph.D. students at Georgia Institute of Tech-
nology, and Vipin Sachdeva, M.S. student at the University of New Mexico, in assisting
with the EDAS online paper submission and evaluation software. Last, but certainly
not least, I express heart-felt thanks to our General Co-chairs, Manish Parashar and V.
Sridhar; Steering Chair, Viktor Prasanna; and to the Vice-General Chair, Rajendra V.
Boppana; for all their useful advice.

Lastly, I thank the Conference General Co-chairs for allowing me to serve our com-
munity as the Program Chair of this high-quality international conference. It has been
my pleasure to correspond with so many of you, and I personally welcome you to Goa.
As you can see from these proceedings, we have made considerable effort to select and
assemble the highest-quality technical program for this year’s meeting. Please enjoy
the informative and stimulating presentations and your entire experience at HiPC 2005
including the food and beautiful coastal scenery in this culturally-rich location of Goa,
India!

December 2005 David A. Bader



Message from the General Co-chairs and the Vice
General Chair

On behalf of the organizers of the 12th International Conference on High Performance
Computing (HiPC), it is our pleasure to welcome you to the paradise state of Goa.

The HiPC 2005 technical program includes technical paper sessions interspersed
with keynotes from leading HPC researchers, a poster paper session, an industry session
with presentations from leading HPC companies, a HPC user community meeting, an
exhibition, tutorials on hot topics in computing and networking, and several workshops
focusing on emerging areas. We do hope you find the conference and these proceedings
exciting and rewarding.

This year, the HiPC call for papers, once again, received an overwhelming response
with a record number of submissions from across the globe. For this, we would like
to specially thank David Bader, Program Chair, who, with remarkable dedication, put
together an outstanding technical program consisting of the papers that appear in these
proceedings. We would also like to thank the program committee for their efforts in
assembling such an excellent program and the authors who submitted the high quality
material from which that program was selected. We would like to especially thank the
presenters of the keynotes, posters and tutorials, the organizers of the workshops, and
all the participants, who complete the program.

Arranging an exciting meeting with a high quality technical program is easy when
one is working with an excellent and dedicated team and can build on the practices and
levels of excellence established by a quality research community. HiPC 2005 would not
have been possible without the tremendous efforts of the many volunteers. We would
like to acknowledge the critical contributions of each one. We would specially like to
thank Viktor Prasanna, Chair of the HiPC Steering Committee, for his leadership, sage
guidance, and untiring dedication. This year we were lucky to have a number of new
volunteers joining us. We would like to welcome you to the team and thank you – your
efforts are critical to the continued success of this conference.

We would like to gratefully acknowledge our academic and industrial sponsors in-
cluding IEEE Computer Society, ACM SIGARCH, EATCS, IFIP, BHU, Infosys, Satyam,
HP, IBM, Cray, Dell, and Sun. We would also like to acknowledge the local support we
have received from Cidade De Goa, Goa Chamber of Commerce and Industry, National
Institute of Oceanography, and Goa University.

Once again, we welcome you to Goa and HiPC 2005.

December 2005 Manish Parashar
V. Sridhar

Rajendra V Boppana



Message from the Steering Chair

It is my pleasure to welcome you to the 12th International Conference on High Per-
formance Computing and to Goa, a unique city with its blend of Indian and Portugese
culture. First, I would like to single out the contribution of David Bader, Program Chair,
for his enthusiasm, commitment and attention to details in putting together an excellent
technical program. We received a record number of submissions this year, surpassing
our previous high set last year. I am grateful to David for his efforts and thoughtful
inputs in putting together the program.

2005 marks a year in transition. We have several new volunteers who continue the
rich tradition set by HiPC over the years. Manish Parashar, General Co-chair, took re-
sponsibility for the overall meeting organization. He identified several new volunteers
as well as handling local arrangments in Goa. I would like to welcome Rajendra Bop-
pana, Vice General Chair, Rajeev Thakur, Poster/Presentation Chair, Anu Bourgeois,
Student Scholarships Co-chair, Rajeev Raje, Publicity Co-chair, and Viraj Bhat, Cyber
Chair, to the “HiPC family.” The continued efforts of Rajeev Muralidhar of Intel India
and Ramamurthy Badrinath of HP India are gratefully acknowledged.

The technical program was expanded through committed efforts from several vol-
unteers. Ramamurthy Badrinath, with assistance from Venkat Ramana of Hinditron In-
fosystems, put together the first HPC Users’ Group meeting. Frank Baetke of HP orga-
nized a panel entitled “Processors, Instruction Sets, Operating Systems – Challengers
and Survivors”.

I would like to thank all our volunteers for their tireless efforts. The meeting would
not have been possible without the enthusiastic commitment of these individuals.

Major financial support for the meeting was provided by several leading IT compa-
nies in India. I would like to acknowledge the following individuals and their organi-
zations for their support: N.R. Narayana Murthy, Infosys, India; Kris Gopalakrishnan,
Infosys, India; Harish Grama, IBM India; P. Gopalakrishnan, IBM Solutions Research
Center, India; Venkat Ramana, Hinditron Infosystems; Dinkar Sitaram and Faisal Paul,
HP India; V. Sridhar, Satyam; Raghuram Tupuri, AMD; Raj Yavatkar and Kumar Ran-
ganathan, Intel.

Finally, I would like to thank Animesh Pathak at USC for his continued assistance
and enthusiasm in organizing the meeting.

December 2005 Viktor K. Prasanna
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Mauro Brunato, University of Trento
Nicolas Burri, ETH Zurich
Surendra Byna, Illinois Institute of Technology
Ramon Canal, UPC
Franck Cappello, INRIA Futurs
Denis Caromel, Univ. of Nice
Antonio Caruso, CNR
Lakshmi Chakrapani, Georgia Institute of Technology
Sayantan Chakravorty, University of Illinois
Philip Chan, Monash University
Pedro Chaparro, Intel-UPC Barcelona Research Center
François Charoy, Université de Nancy
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Domingo Beńıtez, Juan Carlos Moure, Dolores Isabel Rexachs,
Emilio Luque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Neural Confidence Estimation for More Accurate Value Prediction
Michael Black, Manoj Franklin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376



Table of Contents XXVII

The Potential of On-Chip Multiprocessing for QCD Machines
Gianfranco Bilardi, Andrea Pietracaprina, Geppino Pucci,
Fabio Schifano, Raffaele Tripiccione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Low-Power 32bit×32bit Multiplier Design with Pipelined Block-Wise
Shutdown

Yong-Ju Jang, Yoan Shin, Min-Cheol Hong, Jae-Kyung Wee,
Seongsoo Lee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398

Session VIII - Communication Networks

Performance Analysis of User-Level PIM Communication in the Data
IntensiVe Architecture (DIVA) System

Sumit Dharampal Mediratta, Jeffrey Draper . . . . . . . . . . . . . . . . . . . . . . . 407

Improved Point-to-Point and Collective Communication Performance
with Output-Queued High-Radix Routers

Sameer Kumar, Craig Stunkel, Laxmikant V. Kalé . . . . . . . . . . . . . . . . . 420
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Abstract. Even though collaborative computing can yield substantial economic,
social, and scientific benefits, a serious impediment to fully achieving that po-
tential is a reluctance to share data, for fear of losing control over its subsequent
dissemination and usage. An organization’s most valuable and useful data is of-
ten proprietary/confidential, or the law may forbid its disclosure or regulate the
form of that disclosure. We survey security technologies that mitigate this prob-
lem, and discuss research directions towards enforcing the data owner’s approved
purposes on the data used in grid computing. These include techniques for coop-
eratively computing answers without revealing any private data, even though the
computed answers depend on all the participants’ private data. They also include
computational outsourcing, where computationally weak entities use computa-
tionally powerful entities to carry out intensive computing tasks without revealing
to them either their inputs or the computed outputs.

Biography. Mikhail (“Mike”) Atallah obtained the Ph.D. in 1982 from the Johns Hop-
kins University and joined the Computer Science Department at Purdue University,
where he currently holds the rank of Distinguished Professor. A Fellow of the IEEE, he
served on the editorial boards of many top journals (including SIAM Journal on Com-
puting, JPDC, IEETC, etc), and on the Program Committees of many top conferences
and workshops (including PODS, SODA, SoCG, WWW, PET, DRM, SACMAT, etc).
He was Keynote and Invited Speaker at many national and international meetings, and
a speaker in the Distinguished Colloquium Series of six top Computer Science Depart-
ments. He was selected in 1999 as one of the best teachers in the history of Purdue
University and included in Purdue’s Book of Great Teachers, a permanent wall display
of Purdue’s best teachers past and present. He is a co-founder of Arxan Technologies
Inc. See http://www.cs.purdue.edu/people/mja for further information.
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Productivity in High Performance Computing

James C. Browne
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Department of Computer Sciences,
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Abstract. Productivity gains in development of software systems has been mod-
est over the 45-50 years that I have been involved in writing programs. Productiv-
ity gains in high performance computing in particular have been even more mod-
est than across the industry in general. This talk will rationalize the relative failure
in HPC and sketch an approach which could enable orders of magnitude improve-
ment in productivity for development of HPC software systems for all types of
execution environments. The technical challenges and opportunities implicit in
the approach will be discussed. Barriers to productivity gains in HPC include:
(i) The dramatic increase in complexity of HPC algorithms and applications cou-
pled with a dramatic increase in complexity, diversity and scale of HPC execution
environments, (ii) Little CS/CE research on productivity directly addresses HPC-
specific problems such as parallelism, macro-locality and distributed state. The
conceptual basis for dramatically increasing productivity in HPC already exists
and includes: (i) Attention to HPC-specific design, evaluation and execution is-
sues, (ii) Component-based development coupled with automation and tools, (iii)
Coherent unification of design time, compile time and runtime languages mech-
anisms. Implementation of these concepts in HPC raises major technical chal-
lenges: (i) development environments must be extended to address HPC-specific
issues including diverse and scalable parallelism, macro-locality and distributed
state, (ii) Compilation processes must become more semantically complex and
(iii) Compilation and runtime systems must become more knowledge-based and
be more effectively unified.

Biography. James C. Browne. Browne is Professor of Computer Science and Physics
and holds the Regents Chair #2 in Computer Sciences at The University of Texas at
Austin. Browne earned his Ph.D. in Chemical Physics at The University of Texas in
1960. He taught in the Physics Department at The University of Texas from 1960
through 1964. He was, from 1965 through 1968, Professor of Computer Science at
Queens University in Belfast and directed the Computer Laboratory. Browne joined
The University of Texas in 1968 as Professor of Physics AND Computer Science. He
served as Department Chair for Computer Science in 1968–69, 1971–75 and
1984–87. Browne’s current research interests span parallel programming, distributed
and grid computing methods, performance measurement and analysis, software engi-
neering and formal methods including model checking of software systems. He has
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recently begun a research program on integration of methods for verification and vali-
dation of software systems He is a Fellow of the Association for Computing Machinery,
of the British Computer Society, the American Physical Society and of the American
Association for the Advancement of Science. He was Chairman of the ACM Special
Interest Group on Operating Systems 1973–75. Browne has published approximately
100 papers in computational physics and 250 papers in Computer Science.
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Abstract. Writing parallel programs to run on them. Transactional Co-
herence and Consistency (TCC) is a new way to implement cache co-
herency in shared-memory parallel systems by using programmer defined
transactions as the fundamental unit of parallel work, communication,
coherence, consistency and failure atomicity. TCC has the potential to
simplify parallel programming by providing a smooth transition from
sequential programs to parallel programs. In this talk, I will describe
TCC and explain how to develop parallel applications using the TCC
programming model. I will also briefly describe the architecture of the
Stanford Flexible Architecture Research Machine (FARM). FARM is a
scalable system based on commercial high-density blade server technol-
ogy. FARM is designed to improve the capability of architects and ap-
plications developers to experiment with large-scale parallel systems.

Biography. Kunle Olukotun is a Professor of Electrical Engineering and Com-
puter Science. Olukotun received his Ph.D. from The University of Michigan.
Olukotun led the Stanford Hydra single-chip multiprocessor research project
which was the first microprocessor with multiple processors on a single silicon
chip. Olukotun founded Afara Websystems to develop commercial server sys-
tems with chip multiprocessor technology. Afara was acquired by Sun Microsys-
tems; the Afara microprocessor technology, called Niagara, is the core of Sun’s
“Throughput Computing” initiative. Olukotun is actively involved in research in
computer architecture, parallel programming environments and scalable parallel
systems.
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Abstract. It seems to be a truism that one can gain computational
efficiency by enlisting more computers in the solution of a single compu-
tational problem. (We refer to such use of multiple computers as “col-
laborative computing.”) In order to realize the promise of collaborative
computing, however, one must know how to exploit the strengths of the
technology used to build the computing platform - the multiple com-
puters and the networks that interconnect them - and how to avoid the
weaknesses of the technology. Changes in technology - even apparently
modest ones - often call for dramatic changes in algorithmic strategy. In
this talk, I describe some of the challenges that the algorithm designer has
faced as the dominant collaborative computing platforms have changed.

Biography. Arnold L. Rosenberg is a Distinguished University Professor of
Computer Science at the University of Massachusetts Amherst, where he co-
directs the Theoretical Aspects of Parallel and Distributed Systems (TAPADS)
Laboratory. Prior to joining UMass, he was a Professor of Computer Science at
Duke University from 1981 to 1986, and a Research Staff Member at the IBM
Watson Research Center from 1965 to 1981. He has held visiting positions at
Yale University and the University of Toronto; he was a Lady Davis Visiting Pro-
fessor at the Technion (Israel Institute of Technology) in 1994, and a Fulbright
Senior Research Scholar at the University of Paris-South in 2000. Dr. Rosen-
berg’s research focuses on developing algorithmic models and techniques to deal
with the new modalities of “collaborative computing” that result from emerging
technologies. He is the author of more than 150 technical papers on these and
other topics in theoretical computer science and discrete mathematics and is the
coauthor of the book “Graph Separators, with Applications.” Dr. Rosenberg is
a Fellow of the ACM, a Fellow of the IEEE, and a Golden Core member of the
IEEE Computer Society. See http://www.cs.umass.edu/∼rsnbrg/ for further
information.
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Abstract. Quantum physics is a fascinating area from a computational
viewpoint. The features that make quantum systems prohibitively hard
to simulate classically are precisely the aspects exploited by quantum
computation to obtain exponential speedups over classical computers. In
this talk I will survey our current understanding of the power of quantum
computers and prospects for experimentally realizing them in the near
future. I will also touch upon insights from quantum comuptation that
have resulted in new classical algorithms for efficient simulation of certain
important quantum systems.

Biography. Umesh Vazirani received his B.Tech in computer science from
M.I.T. in 1981 and his PhD in computer science from U.C. Berkeley in 1985.
He is currently professor of computer science at U.C. Berkeley and director of
BQIC - the Berkeley Center for Quantum Information and Computation. Prof.
Vazirani is a theoretician with broad interests in novel models of computation.
He has done seminal work in quantum computation and on the computational
foundations of randomness. He is the author of a leading textbook in computa-
tional learning theory (An Introduction to Computational Learning Theory, MIT
Press, 1995, with Michael Kearns). See www.cs.berkeley.edu/∼vazirani for
further information.
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Department of Computer Science,
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Rochester, NY 14627-0226, USA
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Abstract. The proliferation of multiprocessor servers and multithreaded appli-
cations has increased the demand for high-performance synchronization. Tradi-
tional scheduler-based locks incur the overhead of a full context switch between
threads and are thus unacceptably slow for many applications. Spin locks offer
low overhead, but they either scale poorly (test-and-set style locks) or handle
preemption badly (queue-based locks). Previous work has shown how to build
preemption-tolerant locks using an extended kernel interface, but such locks are
neither portable to nor even compatible with most operating systems.

In this work, we propose a time-publishing heuristic in which each thread
periodically records its current timestamp to a shared memory location. Given
the high resolution, roughly synchronized clocks of modern processors, this con-
vention allows threads to guess accurately which peers are active based on the
currency of their timestamps. We implement two queue-based locks, MCS-TP
and CLH-TP, and evaluate their performance relative to traditional spin locks on
a 32-processor IBM p690 multiprocessor. These results show that time-published
locks make it feasible, for the first time, to use queue-based spin locks on multi-
programmed systems with a standard kernel interface.

1 Introduction

Historically, spin locks have found most of their use in operating systems and dedicated
servers, where the entire machine is dedicated to whatever task the locks are protecting.
This is fortunate, because spin locks typically don’t handle preemption very well: if the
thread that holds a lock is suspended before releasing it, any processor time given to
waiting threads will be wasted on fruitless spinning.

Recent years, however, have seen a marked trend toward multithreaded user-level
programs, such as databases and on-line servers. Further, large multiprocessors are in-
creasingly shared among multiple multithreaded programs. As a result, modern appli-
cations cannot in general count on any specific number of processors; spawning one
thread per processor does not suffice to avoid preemption.

� This work was supported in part by NSF grants numbers CCR-9988361, EIA-0080124, CCR-
0204344, and CNS-0411127, by DARPA/ITO under AFRL contract F29601-00-K-0182, by
financial and equipment grants from Sun Microsystems Laboratories, and by an IBM Shared
University Research grant.

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 7–18, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



8 B. He, W.N. Scherer III, and M.L. Scott

For multithreaded servers, the high cost of context switches makes scheduler-based
locking unattractive, so implementors are increasingly turning to spin locks to gain
performance. Unfortunately, this solution comes with hidden drawbacks: queue-based
locks are highly vulnerable to preemption, but test-and-set locks do not scale beyond a
modest number of processors. Although several heuristic strategies can reduce wasted
spinning time [12, 15], multiprogrammed systems usually rely on non-queue-based
locks [19]. Our goal is to combine the efficiency and scalability of queue-based spin
locks with the preemption tolerance of the scheduler-based approach.

1.1 Related Work

One approach to avoiding excessive wait times can be found in abortable locks (some-
times called try locks), in which a thread “times out” if it fails to acquire the lock within
a specified patience interval [11, 26, 27]. Although timeout prevents a thread from being
blocked behind a preempted peer, it does nothing to improve system-wide throughput
if the lock is squarely in the application’s critical path. Further, any timeout sequence
that requires cooperation with neighboring threads in a queue opens yet another win-
dow of preemption vulnerability. Known approaches to avoiding this window result in
unbounded worst-case space overhead [26] or very high base time overhead [11].

An alternative approach is to adopt nonblocking synchronization, eliminating the
use of locks [8]. Unfortunately, while excellent nonblocking implementations exist for
many important data structures (only a few of which we have room to cite here [20, 22,
23, 28, 29]), general-purpose mechanisms remain elusive. Several groups (including our
own) are working on this topic [6, 10, 17, 25], but it still seems unlikely that nonblocking
synchronization will displace locks entirely soon.

Finally, several researchers have suggested operating system mechanisms that pro-
vide user applications with a limited degree of control over scheduling, allowing them
to avoid [4, 5, 13, 18, 24] or recover from [1, 2, 30, 32] inopportune preemption. Com-
mercial support for such mechanisms, however, is neither universal nor consistent.

Assuming, then, that locks will remain important, and that many systems will not
provide an OS-level solution, how can we hope to leverage the fairness and scalability
of queue-based spin locks in multithreaded user-level programs?

In this work, we answer this question with two new abortable queue-based spin locks
that combine fair and scalable performance with good preemption tolerance: the MCS
time-published lock (MCS-TP) and the CLH time-published (CLH-TP) lock. In this
context, we use the term time-published to mean that contending threads periodically
write their wall clock timestamp to shared memory in order to be able to estimate
each other’s run-time states. In particular, given a low-overhead hardware timer with
bounded skew across processors and a memory bus that handles requests in bounded
time1 we can guess with high accuracy that another thread is preempted if the current
system time exceeds the thread’s latest timestamp by some appropriate threshold. We
can then selectively pass a lock only between active threads. Although this doesn’t solve

1 Our requirements are modest: While it must be possible to read the clock within, say, 100ns,
clock skew or remote access times of tens of microseconds would be tolerable. Most modern
machines do much better than that.
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the preemption problem completely (threads can be preempted while holding the lock,
and our heuristic suffers from a race condition in which we read a value that has just
been written by a thread immediately before it was preempted), experimental results
(Sections 4 and 5) confirm that our approach suffices to make the locks preemption
adaptive: free, in practice, from virtually all preemption-induced performance loss.

2 Algorithms

We begin this section by presenting common features of our two time-published (TP)
locks; Sections 2.1 and 2.2 cover algorithm-specific details.

Our TP locks are abortable variants of the well-known MCS [19] and CLH [3, 16]
queue-based spin locks. Their acquire functions return success if the thread ac-
quired the lock within a supplied patience interval parameter, and failure otherwise.
In both locks, the thread owning the head node of a linked-list queue holds the lock.

With abortable queue-based locks, there are three ways in which preemption can
interfere with throughput. First, as with any lock, a thread that is preempted in its critical
section will block all competitors. Second, a thread preempted while waiting in the
queue will block others once it reaches the head; strict FIFO ordering is a disadvantage
in the face of preemption. Third, any timeout protocol that requires explicit handshaking
among neighboring threads will block a timed-out thread if its neighbors are not active.

The third case can be avoided with nonblocking timeout protocols, which guarantee
a waiting thread can abandon an acquisition attempt in a bounded number of its own
time steps [26]. To address the remaining cases, we use a timestamp-based heuristic.
Each waiting thread periodically writes the current system time to a shared location. If
a thread A finds a stale timestamp for another thread B, A assumes that B has been
preempted and removes B’s node from the queue. Further, any time A fails to acquire
the lock, it checks the critical section entry time recorded by the current lock holder.
If this time is sufficiently far in the past, A yields the processor in the hope that a
suspended lock holder might resume.

There is a wide design space for time-published locks, which we have only begun to
explore. Our initial algorithms, described in the two subsections below, are designed to
be fast in the common case, where timeout is uncommon. They reflect our attempt to
adopt straightforward strategies consistent with the head-to-tail and tail-to-head linking
of the MCS and CLH locks, respectively. These strategies are summarized in Table 1.
Time and space bounds are considered in the technical report version of this paper [7].

2.1 MCS Time-Published Lock

Our first algorithm is adapted from Mellor-Crummey and Scott’s MCS lock [19]. In the
original MCS algorithm, a contending thread A atomically swaps a pointer to its queue
node α into the queue’s tail. If the swap returns nil, A has acquired the lock; otherwise
the return value is A’s predecessor B. A then updates B’s next pointer to α and spins
until B explicitly changes the A’s state from waiting to available. To release
the lock, B reads its next pointer to find a successor node. If it has no successor, B
atomically updates the queue’s tail pointer to nil.
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Table 1. Comparison between MCS and CLH time-published locks

Lock MCS-TP CLH-TP

Link Structure Queue linked head to tail Queue linked tail to head
Lock handoff Lock holder explicitly grants the

lock to a waiter
Lock holder marks lock available and
leaves; next-in-queue claims lock

Timeout precision Strict adherence to patience Bounded delay from removing timed-
out and preempted predecessors

Queue
management

Only the lock holder removes timed-
out or preempted nodes (at handoff)

Concurrent removal by all waiting
threads

Space
management

Semi-dynamic allocation: waiters
may reinhabit abandoned nodes un-
til removed from the queue

Dynamic allocation: separate node per
acquisition attempt

waiting

path for reusing spacedriven by self driven by the lock holder

(My attempt
  failed)

The lock holder
        sees me inactive

(I abort my
acquisition attempt)

I rejoin the 
queue at
my former
position

my node from the queue.
The lock holder removes

available

left removed

removedI time out

critical section

The lock holder passes
me the lock

(New Attempt)

(New Attempt)

Fig. 1. State transitions for MCS-TP queue nodes

The MCS-TP lock uses the same head-to-tail linking as MCS, but adds two addi-
tional states: left and removed. When a waiting thread times out before acquiring
the lock, it marks its node left and returns, leaving the node in the queue. When a
node reaches the head of the queue but is either marked left or appears to be owned
by a preempted thread (i.e., has a stale timestamp), the lock holder marks it removed,
and follows its next pointer to find a new candidate lock recipient, repeating as neces-
sary. Figure 1 shows the state transitions for MCS-TP queue nodes. Source code can be
found in the technical report version of this paper [7]. It runs to about 3 pages.

The MCS-TP algorithm allows each thread at most one node per lock. If a thread that
calls acquire finds its node marked left, it reverts the state to waiting, resuming
its former place in line. Otherwise, it begins a fresh attempt from the tail of the queue.
To all other threads, timeout and retry are indistinguishable from an execution in which
the thread was waiting all along.

2.2 CLH Time-Published Lock

Our second time-published lock is based on the CLH lock of Craig [3] and Landin and
Hagersten [16]. In CLH, a contending thread A atomically swaps a pointer to its queue
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node α into the queue’s tail. This swap always returns a pointer to the node β inserted
by A’s predecessor B (or, the very first time, to a dummy node, marked available,
created at initialization time). A updates α’s prev pointer to β and spins until β’s
state is available. Note that, in contrast to MCS, links point from the tail of the
queue toward the head, and a thread spins on the node inserted by its predecessor. To
release the lock, a thread marks the node it inserted available; it then takes the
node inserted by its predecessor for use in its next acquisition attempt. Because a thread
cannot choose the location on which it is going to spin, the CLH lock requires cache-
coherent hardware in order to bound contention-inducing remote memory operations.

CLH-TP retains the link structure of the CLH lock, but adds both non-blocking time-
out and removal of nodes inserted by preempted threads. Unlike MCS-TP, CLH-TP al-
lows any thread to remove the node inserted by a preempted predecessor; removal is not
reserved to the lock holder. Middle-of-the-queue removal adds significant complexity
to CLH-TP; experience with earlier abortable locks [26, 27] suggests that it would be
very difficult to add to MCS-TP. Source code for the CLH-TP lock can be found in the
technical report version of this paper [7]. It runs to about 5 pages.

We use low-order bits in a CLH-TP node’s prev pointer to store the node’s state,
allowing us to atomically modify the state and the pointer together. If prev is a valid
pointer, its two lowest-order bits specify one of three states: waiting, transient,
and left. Alternatively, prev can be a nil pointer with low-order bits set to indicate
three more states: available, holding, and removed. Figure 2 shows the state
transition diagram for CLH-TP queue nodes.

In each lock acquisition attempt, thread B dynamically allocates a new node β and
links it to predecessor α as before. While waiting, B handles three events. The sim-
plest occurs when α’s state changes to available; B atomically updates β’s state to
holding to claim the lock.

The second event occurs when B believes A to be preempted or timed out. Here,
B performs a three-step removal sequence to unlink A’s node from the queue. First,
B atomically changes α’s state from waiting to transient, to prevent A from
acquiring the lock or from reclaiming and reusing α if it is removed from the queue
by some successor of B (more on this below). Second, B removes α from the queue,

waiting

holding

finish
critical section

reclaimed

reclaimed

removed

driven by successordriven by self

left

available

New Attempt

reclaimedtransient

return failure

return failure

return success critical section

Fig. 2. State transitions for CLH-TP queue nodes
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simultaneously verifying that B’s own state is still waiting (since β’s prev pointer
and state share a word, this is a single compare-and-swap). Hereafter, α is no longer
visible to other threads in the queue, and B spins on A’s predecessor’s node. Finally, B
marks α as safe for reclamation by changing its state from transient to removed.

The third event occurs when B times out or when it notices that β is transient. In
either case, it attempts to change β’s state atomically from transient or
waiting to left. If the attempt succeeds, B has delegated responsibility for recla-
mation of β to a successor. Otherwise, B has been removed from the queue and must
reclaim its own node. Either way, whichever of B and its successor notices last that β
has been removed from the queue handles the memory reclamation.

A corner case occurs when, after B marks α transient, β is marked
transient by some successor thread C before B removes α from the queue. In
this case, B leaves α for C to clean up; C recognizes this case by finding α already
transient.

The need for the transient state derives from a race condition in which B de-
cides to remove α from the queue but is preempted before actually doing so. While
B is not running, successor C may remove both β and α from the queue, and A may
reuse its node in this or another queue. When B resumes running, we must ensure that
it does not modify (the new instance of) A. The transient state allows us to so, if
we can update α’s state and verify that β is still waiting as a single atomic operation.
A custom atomic construction (ommitted here but shown in the TR version [7]) imple-
ments this operation using load-linked / store-conditional. Alternative solutions might
rely on a tracing garbage collector (which would decline to recycle α as long as B has
a reference) or on manual reference-tracking methodologies [9, 21].

3 Scheduling and Preemption

TP locks publish timestamps to enable a heuristic that guesses whether the lock holder
or a waiting thread is preempted. This heuristic admits a race condition wherein a
thread’s timestamp is polled just before it is descheduled. In this case, the poller will
mistakenly assume the thread to be active. In practice, the timing window is too narrow
to have a noticeable impact on performance. Although space limitations preclude fur-
ther discussion of scheduler-conscious locks, a full analysis and an empirical study of
the matter may be found in the TR version of this paper [7].

4 Microbenchmark Results

We test our TP locks on an IBM pSeries 690 (Regatta) multiprocessor with 32 1.3 GHz
Power4 processors, running AIX 5.2. For comparison purposes, we include a range of
user-level spin locks: TAS, MCS, CLH, MCS-NB, and CLH-NB. TAS is a test-and-
test-and-set lock with (well tuned) randomized exponential backoff. MCS-NB
and CLH-NB are abortable queue-based locks with non-blocking timeout [26]. We also
test spin-then-yield variants [12] in which threads yield after exceeding a wait threshold.

In our microbenchmark, each thread repeatedly attempts to acquire a lock. We sim-
ulate critical sections (CS) by updating a variable number of cache lines; we simulate
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non-critical sections (NCS) by varying the time spent spinning in an idle loop between
acquisitions. We measure the total throughput of lock acquisitions and we count suc-
cessful and unsuccessful acquisition attempts, across all threads for one second, aver-
aging results of 6 runs. For abortable locks, we retry unsuccessful acquisitions immedi-
ately, without executing a non-critical section. We use a fixed patience of 50 µs.

4.1 Single Thread Performance

Because low overhead is crucial for locks in real systems, we assess it by measuring
throughput absent contention with one thread and empty critical and non-critical sec-
tions. We present results in Figure 3.
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Fig. 3. Single-thread performance results

As expected, the TAS variants are the most efficient for one thread, absent con-
tention. MCS-NB has one compare-and-swap more than the base MCS lock; this ap-
pears in its single-thread overhead. Similarly, other differences between locks trace
back to the operations in their acquire and release methods. We note that time-
publishing functionality adds little overhead to locks.

A single-thread atomic update on our p690 takes about 60 ns. Adding additional
threads introduces contention from memory and processor interconnect bus traffic and
adds cache coherence overhead when transferring a cache line between processors. We
have measured atomic update overheads of 120 and 420 ns with 2 and 32 threads.

4.2 Multi-thread Performance

Under high contention, serialization of critical sections causes application performance
to depend primarily on the overhead of handing a lock from one thread to the next; other
overheads are typically subsumed by waiting. We examine two typical configurations.

Our first configuration simulates contention for a small critical section with a 2-
cache-line-update critical section and a 1 µs non-critical section. Figure 4 plots lock
performance for this configuration. Up through 32 threads (our machine size), queue-
based locks outperform TAS; however, only the TP and TAS locks maintain throughput
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Fig. 4. 2 cache line-update critical section (CS). 1 µs non-critical section (NCS). Critical section
service time (left) and success rate (right) on a 32-processor machine.
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Fig. 5. 40 cache line CS; 4µs NCS. CS service time (left) and success rate (right).

in the presence of preemption. MCS-TP’s overhead increases with the number of pre-
empted threads because it relies on the lock holder to remove nodes. By contrast, CLH-
TP distributes cleanup work across active threads and keeps throughput more steady.
The right-hand graph in Figure 4 shows the percentage of successful lock acquisition
attempts for the abortable locks. MCS-TP’s increasing handoff time forces its success
rate below that of CLH-TP as the thread count increases. CLH-NB and MCS-NB drop
to nearly zero due to preemption while waiting in the queue.

Our second configuration uses 40-cache-line-update critical sections 4 µs non-
critical sections. It models larger longer operations in which preemption of the lock
holder is more likely. Figure 5 shows lock performance for this configuration. That the
TP locks outperform TAS demonstrates the utility of cooperative yielding for preemp-
tion recovery. Moreover, the CLH-TP–MCS-TP performance gap is smaller here than
in our first configuration since the relative importance of removing inactive queue nodes
goes down compared to that of recovering from preemption in the critical section.

In Figure 5, the success rates for abortable locks drop off beyond 24 threads. Since
each critical section takes about 2 µs, our 50 µs patience is just enough for a thread to
sit through 25 predecessors. We note that TP locks adapt better to insufficient patience.
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Fig. 6. Spin-then-yield variants; 2 cache line CS; 1 µs NCS

One might expect a spin-then-yield policy [12] to allow other locks to match TP
locks in preemption adaptivity. In Figure 6 we test this hypothesis with a 50 µs spin-
ning time threshold and a 2 cache line critical section. (Other settings produce similar
results.) Although yielding improves the throughput of non-TP queue-based locks, they
still run off the top of the graph. TAS benefits enough to become competitive with
MCS-TP, but CLH-TP still outperforms it. These results confirm that targeted removal
of inactive queue nodes is much more valuable than simple yielding of the processor.

4.3 Time and Space Bounds

Finally, we measure the time overhead for removing an inactive node. On our Power4
p690, we calculate that the MCS-TP lock holder needs about 200–350ns to delete
each node. Similarly, a waiting thread in CLH-TP needs about 250–350ns to delete
a predecessor node. By combining these values with our worst-case analysis for the
number of inactive nodes in the lock queues [7], one can estimate an upper bound on
delay for lock handoff when the holder is not preempted.

In our analysis of the CLH-TP lock’s space bounds [7] we show a worst-case bound
quadratic in the number of threads, but claim an expected linear value. In tests designed
to maximize space contention (full details available in the TR version [7]), we find
space consumption to be very stable over time. Even with very short patience, we obtain
results far closer to the expected linear than the worst-case quadratic space bound.

5 Application Results

In this section we measure the performance of our TP locks on the Raytrace and Barnes
benchmarks from the SPLASH-2 suite [31].

Application Features: Raytrace and Barnes are heavily synchronized [14, 31]. Ray-
trace uses no barriers but features high contention on a small number of locks. Barnes
uses few barriers but numerous locks. Both offer reasonable parallel speedup.
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Fig. 7. Parallel execution times for Raytrace and Barnes on a 32-processor IBM p690 Regatta.
Test M.N uses M application threads and (32 − M) + N external threads.

Experimental Setup: We test the locks from Section 4 and the native pthread
mutex on our p690, averaging results over 6 runs. We choose inputs large enough to
execute for several seconds: 800×800 for Raytrace and 60K particles for Barnes. We
limit testing to 16 threads due to the applications’ limited scalability. External threads
running idle loops generate load and force preemption.

Raytrace: The left side of Figure 7 shows results for three preemption adaptive locks:
TAS-yield, MCS-TP and CLH-TP. Other spin locks give similar performance absent
preemption; when preemption is present, non-TP queue-based locks yield horrible per-
formance (Figures 4, 5, and 6). The pthread mutex lock also scales very badly; with
high lock contention, it can spend 80% of its time in kernel mode. Running Raytrace
with our input size took several hours for 4 threads.

Barnes: Preemption adaptivity is less important here than in Raytrace because Barnes
distributes synchronization over a very large number of locks, greatly reducing the im-
pact of preemption. This can be confirmed by noting that a highly preemption-sensitive
lock, MCS, “only” doubles its execution time given heavy preemption. We therefore
attribute Barnes’ relatively severe preemption-induced performance degradation to the
barriers it uses.

With both benchmarks, we find that our TP locks maintain good throughput and
adapt well to preemption. With Raytrace, MCS-TP in particular yields 8-18% improve-
ment over a yielding TAS lock with 4 or 8 threads. Barnes is less dependent on lock
performance in that different locks have similar performance. Overall, MCS-TP outper-
forms CLH-TP; this is consistent with our microbenchmark results. We speculate that
this disparity is due to lower base-case overhead in the MCS-TP algorithm combined
with short-lived lock acquisitions in these applications.

6 Conclusions and Future Work

In this work we have demonstrated that published timestamps provide an effective
heuristic by which a thread can accurately guess the running state of its peers, without
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support from a nonstandard scheduler API. We have used this published-time heuris-
tic to implement preemption adaptive versions of standard MCS and CLH queue-based
locks. Empirical tests confirm that these locks combine scalability, strong tolerance for
preemption, and low observed space overhead with throughput as high as that of the
best previously known solutions. Given the existence of a low-overhead time-of-day
register with low system-wide skew, our results make it feasible, for the first time, to
use queue-based locks on multiprogrammed systems with a standard kernel interface.

For cache-coherent machines, we recommend CLH-TP when preemption is frequent
and strong worst-case performance is needed. MCS-TP gives better performance in
the common case. With unbounded clock skew, slow system clock access, or a small
number of processors, we recommend a TAS-style lock with exponential backoff com-
bined with a spin-then-yield mechanism. Finally, for non-cache-coherent (e.g. Cray)
machines, we recommend MCS-TP if clock registers support it; otherwise the best
choice is the abortable MCS-NB try lock.

As future work, we conjecture that time can be used to improve thread interaction in
other areas, such as preemption-tolerant barriers, priority-based lock queueing, dynamic
adjustment of the worker pool for bag-of-task applications, and contention management
for nonblocking concurrent algorithms. Further, we note that we have examined only
two points in the design space of TP locks; other variations may merit consideration.

References

[1] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. ACM Trans. on
Computer Systems, 10(1):53–79, Feb. 1992.

[2] D. L. Black. Scheduling support for concurrency and parallelism in the Mach operating
system. IEEE Computer, 23(5):35–43, 1990.

[3] T. S. Craig. Building FIFO and priority-queueing spin locks from atomic swap. Technical
Report TR 93-02-02, Department of Computer Science, Univ. of Washington, Feb. 1993.

[4] J. Edler, J. Lipkis, and E. Schonberg. Process management for highly parallel UNIX sys-
tems. USENIX Workshop on Unix and Supercomputers, Sep. 1988.

[5] H. Franke, R. Russell, and M. Kirkwood. Fuss, futexes and furwocks: Fast userlevel locking
in Linux. Ottawa Linux Symp., June 2002.

[6] T. Harris and K. Fraser. Language support for lightweight transactions. 18th Conf. on
Object-Oriented Programming, Systems, Languages, and Applications, Oct. 2003.

[7] B. He, W. N. Scherer III, and M. L. Scott. Preemption adaptivity in time-published queue-
based spin locks. Technical Report URCS-867, University of Rochester, May 2005.

[8] M. Herlihy. Wait-free synchronization. ACM Trans. on Programming Languages and
Systems, 13(1):124–149, Jan. 1991.

[9] M. Herlihy, V. Luchangco, and M. Moir. The repeat offender problem: A mechanism for
supporting dynamic-sized, lock-free data structures. 16th Conf. on Distributed Computing,
Oct. 2002.

[10] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software transactional memory
for dynamic-sized data structures. 22nd ACM Symp. on Principles of Distributed Comput-
ing, July 2003.

[11] P. Jayanti. Adaptive and efficient abortable mutual exclusion. 22nd ACM Symp. on Princi-
ples of Distributed Computing, July 2003.



18 B. He, W.N. Scherer III, and M.L. Scott

[12] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empirical studies of competitive
spinning for a shared-memory multiprocessor. 13th SIGOPS Symp. on Operating Systems
Principles, Oct. 1991.

[13] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott. Scheduler-conscious synchro-
nization. ACM Trans. on Computer Systems, 15(1):3–40, Feb. 1997.

[14] S. Kumar, D. Jiang, R. Chandra, and J. P. Singh. Evaluating synchronization on shared
address space multiprocessors: Methodology and performance. SIGMETRICS Conf. on
Measurement and Modeling of Computer Systems, May 1999.

[15] B.-H. Lim and A. Agarwal. Reactive synchronization algorithms for multiprocessors. 6th
Intl. Conf. on Architectural Support for Programming Languages and Operating Systems,
Oct. 1994.

[16] P. S. Magnusson, A. Landin, and E. Hagersten. Queue locks on cache coherent multipro-
cessors. 8th Intl. Parallel Processing Symp., Apr. 1994.

[17] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Design Tradeoffs in Modern Software
Transactional Memory Systems. 7th Workshop on Languages, Compilers, and Run-time
Support for Scalable Systems, Oct. 2004.

[18] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos. First-class user-level threads.
13th SIGPOPS Symp. on Operating Systems Principles, Oct. 1991.

[19] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. on Computer Systems, 9(1):21–65, 1991.

[20] M. M. Michael. High performance dynamic lock-free hash tables and list-based sets. 14th
Symp. on Parallel Algorithms and Architectures, Aug. 2002.

[21] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. on Parallel and Distributed Systems, 15(8)491–504, 2004.

[22] M. M. Michael. Scalable lock-free dynamic memory allocation. SIGPLAN Symp. on Pro-
gramming Language Design and Implementation, June 2004.

[23] M. M. Michael and M. L. Scott. Nonblocking algorithms and preemption-safe locking
on multiprogrammed shared memory multiprocessors. Journal of Parallel and Distributed
Computing, 51:1–26, 1998.

[24] J. K. Ousterhout. Scheduling techniques for concurrent systems. 3rd Intl. Conf. on Dis-
tributed Computing Systems, Oct. 1982.

[25] W. N. Scherer III and M. L. Scott. Advanced Contention Management for Dynamic Soft-
ware Transactional Memory. 24th ACM Symp. on Principles of Distributed Computing,
July 2005.

[26] M. L. Scott. Non-blocking timeout in scalable queue-based spin locks. 21st ACM Symp.
on Principles of Distributed Computing, July 2002.

[27] M. L. Scott and W. N. Scherer III. Scalable queue-based spin locks with timeout. 8th ACM
Symp. on Principles and Practice of Parallel Programming, June 2001.

[28] H. Sundell and P. Tsigas. NOBLE: A non-blocking inter-process communication library.
6th Workshop on Languages, Compilers, and Run-time Support for Scalable Systems, Mar.
2002.

[29] H. Sundell and P. Tsigas. Fast and lock-free concurrent priority queues for multi-thread
systems. Intl. Parallel and Distributed Processing Symp., Apr. 2003.

[30] H. Takada and K. Sakamura. A novel approach to multiprogrammed multiprocessor syn-
chronization for real-time kernels. 18th Real-Time Systems Symp., Dec. 1997.

[31] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The Splash-2 programs: Charac-
terization and methodological considerations. 22nd Intl. Symp. on Computer Architecture,
Jun. 1995.

[32] H. Zheng and J. Nieh. SWAP: A scheduler with automatic process dependency detection.
Networked Systems Design and Implementation, Mar. 2004.



Criticality Driven Energy Aware Speculation
for Speculative Multithreaded Processors

Rahul Nagpal1 and Anasua Bhowmik2

1 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

rahul@csa.iisc.ernet.in
2 Microprocessor Solutions Sector,

AMD-India Engineering Center, Bangalore, India
anasua.bhowmik@amd.com

Abstract. Speculative multithreaded architecture (SpMT) philosophy
relies on aggressive speculative execution for improved performance. Ag-
gressive speculative execution results in a significant wastage of dynamic
energy due to useless computation in the event of mis-speculation. As
energy consumption is becoming an important constraint in microproces-
sor design, it is extremely important to reduce such wastage of dynamic
energy in SpMT processors in order to achieve a better performance to
power ratio. Dynamic instruction criticality information can be effec-
tively applied to control aggressive speculation in SpMT processors. In
this paper, we present a model of micro-execution for SpMT processors
to determine dynamic instruction criticality. We also present two novel
techniques utilizing criticality information, namely delaying non-critical
loads and criticality based thread-prediction for reducing useless com-
putation and energy consumption. Our experiments show 17.71% and
11.63% reduction in dynamic energy for criticality based thread predic-
tion and criticality based delayed load scheme respectively while the cor-
responding improvements in dynamic energy delay products are 13.93%
and 5.54%.

1 Introduction

Speculative multithreaded (SpMT) execution paradigm [2] executes in paral-
lel multiple threads obtained from a sequential program. In order to extract
parallelism from sequential programs, SpMT processors use aggressive control
and data speculation. The hardware speculates that dependencies do not exist
among the threads running in parallel and then recovers whenever dependen-
cies occur at run-time. Though aggressive speculation achieves higher speedup
when the speculations are correct, the mis-speculations lead to squashing and
re-execution of the threads and thus wasting a large amount of work and energy.
For example, a thread mis-prediction in SpMT would result in the squashing
of the mis-predicted thread and all the subsequent threads and thereby wasting
dynamic energy of executing several hundreds of instructions. We observe that

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 19–28, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



20 R. Nagpal and A. Bhowmik

in an 8 PE SpMT processor, nearly 40% of the time is spent in useless compu-
tation due to mis-speculations and this results in a significant wastage of dy-
namic energy. As energy consumption is fast becoming an important constraint
in microprocessor design, it is extremely important to reduce such a wastage of
dynamic energy in order to achieve a better performance to power ratio in SpMT
processors.

In this paper, we focus on reducing the dynamic energy consumption while
maintaining the speedup achieved by the SpMT processors using the dynamic
instruction criticality information. First, we propose an analytical model for de-
termining the dynamic critical path of a program for SpMT execution paradigm.
Our model is based on the critical path model proposed by Fields et. al. [1] for
finding critical path in the superscalar processors. Notably, modeling and de-
termining critical paths in SpMT processors are quite challenging since there
exist many parallel paths of execution through different threads at the same
time. We have analyzed the dynamic critical path of the programs and then
used that knowledge to devise useful run-time speculation control techniques.
We have used the criticality information successfully in guiding both the control
speculation and the data speculation in an aggressive SpMT processor. Our ex-
periments with criticality based thread prediction and criticality based delayed
load execution have resulted in 17.71% and 11.63% reduction in dynamic energy
consumptions respectively, while the corresponding dynamic energy-delay prod-
ucts are improved by 13.93% and 5.54%. In summary our main contributions
are as follows:

– Development and implementation of analytical model for finding critical in-
structions in SpMT execution framework.

– Guiding speculation control based on criticality information to reduce useless
computation and energy wastage.

– A detailed performance evaluation of proposed techniques demonstrating the
net savings in useless computation and energy consumption without much
performance degradation.

Although, a lot of work has been done on determining and exploiting dy-
namic critical paths in superscalar processor models [1] [3], ours is the first work
to determine the critical paths in the SpMT execution paradigm. Tune et al. [3]
have proposed various heuristics, based on micro-execution events, to predict
the dynamic instruction criticality. Their heuristic based approach have been
effective for driving various optimization techniques such as instruction steering
in clustered architectures, value prediction, and reducing power consumption.
Fields et al. [1] follow a modeling based approach for predicting critical instruc-
tions. They proposed a graph model to capture constraints such as finite reorder
buffer and branch mis-prediction apart from traditional data dependencies. They
have developed a token passing based criticality predictor and used it for selec-
tive value prediction and instruction steering for clustered architectures. They
have shown that the model based approach is generic and more accurate than a
heuristic based approach.
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Reducing energy in microprocessors is an active area of research and many
power optimization techniques have been proposed. The works that are closest
to our work are [4], [7], and [9]. Manne et. al. [4] introduced the idea of pipeline
gating and used branch confidence estimator to reduce wrong-path instructions
in the pipeline to save energy. In [7] processor power dissipation is reduced by
throttling the different pipeline stages selectively based on branch confidence
estimation. In order to save energy, critical path prediction is used in [9] to send
the non-critical instructions to slower functional units.

The rest of the paper is organized as follows. Section 2 gives a brief overview of
SpMT architectures and presents our graph model for determining the dynamic
critical path. In section 3, we present and evaluate the speculation control tech-
niques using the critical path information. Section 4 contains the conclusions
and future work.

2 Modeling the Critical Path for SpMT Processor

The central idea behind SpMT is to execute multiple threads obtained from a
sequential program in parallel. SpMT architectures support both control specula-
tion and data speculation to enable program parallelization despite any compile-
time uncertainty about (control or data) dependencies between the threads run-
ning in parallel. This execution model is particularly suitable for exploiting par-
allelism from non-numeric applications which are difficult to parallelize for tra-
ditional parallel processors.

A typical SpMT processor consists of a collection of simpler superscalar out-
of-order processing elements (PEs) that are connected by an interconnection
network. Each PE has its own fetch, decode, and execution units. A thread
spawns the next successor thread speculatively based on thread level prediction.
A spawned thread becomes active after a PE becomes available. The threads are
spawned and activated in the program order and at any point of time only one
thread executes non-speculatively. Although instructions are executed out-of-
order, they are committed in program order. After the thread finishes execution
it waits to become non-speculative before committing. A speculative thread (and
all the subsequent threads) can be squashed before committing because of mis-
prediction or dependence violation.

To capture the micro-execution of the SpMT processor model we build a
dynamic dependence graph (DDG) at run-time. The critical path is the longest
path in the DDG and the nodes lying in that critical path constitute the critical
instructions. Each instruction in the DDG is represented by three nodes namely
F, E, and C nodes. The F node represents the event of an instruction being
fetched, decoded, and put in the ROB. The E node represents the execution event
and the C node represents the commit event of an instruction. A directed edge
between two nodes depict the dependence between them and the edge weight
represent the resultant delay. There are inter-thread as well as intra thread edges
showing the interaction between the threads running in parallel. All the edges
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in the DDG are listed in Table 1 along with a brief description. A detailed
description and an example of the DDG model can be found in [10].

Although our critical path model is based on the model proposed by Fields
et. al. [1], there are significant differences between the two models. First of all, in
their model, three nodes, namely dispatch, execute, and commit were sufficient to
model the micro-execution of the processor. But in our model, a separate fetch
node is needed to capture the fetch bottlenecks. In SpMT processor, instruction
fetch is affected by various inter-thread and intra-thread constraints and the fetch
nodes are major components in the critical path. Although we do not model
the dispatch node explicitly like Fields et. al., we keep track of the dispatch
constraints separately during the simulation. We have also extended the graph
model to capture the inter-thread data dependencies, structural constraints, and
thread squashing.

Table 1. List of edges in DDG, Ij,i refers to the ith instruction in jth thread and
Fj,i, Ej,i, and Cj,i are the corresponding nodes in DDG

Edge type Constraint modeled Name Edge description
Intra-thread In-order Fetch FFi Fj,i−1 → Fj,i; Ij,i fetched after Ij,i−1.

Finite Size ROB CFi Cj,i−R → Fj,i; R: size of ROB.
Ij,i fetched after Ij,i−R committed.

Control Dependence EFi Ej,i−1 → Fj,i; Ij,i−1: mis-predicted
branch. Ij,i not fetched till
Ij,i−1 executed.

Inter-thread In-order FFI Fj−1,1 → Fj,1; A thread is activated
thread and starts fetching only after its
activation immediate predecessor is activated and

started fetching the instructions.
Finite PE CFI Cj−N,l → Fj,i; N :number of PEs.

Thread Tj is activated and starts
fetching only after thread
Tj−N commits and PE becomes free.

Control/data EFI Ej−1,i → Fj,1; Ij−1,i caused control/data
mis-speculation mis-speculation; Thread Tj activated

and starts fetching after Ij−1,i executed.
Intra-thread Execute Follow Fetch FEi Fj,i → Ej,i;

Data Dependency EEi Ej,m → Ej,n, m < n;
Ij,n dependent on Ij,m.

Inter-thread Data Dependency EEI Ek,m → Ej,n, k < j;
Ij,n dependent on Ik,m.

Intra-thread Commit ECi Ej,i → Cj,i;
Follow Execution
In-order Commit CCi Cj,i−1 → Cj,i; Ij,i committed after Ij,i−1

Inter-thread In-order Commit CCI Cj−1,l → Cj,1; Thread Tj can start
committing after the last instruction
of Tj−1 committed.



Criticality Driven Energy Aware Speculation for SpMT Processors 23

3 Reducing Dynamic Energy Through Criticality Based
Speculation Control

In this section, we present our instruction criticality based schemes for dynamic
energy reduction in SpMT processors. We first present an overview of our dy-
namic critical path detection methodology and analyze behavior of the critical
path. Analysis of the critical path is necessary in order to evaluate the potential
for speculation control in SpMT processors and to devise effective mechanisms.

We have implemented the dynamic dependence graph model in a cycle accu-
rate simulator of the multiscalar processor [2]. We build the dependence graph
during the simulation and find the critical path. The parameters of the simu-
lated processor are given in Table 2. All the results presented here are for 8 PE
configuration. We have obtained similar results for 4 and 12 PE configurations
as well.

From Figure 1, we see that on the average 18.77% of load instructions, 12.76%
of store instructions, and 33% of mispredicted branch instructions lie on the
critical path. To gain insight into the cause of dynamic energy wastage, we
have measured the time spent in useless computation due to thread squashing.
Figure 2 shows the squash loss time(SLT) due to the memory dependence vio-
lation and branch mis-prediction. The instructions causing memory dependence

Table 2. Hardware parameters used in experimental evaluation

Component Description
PEs 2-way issue, 32-entry ROB, 2 integer, 1 FP, 1 branch, 1 memory

Prediction Intra-task (Inter-task) : gshare (path-based) with 16-bit history,
64K-entry table of 2-bit counters

Register Ring 2 values per cycle, bypass same cycle between adjacent PEs
Memory Buffer 32 entries/PE, 32 x No. of PE bytes/entry,

fully associative, 2 cycle hit
L1 I-cache 16 * No. of PE KB , 2-way associative, 32 byte blocks, 1cycle hit
L1 D-cache 16 * No. of PE KB, 2-way associative, 32 byte blocks, 2 cycle hit

Fig. 1. % of load, store, and mispredicted
branches found critical

Fig. 2. % breakup of squash loss time
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Fig. 3. IPC Fig. 4. % reduction in squash loss time

Fig. 5. % reduction in dynamic energy Fig. 6. % improvement in dynamic energy
delay product

violation (i.e. load/store instructions) and branch mis-prediction are again clas-
sified into critical and non-critical instructions. From Figure 2, we see that nearly
40% of the time is spent in doing useless computation which results in wastage of
dynamic energy. This is due to the aggressive speculation techniques employed
by the processor to extract thread level and instruction level parallelism. From
Figure 2, we see that on the average, critical load-store contributes for only 3.03%
of the squashing where as 59.42% of squashing is caused due to non-critical loads.
The figure also shows that on the average 24.0% of squashing is caused due to
critical branches that are mis-predicted and 13.52% of squashing is attributed to
non-critical branches. The high percentage of non-critical load-store instructions
in Figure 2 points toward the possibility of avoiding speculative execution of such
instructions in order to reduce power consumption due to unnecessary computa-
tion. Similarly the high percentage of non-critical mis-predicted branches points
toward the possibility of avoiding speculation across these branches.

In the next two subsections we describe our dynamic energy reduction tech-
niques and analyze the results. We have modified the epic-explorer [8], which
has a collection of activity based energy models, for determining the energy con-
sumption in different components of the multiscalar processor data-path. While
adapting the energy model we have ensured that it faithfully captures all the mi-
croarchitectural features of the multiscalar processor implementation. Figure 3
shows the IPC for the base execution model and the IPC with our dynamic
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energy reduction techniques. In Figure 4, we present the percentage reduction
in squash loss time over the base model for the various dynamic energy reduc-
tion techniques which gives an indirect measure of reduction in useless activity.
Figure 5 and 6 present the reduction in dynamic energy and the improvement
in dynamic energy delay product over the base model for all the techniques.

3.1 Reducing Dynamic Energy by Delaying Non-critical Loads

In SpMT processors a load instruction is speculatively executed assuming that
the store on which the load is dependent has already taken place. The processor
loads the value either from the memory or the intermediate buffer and continues
execution. If an earlier store to the same location is executed after the speculative
load, the processor detects a memory dependence violation and squashes the
violating load and its dependent instructions and this causes dynamic energy
wastage.

Although, speculative loads may lead to dynamic energy wastage, they are
necessary to speedup the execution as we can see from Figure 1 that nearly 18%
of all load instructions lie on the critical path. Therefore speculative loads can not
be removed altogether. However, from Figure 2, we see that in all the benchmarks
a significant percentage (avg. 59.42%) of squashing is due to non-critical loads.
Since the total execution time is not likely to depend on the non-critical loads,
we delay the non-critical loads (DL) in order to reduce dynamic energy wastage
without affecting the speedup. We determine the average time between the issue
of a load and the resultant squashing (average time to squash or ATS) and the
non-critical loads are delayed by this time period.

From Figures 4 and 3 we see that the average reduction of squash loss time is
26.43% with IPC reduction of 8.11% for delayed load scheme whereas Figure 5
and Figure 6 depicts the average improvement of 13.93% and 5.54% in dynamic
energy and the dynamic energy delay product respectively. The degradation in
IPC is happening mainly because at present we delay all the non-critical loads
in a benchmark by a fixed ATS. IPC degradation can be reduced, if different
loads can be delayed by different amount.

From Figure 4 we see that mcf has the highest reduction in SLT and dynamic
energy usage. This is as expected since from Figure 2 we see that it has consid-
erably high squash loss time and a very high percentage of this SLT is due to
non-critical loads. Since the IPC degradation of mcf is also very low, it shows a
high improvement in dynamic energy delay product. In ijpeg the improvement
in energy-delay product is negligible while in vortex there is a little decrease in
the energy-delay product. Both vortex and ijpeg has a considerable amount
of non-critical loads, however the squash loss time due to the non-critical loads
are less compared to the other benchmarks. In particular, ijpeg suffers a large
IPC degradation in delayed load scheme compared to the base case leading to
only marginal benefits in terms of dynamic energy delay product. Apart from
ijpeg and vortex all other benchmarks show considerable improvements in the
dynamic energy consumption as well as dynamic energy-delay product.
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3.2 Reducing Dynamic Energy Due to Thread Mis-prediction

Thread misprediction is the major source of useless computation in SpMT pro-
cessors. In SpMT processor a thread mis-prediction leads to the squashing of the
mis-speculated thread and all the subsequent threads thus causing huge wastage
of dynamic energy. In most cases, the prediction of the next thread is linked to
the prediction of the branch on which the existence of the thread depends. From
Figure 2 we can see that a significant portion of squash loss is due to branch
mis-prediction.

Earlier works have used confidence estimator for speculation control [5, 7].
However, our experiments show that confidence based prediction alone is not
sufficient for speculation control in SpMT thread prediction. Unlike superscalar
processors, in SpMT processors the performance penalty of not starting a thread
in the critical path is also very high. However, in order to do speculation con-
trol with the confidence based prediction in the SpMT processor, the confidence
estimator needs to be very accurate, i.e. it should give high confidence to the cor-
rectly predicted branches while giving low confidence to the wrongly predicted
branches. If it gives low confidence for most of the branches, irrespective of
whether the prediction is correct or not, we could lose parallelism by not spec-
ulating on the correctly predicted branches. On the other hand, if confidence
estimator gives high confidence to most of the branches then the processor will
perform useless computation by speculating on the wrongly predicted branches
as well. Experiments [5] show that it is difficult to achieve desired accuracy from
the confidence estimator alone. Therefore we have combined criticality informa-
tion with the confidence estimation to perform speculation control. In confidence
based prediction mechanism, speculation is done only for branches with high
confidence value whereas the combined criticality and confidence based predic-
tion mechanism speculates across branches with low confidence as well if it is
found on the critical path of the program. We have implemented a 5 bit JRS [6]
predictor with resetting counter for confidence estimation. We experiment with
both purely confidence based predictor(CBP) and a combined confidence and
criticality based predictor(CCBP) and we compare the results with the base line
performance (i.e., no confidence estimator).

From Figure 4 we see that a purely confidence based predictor is able to get a
maximum reduction in squash loss time (on the average 55%) but suffers from in-
tolerably high performance penalty (29.81% reduction in IPC). This is because
the confidence estimator identifies many correct predictions as low confidence
and by not speculating on those predictions the processor misses parallelism.
This result is in agreement with the earlier studies [5] done in the context of
superscalar processors. On the other hand, our combined criticality and confi-
dence based predictor is able to reap most of the benefits of purely confidence
based predictor in terms of reducing SLT (on the average, reduction is 40.44%
for CCBP compared to 54.44% of CBP) with much less performance penalty
(6.52% for CCBP compared to 29.81% of CBP).

From Figure 5 and Figure 6 we see that the average savings in dynamic energy
for CBP and CCBP are 23.73% and 17.71% respectively. However, because of
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large degradation of IPC in case of CBP, the average improvement in dynamic
energy delay product is less than 1%. Moreover, as seen in Figure 6, in some
programs like vpr and m88ksim there is a large degradation in dynamic energy
delay product attributed to large reduction in performance in these benchmarks
for purely confidence based predictor scheme as shown in Figure 3. In case of
CCBP the dynamic energy delay product is improved by 13.93% on the average,
which is a significant improvement. Only in case of espresso we find that the
improvement in dynamic energy-delay product is more for CBP than the CCBP.
From Figure 2, we see that espresso has the highest amount of squash loss time
and only 2.69% of squash loss time happens due to non-critical branches which is
lowest among all benchmarks. Thus CCBP technique finds fewer opportunities
to avoid speculation. Hence in espresso dynamic energy reduction is more in
case of CBP than in CCBP and also the energy-delay product improvement is
higher for CBP. However, for all other benchmarks, the CCBP scheme is able to
perform much better than CBP scheme. These results clearly demonstrate the
capability of a combined criticality and confidence based prediction scheme in
improving the performance to power ratio for SpMT processors.

Our experiments show that the overall energy (i.e. the sum of dynamic en-
ergy and leakage energy) reduction is less compared to the reduction in dynamic
energy in absence of any leakage energy management scheme. We observe 1.71%,
5.54%, and 2.62% reduction in overall energy for CBP, CCBP, and DL respec-
tively. This is because the speculation control mechanisms we have proposed,
increases the idleness in various processor components (apart from reducing the
activity) for longer period of time which in turn increases the leakage energy.
However, this also creates an opportunity to use leakage energy management
techniques more aggressively. With such a scheme in place, we expect to see
encouraging gains in terms of overall energy consumption and energy delay
product.

4 Conclusions and Future Work

Whereas the earlier work on critical path analysis of program is limited to out-of-
order superscalar processors, we have developed a model to identify the dynamic
critical instructions in SpMT execution. We proposed two novel techniques that
use the criticality information to reduce the useless computation and hence the
dynamic energy wastage in SpMT processors. Criticality based load delaying
scheme reduces useless computation due to mis-speculation on non-critical loads.
It reduces the dynamic energy consumption and dynamic energy-delay product
by 11.63% and 5.54% respectively. Criticality based thread predictor makes use
of criticality information to speculate across low confidence branches. Our ex-
periments show that confidence based thread prediction alone is not effective
to improve the performance to power ratio in SpMT processors. Our combined
criticality and confidence based thread predictor improves the dynamic energy
by 17.71% and dynamic energy delay product by 13.93%. The significant im-
provement obtained by the criticality based speculation control, validates both
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the accuracy of our dynamic critical path model and the effectiveness of our
speculation control schemes. Although our experiments are based on the mul-
tiscalar processor model, our analytical model and the schemes are generic and
can be applied to other SpMT processors as well.

The future extensions to this work involve the development of on-line criti-
cality predictor for determining instruction criticality during program execution
and utilizing the criticality information generated offline during a profiling run to
guide the speculation control. Development of leakage energy management tech-
niques for SpMT processors also remains as another important future direction.
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Abstract. Suffix-trees are popular indexing structures for various sequence pro-
cessing problems in biological data management. We investigate here the pos-
sibility of enhancing the search efficiency of disk-resident suffix-trees through
customized layouts of tree-nodes to disk-pages. Specifically, we propose a new
layout strategy, called Stellar, that provides significantly improved search perfor-
mance on a representative set of real genomic sequences. Further, Stellar supports
both the standard root-to-leaf lookup queries as well as sophisticated sequence-
search algorithms that exploit the suffix-links of suffix-trees. Our results are
encouraging with regard to the ultimate objective of seamlessly integrating se-
quence processing in database engines.

1 Introduction

The suffix-tree is a highly popular mechanism for indexing exponentially growing bi-
ological sequence repositories [12,13]. Its appeal lies in its linear (in the size of the
sequence) time and space complexity of construction, and its linear (in the size of
the query) search complexity. A unique aspect of suffix-trees is that, unlike traditional
database indexes whose size is typically a fraction of the database contents, their size
is usually much larger than the underlying sequence data. In fact, standard implemen-
tations of suffix-trees require in excess of an order of magnitude more space than the
indexed data! As a case in point, the entire 3 Gbp of Human Genome is fully rep-
resentable in about 1 GB memory (with each DNA symbol represented with 2-bits),
whereas the corresponding most space-economical suffix-tree occupies close to 25 GB.
That is, it is often straightforward to host the sequence data in main memory, but the
suffix-tree itself needs to be disk-resident.

This piquant size situation is rendered even worse due to suffix-trees not being disk-
friendly, as a consequence of the random traversals across tree-nodes induced by the
standard construction and search algorithms. Accordingly, there has been significant
recent research activity to address this problem and design high-performance disk-
resident suffix-trees [5,15,18,19]. However, these efforts have mainly focused on the
construction aspect, that is, on how to build the tree efficiently on disk.1 In this pa-
per, we take the next logical step of exploring the search aspect, and investigating the

1 Search performance is reported in [14,18], but not analyzed in detail.
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associated efficiency concerns. Specifically, our focus is on whether it is possible to
optimize the layout of the suffix-tree with regard to the assignment of tree-nodes to
disk-pages, such that the search efficiency is improved. While layout strategies have
been well-studied for a variety of data-structures [1,3,10,11,17,20], we are not aware of
any work focusing on suffix-trees. Further, carrying out this study for suffix-trees poses
new problems arising out of the following:

– The patterns of search traversals over suffix-trees are much more complex than
those found in traditional index structures, since both tree-edges and special lateral
connectors called suffix-links are involved.

– The presence of suffix-links turns suffix-trees into cyclic structures.
– Suffix-trees are not inherently balanced, unlike typical disk-resident index struc-

tures (e.g. B+-trees).

Our experiments with a variety of real genomic sequences against representative
query workloads demonstrate that the currently available layout choices are extreme –
they either optimize “vertical” traversal through the tree-edges, or optimize “horizontal”
traversal through the suffix-links. But, sequence search algorithms typically need to
traverse both edges and links – for example, to find all maximal matching substrings
between the database sequence and a query, tree-edges are used to walk down the tree
matching the query sequence along the way, and the subsequent matches are found by
following the suffix-links [7,9].

Given the above motivation for designing a holistic algorithm that optimizes the
layout for both kinds of traversals, we present in this paper Stellar (Suffix-Tree Edge
and Link Locality AmplifieR), an algorithm that attempts to achieve this goal. Stellar
is a linear-time, top-down strategy that utilizes the structural relationships between the
suffix-links and the tree-edges under associated subtrees, to achieve high locality for
both suffix-links and tree-edges. We quantify its effectiveness with a detailed perfor-
mance study on a variety of real genomic sequences.

In summary, the contributions of this paper are as follows:

1. Demonstrating that standard layouts of suffix-trees optimize only either edge traver-
sals or link traversals, resulting in slow searches of genomic sequences;

2. Presenting Stellar, a new suffix-tree layout that optimizes both kinds of traversals,
thereby providing significantly improved search performance.

2 Sequence Search Using Suffix-Trees

A suffix-tree of a string is a compacted trie over all the suffixes of the string.
For example, consider the suffix-tree constructed over a DNA fragment, S =
“GTTAATTACTGAAT$” shown in Figure 1 (the internal nodes of the tree are filled
in dark and the leaf nodes are lightly shaded). The solid edges between nodes represent
tree-edges, while the directed dashed lines indicate suffix-links. The links play an im-
portant role in linear time construction of suffix-trees [16,22], and also in many search
algorithms over suffix-trees [7,8,21]. Table 1 summarizes the terminology associated
with suffix-trees used in the rest of the paper.
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Fig. 1. Suffix-tree for the DNA fragment GTTAATTACTGAAT$

Table 1. Notation

S Sequence of length n
Σ Finite alphabet of symbols
$ Delimiter symbol such that $/∈ Σ
S[i] Symbol at position i in S, drawn from Σ
S[i . . . j] Substring of S starting at position i and length (j − i + 1)
Si Suffix of the sequence S starting at position i
sl(v) Suffix-link starting from the internal node v

Suffix-trees are useful in a large number of sequence search tasks [12], such as
exact matching of pattern strings, identification of prefix-suffix pairs over a collection of
sequences, common sub-string locations, and so on. A particularly critical use of suffix-
trees is in pre-processing a large genomics data repository and subsequently utilizing the
index to efficiently answer similarity searches. In these searches, the suffix-tree index
is used to quickly locate all common substrings between the database and the given
query string. These matching substrings are then used to generate local alignments, the
regions of similarity between the sequences, through the use of various domain-specific
heuristics.

In this paper, we use the maximal common-substring search, proposed in [7], as a
representative search task over disk-resident suffix-trees. This task is defined as follows:

Definition 1 (Maximal Common-substring Search). Given a database sequence S,
and a query sequence Q, locate Q[i . . . i+ j] and S[k . . . k+ j], such that, 1 ≤ i ≤ |Q|,
1 ≤ k ≤ |S|, Q[i . . . i+j] = S[k . . . k+j] and Q[i+j+1] �= S[k+j+1]. In practice,
it is desired that only matches that satisfy a user-defined minimum threshold length, λ,
are reported (that is, j ≥ λ). �

3 Suffix-Tree Layout

Suffix-trees, unlike popular index structures such as B-Trees [4], are not inherently
balanced – their structure depends entirely on the combinatorial characteristics of the
indexed sequence. Consider, for example, the suffix-tree shown in Figure 1 – here, leaf-
node 8 is an immediate child of the root, whereas leaf-node 1 is at depth 3. In the
worst-case, the tree can degenerate into a linear chain of internal nodes.



32 S.J. Bedathur and J.R. Haritsa

The fan-out of each internal node of a suffix-tree is upper-bounded by the size of
the alphabet of the indexed sequence. Therefore, the common strategy of customizing
the fanout to suit the disk-page size cannot be adopted here. This means that multiple
nodes of a suffix-tree will be stored on a page, with nodes connected both within as well
as across pages – it therefore becomes critical to choose the nodes that will be placed
in the same disk-page in order to minimize the disk I/O cost incurred during search.

Earlier research on the layouts of disk-resident indexes [10] has considered the
problem of packing trees in order to minimize the total disk accesses given a access
distribution on the leaf nodes – that is, average path-length minimization, following the
terminology of [10]. It has been shown that a heuristic-based linear-time algorithm,
henceforth called SBFS, that does recursive localized breadth-first layout of the tree,
not only outperforms classic tree-layout methods such as Breadth-first and Depth-first
strategies, but also results in an I/O-cost that is within a small factor of an optimal
quadratic-time layout algorithm.

The basic idea behind the SBFS packing strategy is to recursively perform many
local breadth-first traversals, beginning from the root of the tree, packing nodes in visit-
order into disk pages. Once enough nodes have been visited to fill a page, or there are
no more nodes to be visited, the nodes visited so far are assigned to a page. Each of the
remaining nodes in the BFS queue then becomes the root of a separate SBFS traversal.
The recursion terminates when all nodes have been visited.

3.1 Issues in Suffix-Tree Layout

The general problem of optimal graph layout is known to be NP-complete [11]. Even
from a heuristic viewpoint, the storage layout of disk-resident suffix-trees introduces a
variety of novel issues:

Structural Complexity: Suffix-trees exhibit greater inherent structural complexity than
typical tree index structures due to the presence of cyclic substructures. Specifically,
the collection of tree-edges as well as the collection of suffix-links in a suffix-tree form
two separate tree structures, albeit with a common root. Also note that in the tree struc-
ture induced by the collection of suffix-links, the traversal direction between nodes are
reversed from the natural “parent-to-leaf” direction. That is, there exists a directed path
starting at any internal node to the root of the suffix-tree, via a chain of suffix-links.
And, from the root node, any of the internal nodes are reachable through a chain of
tree-edges, thus completing a cyclic path.

Complex Traversal Patterns: In typical index structures, the queries are mostly lookup
searches involving root-to-leaf traversals. But search algorithms over suffix-trees ex-
hibit complex traversal patterns, involving simultaneous use of tree-edges and suffix-
links. Thus, the layout strategy has to take into account the two “orthogonal” traversal
paths during search.

Due to these complexities, previously proposed layout strategies that are designed
to work with either tree or DAG structures are not directly applicable in the context
of suffix-trees. Nevertheless, to serve as a comparative yardstick, we investigate the
efficacy of the SBFS strategy outlined above for laying out a suffix-tree on disk, by
ignoring the suffix-links during the layout process.
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3.2 Comparing the Quality of Layouts

The overall metric we use to evaluate the quality of layouts obtained using different
storage strategies is to execute a representative set of queries over the suffix-trees laid
out using these strategies and measure the number of disk accesses incurred. To gain
more insight into the observed behavior, we also additionally measure the percentage
of tree-edges and suffix-links whose source and target are both present in the same disk
page – that is, the structural localities of the suffix tree layouts, discussed next.

Table 2 presents the structural locality results for suffix-trees built on a representa-
tive 25 Mbp long sequence drawn from Human Chromosome 2, hereafter referred to as
HC2/25, with disk pagesize set to 4KB. The storage layouts evaluated here are: (1) CO
(Creation Order), which corresponds to ordering the nodes as they are created during the
construction (Ukkonen’s construction algorithm [22] was used here); (2) SBFS layout
discussed earlier; and (3) our new Stellar layout, described in detail in the next section.

Table 2. Structural Edge and Link Localities

Dataset Storage Suffix-Links Tree Edges

Human Chromosome 2
CO 41.8% 0.2%
SBFS 0.1% 77.5%
Stellar 40.0% 62.6%

From the results, we first see that the CO-layout provides practically no tree-edge lo-
cality – only 0.2% of tree-edges are intra-page, while suffix-link locality is comparatively
high – 42%. The SBFS-layout, on the other hand, represents the opposite extreme in struc-
tural locality,with75-80%oftree-edgesbeingintra-page,butless than0.1%ofsuffix-links
being local! Overall, these results indicate, as also confirmed by our other experiments,
that the CO and SBFS layouts represent (negative) extremes in suffix-tree layout. The
reasons for this behavior are explained in the extended version of this paper [6].

Finally, note that the structural localities for the Stellar layout in Table 2 indicate
that its suffix-link locality (40.0%) is close to that of CO, while its tree-edge locality
(62.6%) is comparable to that of SBFS – clearly simultaneously optimizing the locality
of both connectors.

4 Design of Stellar

The design of Stellar is based upon the relationship between nodes connected through a
suffix-link and the tree-edges under them. This relationship can be derived easily from
well-known structural properties of suffix-trees [12]. Specifically, the property we use
is as follows:

Property 1. If v2 = sl(v1), then all the suffix-links originating from the nodes under
v1 point only to nodes under v2.

In other words, if two nodes are related through a suffix-link, then all the nodes under
the source of this suffix-link have their suffix-link targets only in the subtree of the
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Stellar (r,B)
Input
r : Root of the subtree to be traversed
B : Capacity of the disk-page in terms of no. of nodes
Output
An ordering of the suffix-tree under r

queue ←− r; {push root into the BFS queue}
nodecount ← 0; {initialize the counter}
while queue not ∅ do

r′ ←− queue; {remove head of the queue}
if r′ not visited then

mark r′ as visited and increment nodecount;
for all c such that c is a child of r′ do

s ← sl(c);{s is the suffix-link of c}
if c not visited AND nodecount < B then

mark c as visited and increment nodecount;
queue ←− c;
if s not visited AND nodecount < B then

mark s as visited and increment nodecount;
queue ←− s;

if nodecount ≥ B then
while queue not ∅ do

m ←− queue;
Stellar(m,B);

Fig. 2. Stellar Algorithm

target. This property gives us a way to reconcile between the tree-edge and suffix-link
localities in the suffix-tree.

The pseudocode of the Stellar algorithm, utilizing the above structural relationship,
is presented in Figure 2. The algorithm starts the suffix-tree traversal at the root of
the suffix-tree, and recursively traverses the subtree below. When a node is visited, the
suffix-link target of the node is visited next, if not already visited through the tree-edges.
Thus an internal node and its suffix-link target are treated as a “buddy” pair, and are
scheduled for recursive traversal in sequence. This results in the subtree under a node
and the subtree under the corresponding suffix-link target to be recursively processed
in succession – resulting in a large fraction of suffix-links that span these two subtrees
to be intra-page, in addition to the tree-edges of each subtree. When enough nodes have
been visited to fill a page, each node in the queue is scheduled for a separate recursive
Stellar traversal, until all the nodes have been processed.

It is easy to observe that Stellar’s complexity is linear in the size of the suffix-tree
being processed – a node is visited only once during the top-down traversal of the tree.
Additionally, it does not impose inordinate space overheads, as the only transient data
structures required during the layout process are a queue of node ids, and a bit flag for
each node of the tree indicating whether it has been visited or not. In our experiments
we found that the queue never needs to hold ids of more than 100 nodes, even over
DNA sequences exceeding 25Mbp.

4.1 Level-Wise Locality Variation

In addition to the overall locality of tree-edges and suffix-links obtained by the layout
schemes, it is also critical to consider the distribution of such locality improvements in
the suffix-tree.
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Fig. 3. Depth-based Structural Localities

Figures 3(a) and (b) illustrate the locality distributions of tree-edges and suffix-links
for the suffix-tree over the HC2/25 sequence under the three layout schemes. These
values represent the number of intra-page tree-edges (resp. suffix-links) at every level
in the suffix-tree as a fraction of all the tree-edges (resp. suffix-links) going out from
that level. For example, there are a total of 2,417,879 outgoing edges from level 10, of
which approximately 40% become intra-page under a Stellar layout.

As these graphs indicate, the tree-edge and suffix-link locality of all three layouts
are comparable at the top portion of the suffix tree. However, as the depth of the suffix-
tree increases, the suffix-link locality of CO layout outperforms SBFS significantly,
while at the same time SBFS shows significantly better tree-edge locality over CO. On
the other hand, the Stellar algorithm shows a steady locality comparable to the best
within the tree-edge or suffix-link locality metric. In the middle portion of the suffix-
tree, due to the large number of tree nodes, the locality fraction (of both suffix-links as
well as tree-edges) is lower than in the top and bottom parts of the tree under all the
layouts.

While the above graphs were obtained with a pagesize of 4 KB, our experi-
ments with larger page sizes such as 16 KB, also showed similar trends – details
in [6].
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5 Experimental Framework and Results

We now present the disk I/O results for evaluating the Maximal Common-substring
Search query described in Section 2 for suffix-trees built over the HC2/25 sequence.
Results over other datasets, including Protein sequence data, are available in [6].

Our suffix-tree implementation is based on an efficient array-based tree node rep-
resentation suggested in [5], with 22.5 bytes per symbol. The disk page-size is set to
4KB – a typical value in most systems. A buffer pool of 8MB, which forms approxi-
mately 5% of the total index size, was used and managed using TOP-Q [5], a buffering
policy designed for use with disk-resident suffix-trees.

5.1 Query Workload

The cost of the search process is considerably affected by the following query workload
characteristics:

Query Length: The length of the query directly determines the total number of iter-
ations required for locating all the maximal substrings. Further, the increased query
length may result in a larger number of matches, increasing the cost of reporting
results.

Value of λ: The user-specified threshold, λ, serves as the lower-bound on the length of
the match before all instances of the match are reported. The typical operational range
of this parameter in a variety of DNA sequence retrieval software is between 9 and 50.
Specifically, BLAST [2] uses a default value of 11 while MUMmer [9] sets it to 50.

We generated our query workload based on a collection of sequences from Ex-
pressed Sequence Tag (EST) database of GenBank. The EST-database contains 856,008
sequences with average sequence length of 357.6 basepairs. Using this base collection,
we generated 3 length-restricted query collections, with lengths 50, 100, and 200, by
randomly sampling fixed-length subsequences from each entry of the EST-database.
In order to remove any remaining bias in the ordering of EST fragments, we sampled
10,000 sequences from each length-restricted query set to form three query collections,
hEST50, hEST100 and hEST200, used in our evaluation.

5.2 Utility of Disk Layout

The relative performance of maximal substring search over disk-resident suffix-tree
laid out using Stellar, normalized to that with the CO layout, is shown in Figure 4. As
these results indicate, the Stellar layout results in substantially reduced search costs as
compared to CO. For example, at λ = 11, Stellar requires only 30–45% of the disk I/Os
incurred by CO. Although this performance differential reduces with increasing value
of λ, Stellar never incurs more than 75% of CO’s disk accesses.

When λ values are in the lower end of operational spectrum, e.g. set to 9, the overall
I/O cost of search is dominated by the overhead due to producing a large result set.
As a result, the Stellar layout, with its larger fraction of intra-page tree-edges, clearly
outperforms the CO layout which provides very little tree-edge locality.
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Fig. 4. Stellar Vs. CO Fig. 5. Stellar Vs. SBFS

5.3 Relative Performance of Stellar and SBFS

We now turn our attention towards comparing the disk costs of Stellar and SBFS. In or-
der to provide a normalized measure of performance, we measure their relative perfor-
mance gains over that of the baseline CO layout. These statistics are shown in Figure 5,
as a function of λ, and demonstrate that Stellar provides steadily increasing I/O gains
with increasing values of λ. For example, at λ = 11, the performance gain of Stellar
over SBFS is close to 20%, which increases to more than 50% at λ = 16.

In addition to these results, we also performed experiments to show that the suffix-
link based searching over Stellar layouts require less than 50% disk I/O as compared to
that required for searching without suffix-links over SBFS layouts. Details of these ex-
periments are available in [6]. Note that the search performance of disk-resident suffix-
trees constructed by the techniques of [15,18,19] is lower-bounded by the performance
of the SBFS layout. As a consequence, Stellar-organized suffix-trees outperform the
storage organizations produced by all these prior techniques.

6 Conclusions

Developing suffix-trees as a disk-resident sequence index structure has been an active
research area in recent times, and many techniques have been proposed to significantly
improve the construction time. However, there has been virtually no research on eval-
uating and optimizing the search performance of these disk-resident suffix-trees, the
topic addressed in this paper.

Specifically, we have evaluated the impact of the suffix-tree’s disk layout on the I/O
performance of common genomic search tasks, and shown through detailed empirical
evidence that existing index layouts, such as Creation-Order (CO) and SBFS, are not
effective. They provide locality for only one of the two traversal paths, tree-edges and
suffix-links, used during suffix-tree searches, and practically zero locality for the other
path.

To address this unsatisfactory state of affairs, we presented a layout strategy called
Stellar that optimizes the locality of both tree-edges and suffix-links in the suffix-tree.



38 S.J. Bedathur and J.R. Haritsa

The layouts produced by Stellar show close to 40% suffix-link locality, and 60% tree-
edge locality, providing an all-round performance that is comparable to the individual
best performances.

Using real genomic DNA sequences drawn from the GenBank repository, and
query-sets from the Human-EST collection, we showed that Stellar typically incurs
only about 30-40% of the disk I/O incurred by a suffix-tree stored in creation order.
Even in extreme cases, more than 25% disk costs are saved by Stellar. Furthermore, it
provides close to 2-fold improvement over the SBFS layout in terms of disk I/O saved.
The relative performance of Stellar significantly improves with increasing values of
λ (the minimum match length), thus highlighting the applicability of Stellar in full-
genome alignment software such as MUMmer, where values of λ are typically in the
range 20–50.
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Abstract. This paper formulates the job allocation problem in dis-
tributed systems with bandwidth-constrained nodes. The bandwidth lim-
itations of the nodes play an important role in the design of cost-optimal
job allocation schemes. In this paper, we present a pricing strategy for
generalized distributed systems by formulating an incomplete informa-
tion bargaining game on two variables (price and percentage of band-
width allocated for distributed computing jobs at each node). Next, we
present a cost-optimal job allocation scheme for single class jobs that
involve the communication delay and hence link bandwidth. We show
that our algorithms are comparable to existing job allocation algorithms
in minimizing the expected system response time.

1 Introduction

A big challenge in a distributed system consisting of heterogeneous computers
(including switches and routers) is the job allocation problem. A distributed
system can be viewed as a collection of computing and communication resources
shared by active users. When the demand for computing power increases, the
job allocation problem becomes important. There are three typical approaches
to the job allocation problem: 1)Global approach: There is only one decision
maker that optimizes the expected response time of the entire system over all
jobs and the operating point is called social optimum [7],[3],[6]; 2) Cooperative
approach: There are several decision makers (e.g. jobs, computers) that cooperate
in making the decisions such that each of them will operate at its optimum [2];
3) Non-cooperative approach: Here, each of infinitely many jobs optimize its own
response time independently and they all eventually reach an equilibrium [8].

Most of the previous works on static job scheduling considered the mini-
mization of overall expected response time as their main objective. The fairness
of allocation, which is also an important issue for modern distributed systems,
has received relatively little attention. This problem is tackled in [5] by imple-
menting an incomplete information non-cooperative, alternating offers bargain-
ing game [4] between the wireless access point and the different mobile clients
under it. A few other game theoretic resource management models [1] introduce
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somewhat different pricing strategies. Our goal in this paper is to find a formal
framework for characterization of a fair pricing strategy between the job nego-
tiator and the nodes (i.e, computers). Next, we formulate the cost-optimal job
scheduling problem in single class job distributed systems.

Our Contributions: We use our game theoretic framework proposed in a pre-
vious work [5] to implement the pricing model. The two players, namely the Job
Allocator (JA) and the node, play an incomplete information, alternating-offers,
non-cooperative, bargaining game to compute the price per unit resource charged
by that node and the percentage of bandwidth that can be used for distributed
computing. In [5], we assumed that the average bandwidth of the system was
fixed and is always in excess to what was required to accomplish the jobs. But in
reality, the communication overhead might go higher than the processing over-
head as in DSL/volunteer computing. So, we introduce a new variable: percentage
of bandwidth to be used for distributed computing jobs at node i to characterize
this problem. The concept of incomplete information ensures that the two play-
ers have no idea of each other’s reserved valuations, i.e., the maximum offered
price by JA (acting as the buyer of resources) and minimum expected price by
the node (acting as the seller of resources); and also the maximum bandwidth
percentage (information with JA) and the minimum bandwidth percentage (in-
formation with the node). Assuming there are n nodes under a single JA, the
JA has to play n such games with the corresponding nodes to form the price per
unit resource vector, pi and the bandwidth percentage vector peri (i = 1, ..., n).

Our second endeavor is the job allocation scheme based on the pricing model.
We formulate the job scheduling problem as a constrained minimization problem
that maximizes the revenue (i.e., minimizes the cost) for the JA.

2 The Pricing Model

We follow the same pricing strategy as in [5] and model the one-to-one relation-
ship between a particular node and its current JA as an incomplete information,
alternating-offers bargaining game. The reserved valuation of a node denotes the
minimum selling price of its resources and the maximum bandwidth percentage
that can be used for the jobs. The JA’s reserved valuation is its maximum buy-
ing price of a node’s resources and minimum bandwidth percentage required.
Thus, both the JA and the node can make a surplus and try to reach a mutually
beneficial agreement. The bargaining game is characterized by the rules in [5].
Every offer comprises 2-tuples of offered price and percentage of bandwidth.

2.1 Attributes of JA and Node

We use similar real-life parameters as discussed in [5] and concisely present them
in Table 1. The two negotiators are denoted by x ∈ {w, m}: the Job/Work allo-
cator (denoted by w), and the node/machine (denoted by m). Also, the following
attributes are introduced to incorporate the bandwidth in our bargaining game:
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Table 1. Different Parameters of JA and node

Parameters Meaning of the Symbols (x ∈ {w, m})
Rx Reserved valuation (with respect to price) of bargainer x

Mx Market price calculated by bargainer x

pMx
x Probability that bargainer x will accept Mx i.e., Market Price

Ox Offered price by bargainer x

pOx,perx
x (acc) Predicted probability by x that opponent accepts (Ox, perx)

Oxy Counter offered price of bargainer x predicted by opponent y

pOx,perx
x (rco) Probability that bargainer x will reject (Ox, perx) and counteroffer

pOx,perx
x (rbd) Probability that bargainer x will reject (Ox, perx) and breakdown

e−zxt Discount factor of bargainer x

ϑ Resource constraints ϑ ∈ (0, 1)
perx percentage of bandwidth offered/demanded by bargainer x

permax maximum percentage of bandwidth contributed by node
permin minimum percentage of bandwidth acceptable to JA
Bx Market bandwidth calculated by bargainer x

pBx
x Probability that bargainer x will accept Bx i.e., Market bandwidth

perxy Counter-offered bandwidth percentage of bargainer x predicted by y

Percentage of Bandwidth Usage (perx), x ∈ {w, m}: Denotes the percent-
age of bandwidth available for distributed computing jobs at the corresponding
node. Here, permax, permin are respectively the highest and lowest percentage
values that represent reserved valuations of node and JA, respectively. These
values can change based on the dynamic scenario and also the player’s discre-
tion. Also, note that the more perx is, the lesser is the communication time and
larger is the revenue for the JA. Thus, the JA tries to maximize perx while the
nodes try to reduce it, leading to a conflict of interest.

Market Bandwidth Percentage (Bx), x ∈ {w, m}: Signifies the market value
of percentage of bandwidth offered and is calculated as Mx through statistics [5].

Probability that Bargainers will Accept Bx, (pBx
x ): Similarly signifies the

probability that bargainer x will accept the market bandwidth percentage simi-
lar to pMx

x .

Expected Counter-Offered Bandwidth Percentage of Bargainer x Pre-
dicted by Opponent y (perxy): This will be determined by an intelligent guess
of the opponent’s reserved valuation quite like Oxy .

2.2 JA’s Utility Functions

All the probabilities are predicted by the JA based on the node’s next possible
action depending on the game state.
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a. If the JA accepts the current offer, its expected utility is given by:

Utility (Acceptance by w) = [(Rw −Om) + (Mw −Om)− (permin − perm)−
(Bw − perm)]× ϑ

The term perm increases with time (node offers higher percentage of bandwidth),
resulting in an increase in the surplus for the JA thereby increasing the chances
of an acceptance. Similarly, Om decreases over time (node asks for lesser price)
resulting in increase in the surplus. The gain in surplus due to bandwidth per-
centage follows the same rules as those for the offered price.
b. If the JA rejects the opponent’s offer and breaks down from the game, we get:

Utility(Break-down by w) = (Rw −Mw)× pMw
w − (permin −Bw)× pBw

w

The second term signifies the profit from the market from bandwidth contributed
to distributed computing jobs. The JA will break down finding that there are
other nodes providing higher bandwidth.
c. In case of a counter-offer, we get:

Utility (Counter offer by w) = [[(Rw−Ow)+(Mw−Ow)− (permin−perw)−
(Bw − perw)] × pOw,perw

w (acc) + [Utility (Break-down by w)×pOw ,perw
w (rbd)] +

[(Rw −Omw − permin + permw )× pOw ,perw
w (rco)]] × e−zwt × ϑ

Again, when t = deadline, Utility (Counter offer by w)= 0 and the game con-
verges. Also, we have pOw,perw

w (acc) + pOw,perw
w (rbd) + pOw ,perw

w (rco) = 1 as dis-
cussed in [5].

2.3 Node’s Utility Functions

All the probabilities herein are predicted by the node based on the JA’s next
possible action.

Utility(Acceptance by m) = [(Ow −Rm) + (Ow −Mm)− (perw − permax)−
(perw −Bm)]× ϑ

Utility(Break-down by m) = (Mm −Rm)× pMm
m − (Bm − permax)× pBm

m

Utility (Counter offer by m) = [[(Om−Rm)+(Om−Mm)−(perm−permax)−
(perm − Bm)] × pOm,perm

m (acc)+[Utility (Break-down by m)×pOm,perm
m (rbd)] +

[(Owm −Rm − perwm + permax)× pOm,perm
m (rco)]] × e−zmt × ϑ

The price and bandwidth percentage variables both contribute to the surplus
and hence have to be normalized to the (0, 1) interval. We can exactly use the
same model of interdependent attributes formulation as in [5] to calculate the
predicted probabilities for our bargaining game.
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3 Job Allocation Scheme

We consider a single job class distributed system consisting of n nodes. Because
the bargaining game is played offline, the Job Allocator (JA) knows of pi and
peri, for the ith node before the job allocation starts. We assume that the nodes
deal with three resources: idle CPU cycles, buffer size (required for queueing up
jobs), and bandwidth each with equal weight. Thus, pi = price per unit CPU
cycle = price per unit buffer size = price per unit bandwidth consumed at the
ith node. Unlike [5], we model each node as an M/G/1 queue with preemptive
resume priority because there can be many high priority jobs at the node that
can preempt the distributed computing jobs. The work already done for an on-
going class at a node that has been interrupted by the arrival of a higher priority
job is remembered, i.e., we assume a work-conserving discipline at the nodes.
We assume that there are P classes of jobs at a node (class 1 having the lowest
priority and class P having the highest priority) where jobs belonging to class
g are distributed computing jobs (1 ≤ g ≤ P ). For simplicity of notations (and
without loss of generality), we have assumed that all the n nodes have the same
P classes of jobs. Service time for class l at node i has mean X i

l and second
moment X i2

l . Arrival process for class l jobs at node i is assumed to be Poisson
with rate λi

l . Also, load of priority class l at node i is given by ρi
l = λi

lX
i
l , for

l = 1, .., P and i = 1, .., n. Let, βi denotes the average arrival rate of distributed
computing jobs at node i and Φ the total job arrival rate at the JA. The expected
execution time for Class g jobs at a node is given by:

W i
g = Xi

g(1−ρi
P −...−ρi

g)+Ri
g

Φ(1−...−ρi
g+1)(1−ρi

P −...−ρi
g)

= Xi
g(1−ρi

P −...−ρi
g+1)−βiXi

g

2
+Ri

g

Φ(1−...−ρi
g+1)(1−ρi

P −...−ρi
g+1−βiXi

g)

where, Ri
g is the residual lifetime of jobs of Class g at node i and is given

by: Ri
g = 1

2βiX i2
g +

∑P
l=g+1

1
2λi

lX
i2
l . The execution time at every node comprises

a queueing delay and an actual processing delay. Let, k1
i be a constant mapping

the execution time to the amount of resources (both CPU cycles and buffer size)
consumed at node i. Also, the communication delay can be expressed in terms
of bi (defined as the average bandwidth available to node i) as MSβi

Φperibi
, where

M = average number of messages transferred for one job unit and S = average
size of the message in bits. Also k2

i is a constant mapping the communication
delay to amount of bandwidth resources consumed at node i. Thus, the price to
get βi amount of work done at node i is:

C(βi) =
k1

i pi{X i
g(1− ρi

P − ...− ρi
g+1)− βiX i

g

2
+ Ri

g}
Φ(1− ...− ρi

g+1)(1− ρi
P − ...− ρi

g+1 − βiX i
g)

+
MSk2

i βipi

Φperibi
(1)

and the overall cost of the system is given by:

C =
∑n

i=1 C(βi) =
∑n

i=1(
k1

i pi{Xi
g(1−ρi

P −...−ρi
g+1)−βiXi

g

2
+Ri

g}
Φ(1−...−ρi

g+1)(1−ρi
P −...−ρi

g+1−βiXi
g)

+ MSk2
i βipi

Φperibi
)
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Our objective is to find an efficient job allocation scheme {β1, β2, ..., βn} that
optimizes the revenue of the JA, by minimizing the cost C that should obey the
following conditions:

Positivity : βi ≥ 0, i = 1, ..., n (2)
Conservation :

∑n
i=1 βi = Φ (3)

Stability : βiX i
g < (1−

∑g−1
l=1 ρi

l −
∑P

l=g+1 ρi
l), i = 1, ..., n (4)

Communicability : MSβi < peri.bi, i = 1, ..., n (5)

Because we are considering a preemptive priority queue with a single server, the
jobs of the different classes 1, .., P are kept in different queues, and hence the
stability condition needs to verify that the server occupancy is less than 1 (and
this condition has to be checked at all the nodes). The positivity and conser-
vation constraints are straightforward as discussed in [2]. The communicability
constraint takes care of the bandwidth limitation of node i.

Definition 1. The optimization problem is denoted by {minβi C}, subject to
constraints given by Eqns 2-5.

We first solve the load balancing problem without requiring βi (i = 1, ..., n)
to be non-negative. Scaling down the problem by substituting the expression for
Ri

g in Eqn 1 we get:

C(βi) = k1
i piXi

g

Φ(1−ρi
P −...−ρi

g+1)
− k1

i piXi2
g

2Φ(1−ρi
P−...−ρi

g+1)X
i
g

+
k1

i pi[
Xi2

g (1−ρi
P

−...−ρi
g+1)

2Xi
g

+
∑P

l=g+1
1
2 λi

lX
i2
l ]

Φ(1−...−ρi
g+1)(1−ρi

P −...−ρi
g+1−βiXi

g)
+ MSk2

i βipi

Φperibi

The first two terms in the above expression being constants can be left out
of the optimization problem which can be expressed by C′(βi) as follows:

C′(βi) =
ai

ci − diβi
+ eiβi (6)

where, ai =
k1

i pi[
Xi2

g (1−ρi
P

−...−ρi
g+1)

2Xi
g

+
∑ P

l=g+1
1
2 λi

lX
i2
l ]

Φ(1−...−ρi
g+1)

, ci = (1 − ρi
P − ... − ρi

g+1),

di = X i
g and ei = MSk2

i pi

Φperibi
. Also each of ai, ci, di and ei are constants dependent

on i = 1, ..., n. The following theorem solves this non-linear program:

Theorem 1. The solution of the optimization problem given in Definition 1
without the constraint βi ≥ 0, i = 1, ..., n is given by:

βi =
1
di

(ci −
√

aidi

α− ei
), i = 1, ..., n (7)

where, α is the Lagrange multiplier.
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The term α can be calculated iteratively by solving the equation:∑n
i=1 βi = Φ =

∑n
i=1

1
di

(ci −
√

aidi

α−ei
).

In practice, this solution cannot be used because it can make βi (i = 1, ..., n)

negative. Note that βi becomes negative when ci <
√

aidi

α−ei
which means that

node i has either very low processing power left to execute distributed computing
jobs or it has very low bandwidth available to be able to transfer these jobs. So,
we assign βi = 0 and thus eliminate node i from consideration and then allocate
jobs to the remaining n− 1 nodes. The job allocation algorithm, PRIMANGLE,
is shown in Fig 1, and its validity is proven by the following theorem:

Theorem 2. If for an integer i (1 ≤ i ≤ n), ci <
√

aidi

α−ei
, then C is minimized

by setting βi = 0, subject to the extra constraint βi ≥ 0 in addition to the three
constraints stated in Definition 1.

In other words, the job allocation {β1, β2, ...βn} by PRIMANGLE is an optimal
solution for the minimization problem stated in Definition 1. Recalculating α
iteratively inside the while loop is achieved by Subalgorithm−1 (Fig 2) in O(n)

PRIMANGLE (dc: abbreviation for distributed computing)
Input:The average service time of P job classes of the nodes:

{X1
1 , X1

2 .., X1
P , X2

1 , .., X2
P , .., Xn

1 , .., Xn
P }.

Average second moment of P job classes of the nodes:

{X12
1 , X12

2 .., X12
P , X22

1 , .., X22
P , .., Xn2

1 , .., Xn2
P }.

Arrival rate of non-dc jobs at each node:
{λ1

1, .., λ1
g−1, λ1

g+1, .., λ1
P , .., λn

1 , .., λn
g−1, λn

g+1, .., λn
P }.

Total job arrival rate Φ.
The price per unit resource vector: {p1, p2, ..., pn}.
The processing constant vector: {k1

1, k1
2, ..., k1

n}.
The communication constant vector: {k2

1, k2
2, ..., k2

n}.
Number of messages for one unit of dc job, M
and size of each message in bits, S.

Output: The optimal job allocation {β1, β2, ...βn}.
1. Calculate ai, ci, di and ei for i = 1, ..., n;
2. Calculate initial α;
3. Sort the nodes in decreasing order of:

(
c1√
a1d1

≥ c2√
a2d2

≥ ... ≥ cn√
andn

);

4. Γ ← 1√
α−en

;

5. while (Γ > cn√
andn

) do

βn ← 0;
n ← n − 1;
Recalculate α iteratively;
Γ ← 1√

α−en
;

6. for i = 1, ..., n do

βi ← 1
di

(ci −
√

aidi
α−ei

);

Subalgorithm-1
1. Set initial
α = maxi{ei} + δ1;
2. for r = 1, ..rmax,
//(r: iteration number)
3. for i = 1, ..., n
4. temp+ =

1
di

(ci −
√

aidi
α−ei

);

5. end of for i loop
6. if(φ − temp < ε)
7. break;
8. else
9. αj = αj + δ2 ;
10. end of for r loop

Fig. 1. PRIMANGLE: PRIce based optiMAl workload al-
location scheme for siNGLE distributed computing class
jobs

Fig. 2. Sub-algorithm
to calculate α
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time. The idea is to start with a very small value for α and then iteratively
increase it until we reach Φ. The precision of the algorithm depends on the
chosen values of the constants δ1, δ2, ε and rmax. So PRIMANGLE has run-time
complexity of O(n2 + nP ) ≈ O(n2), if n > P .

4 Performance Analysis

We first demonstrate the performance of the bargaining algorithm based on the
following metrics (details can be found in [5]):

Each player draws its reserved valuation independently using a random num-
ber generator and uses the same to guess the opponent’s reserved valuation. If
the JA starts the game, Ow[0] = α × minimum(guess(Rm), Mw), perw[0] =
β × maximum(guess(permax), Bw). If the node starts the game, Om[0] = β ×
maximum(guess(Rw), Mm), perm[0]=α×minimum(guess(permin), Bm) where,
Ox[0]= Initial offered price from bargainer x; perx[0]= Initial offered bandwidth
percentage by x; guess(Rx)= guess of opponent x’s reserved valuation (in terms
of price); guess(permin/max)= guess of opponent x’s reserved valuation (in terms
of bandwidth percentage); x∈{w, m}; α=0.5; β =1.5. The offered prices list is
given by Ow[i] = Ow[0] + (Rw − Ow[0]) × (1 − e−(i×6.9/δ)), and Om[i] = Rm +
(Om[0]−Rm)× e−(i×6.9/δ) where, δ= total number of offered prices; Ox[i]= ith

offered price of player x. Similarly, perm[i] = perm[0] + (permax − perm[0]) ×
(1 − e−(i×6.9/δ)) and perw[i] = permin + (perw[0] − permin) × (1 − e−(i×6.9/δ)),
where perx[i]= ith offered percentage of bandwidth by player x. Thus the offered
prices vector for the JA monotonically increases, and that for the node mono-
tonically decreases. Similarly, the percentage of bandwidth usage vector for JA
monotonically decreases, and that for node monotonically increases.

Fig 4 plots the expected revenue of the JA against different offered prices
and bandwidth percentage values. With increase in offered prices, i.e., with de-
crease in bandwidth percentage, the expected revenue decreases, so that the
game converges quickly. This behavior is because of the monotonically increas-
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ing offered prices and decreasing bandwidth percentage vectors chosen initially.
The two plots correspond to the first and second counter-offers (t = 1, 2) and
we find that the revenue decreases with time (because of the discount factor).
Fig 3 plots the revenue of the nodes against the same parameters and we get
just the opposite characteristics as in the case of the JA because the expected
revenue decreases for the node, as the offered prices decrease and corresponding
bandwidth percentage values increase. Also, the revenue decreases with time.
Fig 5 shows the variation of the bandwidth percentage of the JA and the node
against the market bandwidth. When the market bandwidth is large, the JA will
be getting a higher share of revenue and bandwidth percentage than the node.
With decrease in market bandwidth, the JA’s share decreases as it fails to find
nodes that will charge lesser price and also offer higher bandwidth. Similarly,
the expected share for the node decreases with the market bandwidth, as all the
other nodes will also offer higher bandwidth and the JA will get a higher share.

We next simulate a heterogeneous distributed system with 10 nodes under a
single JA with three different types of processing rates depicted in Table 2. The

Table 2. System Configuration

Relative processing rate 1 2 5
Number of nodes 5 3 2
Processing rate (jobs/sec) 0.013 0.026 0.065

k1
i 1 2 3

k2
i 1 15 30

bi (kbps) 15 17 20

first row signifies the relative processing rates of the nodes, and the third row
gives the actual processing rate values. The second row signifies the number of
nodes of a particular type. The last row shows the average available bandwidth
for the nodes. The constants k1

i and k2
i are chosen such that the faster nodes

and those with higher available bandwidth values should charge a higher price
to perform distributed computing jobs. The k1

i values can simply be chosen
to be the relative processing rates, and the k2

i values the relative bandwidth
for all practical distributed systems. The second moment of service times are
calculated using 5% variance for all job classes. All these values are however
arbitrarily chosen and does not affect our results.

Fig 8 plots the total cost against system utilization (characterized by Φ) for
PRIMANGLE. With increase in Φ the processing cost goes up exponentially as
is expected for a preemptive priority MG1 queue. Also, the communication cost
increases because larger amount of data needs to be transferred to the nodes.
Thus the overall cost grows exponentially. We have shown the results for three
different types of peri (i = 1, .., n) vectors. With strictly descending peri’s, the
cost is the lowest, as we assign more jobs to the faster nodes resulting in lesser
communication cost. The random peri vector gives better performance than a
strictly ascending peri vector, because of obvious reasons.

Fig 6 plots the response time against Φ for COOP [2], OPTIM [3] and PRI-
MANGLE in low communication delay systems (bi = 1000 kbps, ∀i). Fig 7 plots
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the same for high communication delay systems (bi = 100 kbps, ∀i). COOP and
OPTIM were originally designed with an M/M/1 queueing model at the nodes
and we formulated the corresponding linear programming models with preemp-
tive priority M/G/1 queueing models to get the plots. This allows us to incor-
porate the internal job arrival rate at the nodes. Also, the communication delay
is not taken into account in these problem formulations. In low communication
delay systems, OPTIM gives the best response time values, but PRIMANGLE
catches up with COOP at high values for total distributed computing job arrival
rates (region to the right of the straight line in Fig 6). This is expected as the
communication delay being low, does not contribute largely to the total system
response time, and OPTIM (which is supposed to keep the processing delay to
a minimum) performs better than the others. A different characteristic is seen
in Fig 7 where the communication delay contributes substantially to the to-
tal system response time, and PRIMANGLE performs better than both COOP
and OPTIM (region to the right of the straight line in Fig 7) at higher val-
ues for total distributed computing job arrival rate. This characteristic however
depends on the constants k1

i and k2
i and the price vector, because the optimiza-

tion problem for PRIMANGLE minimizes the cost and not the total response
time. Lower values for k1

i , k2
i and pi’s should give even better performance for

PRIMANGLE.

5 Conclusion

In this paper, we have tackled the job allocation problem in distributed sys-
tems considering single-class jobs and communication delay. The bandwidth
constraint of the nodes presents a major bottleneck and has to be considered
by any job allocation algorithm. The offline bargaining game now incorporates
the percentage of bandwidth allotted to distributed computing jobs. We plan
to extend this work to (n + 1)-player games to reduce the bargaining message
overhead.
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A Fault Recovery Scheme for P2P Metacomputers�
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Abstract. Despite the leaps and bounds made by the P2P research field in the
last few years, the benefit of this innovation has been constrained to a few areas;
search and file-sharing and storage to name a few. In particular, this innovation
has had little significant impact in the field of distributed computing.

There are several obstacles to be overcome in the development of any dis-
tributed computer, most notably: scalability, fault tolerance, security and load
balancing. The difficulty of these is compounded in the dynamic, decentralized
environment which characterizes the P2P arena. This paper presents a method of
recovering from faults which exploits the distributed hash table functionality pro-
vided by modern overlay networks. Its effectiveness is evaluated experimentally
using a proof of concept P2P distributed computer.

It is hoped that by providing a solution to one of the obstacles, global, decen-
tralized, dependable distributed computers will be one step closer to reality.

Keywords: peer-to-peer, fault, tolerance, recovery, decentralized, distributed
computing, condensed graphs.

1 Introduction

The P2P research field has seen significant advances in technology in the last few years.
The advent of Structured Overlay Networks, such as Chord[15], Pastry[14], CAN[13]
and Kademlia[9], have had a huge impact on the architecture of P2P applications; the
majority are now constructed atop these overlays, inheriting scalability and Distributed
Hash Table (DHT) functionality, which enables such diverse facilities as distributed
directories, advertising and subscription of services and reliable distributed storage.

However, the field of distributed computing, which should benefit greatly from the
addition of scalability and decentralization, has not made any real progress in this direc-
tion. The fundamental challenges in the development of any distributed computer are
scalability, fault tolerance, security and load balancing. The provision of additional ser-
vices, for example resource management and brokerage, introduces further challenges.
The difficulty of solving these problems is usually compounded in a P2P environment.
For instance, in a centralized distributed computer, a single master machine can make
decisions on which computers should execute tasks, since it can obtain total knowledge
of the system. In a P2P system, on the other hand, where each machine does not have
knowledge of every other machine, such knowledge is not easily available. Similarly,
a master can decide whether or not it trusts a machine to execute a task. There’s an
� This work is supported by Science Foundation Ireland.

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 51–61, 2005.
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implicit assumption that the machine trusts the master. In a P2P environment no ma-
chine enjoys the unique status afforded the master in a centralized system, no peer is
implicitly trustworthy.

Fault tolerance, in particular, is made more difficult in a P2P environment. The
mainstays of centralized fault-tolerance policies are redundancy and checkpointing.
Neither of these approaches is sufficient in a P2P environment.

Redundancy, in the computational situation, means running more than one copy of a
program, or program component, so that if one copy fails, there is a remaining copy to
carry on the computation. This is usually used to provide services that are required to
be reliable, for instance DNS, or web serving, but is rarely used for distributed compu-
tation, since at a minimum it doubles the amount of resources used to produce a result.
In a centralized environment, a master must send each task out twice, to two different
connected machines, or slaves, just to receive the minimum protection from a fault. In
a P2P distributed computer, the cost of providing redundancy can be much greater. For
instance, a task may be capable of being decomposed into two parts, then each of those
may be decomposed further. If a peer, A, receives the first task, decomposes it into 2
and passes it on, it must do so twice to provide redundancy, resulting in 4 subtasks. If
the peers which receive these subtasks do the same, each producing 4, the total subtasks
uncovered and executed is 16, when there were only 4 to start. Each level of decomposi-
tion brings a doubling in the amount of work. The alternative is to decompose the tasks
on a single peer, which is equivalent to the master-slave approach, thereby foregoing
the benefits of the P2P approach.

Checkpointing refers to taking a snapshot of a process’s state and storing it, so that
if the process fails, it can be restarted from the stored state rather than the very begin-
ning. Even ignoring the acknowledged complexities of consistent check-pointing and
roll-back in distributed systems[16], this scheme is unsuitable for P2P applications. Tra-
ditionally, the checkpoint state is stored on permanent storage, such as a hard disc, or
stable-storage in situations where fast fault recovery is critical. This information can
then be read when the machine reboots, or if the storage is on a network, it can be read
by a remote machine, and used to continue the computation. In a P2P environment, if
a peer participating in a computation suddenly departs the system, this constitutes a
failure. Storing the state of its process is useless, since the peer might never reconnect.
There is no fixed set of machines in a typical P2P environment. In any P2P system, there
are often a set of peers which stay connected for considerable lengths of time[7], but it is
undesirable that this fact should be exploited, since it a) would introduce a dependency
on those peers, and b) would result in a large increase in the volume of data transferred
to and from those peers. An option is to checkpoint each process and store the state on
another peer, so that if a peer departs an idle or joining peer can be introduced to the
computation and begin where the failed peer left off. However, this introduces a costly
computational and communication overhead into every process, whether a failure oc-
curs or not.

This paper presents a method of fault tolerance suitable for the dynamic P2P en-
vironment. It is fully decentralized and incurs a low overhead. The rest of this paper
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is structured as follows: a short overview of a decentralized model of computation is
given. The fault-recovery algorithm is then described. This algorithm is evaluated in
the context of the preceding model, and experimental results are presented. To con-
clude, the results, and the applicability of the system to other methods of computation
are discussed.

2 Model of Computing

Compeer[10], a P2P distributed computer, will be used to illustrate the fault recovery
mechanism described in this paper, and to gather results. Compeer is constructed using
a structured overlay network. The current implementation uses Chord, but it can use any
overlay that assigns peers unique IDs and provides DHT functionality. The overlay is
responsible for handling the network topology, and informing Compeer of any changes.
The DHT is exploited to provide directory services, but is also indispensable when it
comes to fault recovery.

Compeer executes programs expressed as Condensed Graphs (CGs), which are sim-
ilar to Dataflow, but with added expressiveness[11]. Nodes in CGs can be primitive,
meaning they represent a piece of code to execute, or condensed, meaning they rep-
resent another graph. When a condensed node is executed it is effectively replaced by
the graph it represents. Writing programs in this hierarchical way lends itself to P2P;
a condensed node can be passed to a peer, which can unpack it and pass on more and
so on, allowing the three stages of distributed computing, decomposition, distribution
and execution of nodes to be carried out by all peers. In centralized master-slave type
systems decomposition and distribution is the responsibility of the master, and slaves
only execute tasks. The model of computation used by Compeer is referred to as fully
decentralized since the responsibility to perform each stage is shared by all peers. Us-
ing a fully decentralized model of computation brings numerous benefits, including the
potential to distribute work more rapidly than a centralized system, thereby improving
scalability[12].

One interesting outcome of using a fully decentralized model is that the results of
tasks do not need to return to the peer that distributed them. This is a restriction of cen-
tralized models only. Lifting this restriction spreads the impact of a fault among peers,
so the failure of any peer is not catastrophic. This is in contrast to a centralized system
where the failure of the master renders the system unusable, since slaves can neither re-
ceive more tasks, nor return their results. Figure 1 shows an example condensed node,
G, which is executed on Peer 1 to produce the graph composed of nodes E, A, B, C
and X. Each of these nodes can be placed on a separate peer, and the results can flow
directly to their destinations without ever returning to Peer 1.

2.1 Node IDs

Each node is assigned a unique ID. The first, or root, CG node in an application is given
the ID 0. The root executes to produce the program graph. The ID of a child node is
created by combining its parent’s ID with a number representing how many child nodes
have been created for its parent, separated by a period. Graph definitions are expressed
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Fig. 1. Node G is decomposed into nodes E, A, B, C and X. The nodes are all placed on different
peers. In the bag-of-tasks approach, a master would have distributed A and B, then waited for
their results to return before distributing C.

so that the order of creation of child nodes is deterministic, so the nodes have a preset
order of creation. Basically, the child nodes of the root node are numbered 0.0, 0.1 and
so on, in the order they are created.

As a result, the lineage of a node can be determine from it’s ID. The ID of its parent,
grand parent and so on can be determined by removing the rightmost period, and those
digits to the right of it.

3 Fault Recovery Procedure

The fault recovery procedure outlined assumes the following:

– Only fail-stop failures occur. That is, peers either are responding correctly or they
are failed, no incorrect responses are generated.

– Nodes do not fail, except as a result of the peer on which they are hosted failing. It
is not possible for nodes on a correctly functioning peer to fail.

– Failures are random. That is, peer failures are unrelated to each other. Thus, faults
in the underlying network which might partition a Compeer network are not con-
sidered.

– The underlying network is logically fully connected. Any peer can communicate
with any peer that has not failed.

The overlay used is responsible for detecting peer disconnection, and rearranging
topology. So, the overlay handles fault survival. Compeer must handle fault recovery,
which in this case must ensure all computations terminate with the correct result. In
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Compeer this is analogous to graph repairing. The nodes hosted on failed peers must be
recreated, if required, and relinked to the nodes that require them. This should be done
in a way that prevents work being redone whenever possible. For simplicity, nodes on
failed peers are also referred to as having failed.

To facilitate graph rebuilding, recreated condensed nodes must be able to locate
their child nodes. To prevent work being redone, recreated nodes must be able to locate
any results their former incarnation produced. To this end, peers keep a copy of the
results they distributed. This data redundancy, ensures there’s at least two copies of any
result transmitted.

The orphan registry is used to enable recreated nodes to locate nodes they produce.
Nodes whose parent has failed register as orphans. Condensed nodes whose children
have failed enter recovery mode. They execute again, but this time they only create the
failed child nodes and relink them to their surviving siblings. Recreated nodes also enter
recovery mode. A recreated primitive node searches the registry for a copy of its result
before executing, thus preventing any unnecessary computation from being repeated.

The orphan registry is implemented using the overlay’s DHT, and thus is
fully decentralized. The core of the functionality is provided by two method:
registerOrphan and getOrphan, implemented by each Compeer peer. To regis-
ter as an orphan, a node hashes it’s ID to locate a peer, and calls the registerOrphan
method on that peer. This method returns the value of its recreated parent, if it already
consulted the registry for it. In this way any nodes that register late, that is, after their
parent seeks them, can contact the parent node directly and be integrated back into the
computation. If an orphaned condensed node registers late, it immediately instructs its
children to register as orphans. This prevents two branches of the computation being re-
peated concurrently. Recreated nodes call the getOrphan method when they execute.
They hash the ID of the child they wish to create to identify the peer on which it would
have registered if it survived the fault. If no node is found, a reference to the parent is
stored, to be given to the node if it subsequently calls registerOrphan.

This recovery procedure is robust in the face of further failures. Orphaned nodes
consider the peer on which they register to be their temporary parent, so if it fails, they
repeat the registration process. Since the overlay can survive faults, any node can always
locate any other node with a simple lookup, if it’s registered.

3.1 Special Case: Failure of Root Node

All peers that participate in a computation are given a copy of the program graph defini-
tion, and each computation has a unique process identifier (PID). If the root node fails,
a unique situation arises: there is no node to recreate it. In this case a peer is nominated
as responsible for this task. In the analogous situation in parallel processing electing a
responsible peer would usually involve a flurry of inter-peer communication to carry
out some voting scheme. In contrast, Compeer can once again leverage the overlay to
simply hash the PID to produce an ID for which a single peer is responsible. Thus,
in typically log2N steps (where N is the number of overlay nodes), a peer responsible
for the root node has been unambiguously located with no broadcasting or voting. This
peer recreates the root node, and since it’s recreated it will relink to any surviving child
nodes via the orphan registry.
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Full details of this recovery method are available in [12]. The effectiveness of this
method is now investigated.

4 Experimental Results

4.1 Methodology

To measure the characteristics of the presented scheme, the Compeer system was de-
ployed over a cluster of 32 1.5Ghz Pentium 4s, each containing 1GB of RAM, linked
via Gigabit ethernet. The author’s implementation of the Chord overlay was used, with
a neighbourhood size of 5. An “embarrassingly parallel” application (the ubiquitous
Mandelbrot Set generator) was used in each case, and the problem size for each run,
that is, the number of tasks executed, was 512. The application was written as a hier-
archically structured CG that allows work to propagate rapidly among peers. Each task
takes 7 seconds to complete on an unloaded machine. Each result, that is, each plotted
point, is the average of 50 executions.

The effectiveness of the fault recovery procedure can be measured in a very simple
way. If the procedure does indeed recover orphaned work, then an application submitted
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Fig. 2. This graph illustrates the effect of timing on fault recovery. Two sets of experiments were
carried out, on a Compeer network initially of size 32. In the first set peers failed 60 seconds
after the computation began. In the second set, they failed after 180 seconds. For both cases
the experiments were repeated varying the number of faulty peers. The graph illustrates that the
earlier a fault happens, the greater its effect.
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Fig. 3. This graph illustrates the effect of regularly spaced failures on fault recovery, on a Com-
peer network initially of size 32. In each case, the first failure occurred 30 seconds after the
computation. Failures took place 30 seconds apart.

to a Compeer network of N peers, F of which fail during the computation, should take
less time to execute than if it were executed solely on N − F peers without faults.
Letting T A

N represent the time taken to execute an application, A, on N peers with no
failures, then the time taken for an application run on N peers, F of which fail, should
be less than T A

N−F , and will most likely be greater than T A
N . Several factors can affect

the amount of work recoverable after a fault, and therefore the measured performance.
One of these factors is the time a fault occurs.

First, some results are presented which demonstrate the effect that the timing of
faults has on recovery. These illustrate that work is being carried out, and recovered,
since otherwise the timing of faults would yield no difference. These are followed by
some results which demonstrate the effectiveness of the method.

4.2 Effect of Timing on Fault Recovery

The time a fault occurs has a clear effect on the amount of work which can be recovered.
For instance, a peer which fails directly after a computation begins is likely to have
contributed less work than a peer which fails directly before a computation is about to
terminate, and the amount of work contributed by a peer directly affects the amount that
can be recovered, and therefore the amount that must be redone.
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Fig. 4. This graph shows the execution time measured from executions of an application on a
Compeer network initially of size 32. After a time a number of peers failed. One line shows the
effect of peers failing after 60 seconds, and one line shows the effects of failing at 180 seconds.
The other line shows the execution time resulting from an execution with no failures. The data is
plotted using the execution time and the number of peers remaining at the end of the computation.

Figure 2 illustrates the effect that timing has on the measured performance. Execu-
tions in which multiple peers simultaneous fail 60 seconds after the computation begins
finish later than executions in which the failures occur at 180 seconds. This follows
since the failed peers had 120 seconds longer in which to execute work and distribute
results than in the first case, and therefore left more recoverable work. Figure 3 illus-
trates the effect of multiple faults regularly spaced at intervals of 30 seconds. In this
case, some peers fail having completed very little work, while some have completed a
lot. Thus, the resulting graph lies between those in Figure 2.

4.3 Effectiveness of Fault Recovery

Figures 4 and 5 demonstrate the effectiveness of the fault recovery procedure. These
graphs were produced by plotting the execution time against the number of peers re-
maining after all failures. This allows an easy comparison between the T A

N and T A
N−F

measurements. If the the graph representing the execution times with failures is lower
than the graph representing execution without failures, then the fault recovery proce-
dure can be considered effective, since it signifies that not all of the work carried out by
failed peers is being redone.
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Fig. 5. This graph is similar to Figure 4, but includes an extra line which shows the effect of
regularly spaced peer failures. Again, the data is plotted using the execution time and the number
of peers remaining at the end of the computation.

Figure 4 shows that even in the face of catastrophic failure, where half of the peers
fail simultaneously, the procedure is effective.

Figure 5 shows that, as expected, the performance is better when failures occur at
different times over the course of the computation than when they all occur early in the
computation. Similarly, the performance is worse than the case where all failures occur
late in the computation. Thus, the graph representing spaced failures lies between those
representing simultaneous failures occurring early and late in the computation.

5 Related Work

There aren’t many distributed computers that qualify as P2P, and of those none provide
both fault tolerance with a non-master-slave approach. Systems such SETI@Home[1],
while referred to as P2P are centralized in implementation, and so are not comparable
to the work presented here. The HYDRA[5] project is decentralized but does not pro-
vide fault tolerance. The DREAM[8] system can tolerate faults, but does not recover
from them; it is designed to execute only applications that do not require every task
to complete. A nameless system[17] based on the JXTA framework[2], which uses a
modified version of the master-slave approach, a measure of fault-tolerance but appears
to be vulnerable to a single point of failure at the Monitor. The P2P cycle sharing sys-
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tem documented in [4] does not provide fault recovery. ParCop[3] does provide fault
tolerance, but is limited to master-slave type operations.

6 Discussion

The method presented here can be improved upon in a number of ways. For instance,
to support applications composed of long-running primitive nodes, a form of check-
pointing can be used, where a process’s state is captured every X minutes, if it is still
running, and the state is treated as a partial result and transmitted to its destination. A
tiny modification to the fault recovery is required, so that a recreated node searches for
partial results if it cannot find a complete one. Note that using checkpointing in this
way is not the same as the method dismissed as impractical in the introduction. When
used that way, the whole of a peer’s process state would be dumped periodically and
transferred, which would likely involve a significant amount of data regardless of the
type of nodes involved.

It would be interesting to investigate the generality of this approach. Many programs
can be easily recast as CGs, and so could be executed in a P2P environment. However,
for some classes of applications, in particular the MPI style message-passing applica-
tions popular in the distributed computing world, the conversion to CGs is not trivial.
The question arises then, of whether the fault recovery method here can be applied in
other paradigms ?

In one sense, the messages passed by processes can be viewed as results. In the event
of a process failure, the code that initialized the process could re-execute in a recovery
mode, such that it only recreates any failed processes. Messages would need to be given
an identifier which would relate them to the task that produced them. For example, in
a message passing implementation of Conway’s Life, each message could be given an
identifier which would tie it to the area processed, and the step which produced it. When
a recreated process executes, it would examine the orphan registry for results before
executing the code. In this way it would be able to transmit its messages without having
to recompute anything. The surviving processes would retransmit theirs, if required,
from a local cache. Either message passing library, or the processes themselves, would
need to be extend the concept of a message, so that it can be associated with a parent,
and can be alerted when its parent dies. Since each process would typically be passing
messages directly to a small number of other processes, this could be optimized to use
separate caches of messages, segregated based on the originating or receiving process.
Then information on all messages in a cache can be stored in the orphan registry if the
parent associated with that cache fails.

7 Conclusion and Discussion

Traditional approaches to fault tolerance are not suited to the dynamicity of the P2P en-
vironment. This paper presented a method which exploits the DHT aspect of structured
overlay networks to provide robust, fully decentralized fault recovery, in a manner ap-
propriate for P2P systems. It is experimentally tested and shown to be effective, even in
the face of catastrophic failures.
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This method provides a solution to one of the major obstacles to P2P distributed
computing. It is hoped that this is a step on the road to the (perhaps inevitable [6])
development of world scale, decentralized, dependable P2P computers.
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Abstract. We present here a novel approach where we identify a region within
which a node is guaranteed to be found, in contrast to the existing approaches
where no such confining region for a node can be guaranteed, but only the loca-
tion could be estimated either with no definitive error bound or only with some
probabilistic error. The location identification algorithm presented here mini-
mizes the size of this region, using computational geometric methods. The pro-
posed technique iteratively improves the region of residence of all the nodes in the
network through the exchange of region information among neighbors in O(nD)
time, where n and D are the number of nodes and diameter of the network re-
spectively. Simulation results also show encouraging results with this approach.

1 Introduction

Most location estimation systems in mobile and ad hoc networks utilize the fundamental
method of using trilateration and triangulation of received signals to obtain an estimate
of the receiver’s position [8]. An LOS path or direct path, is the straight line connect-
ing the transmitter and the receiver. NLOS signals occur due to multi-path conditions
in which the received signals come from either reflected, diffracted or scattered paths,
thus introducing excess path lengths in the actual euclidian distance between the trans-
mitter and the receiver. The NLOS error is defined to be the excess distance traversed
compared to the direct path and is always positive. The corruption of LOS signals by
NLOS signals and Gaussian measurement noise are the major sources of error in all
location estimation systems, the former being the dominant factor [12].

The Global Positioning System (GPS) [9,15] is perhaps the most widely publicized
location-sensing system. Unfortunately, GPS does not scale well in dense urban areas or
in indoor locations. Modeling of the radio propagation environment helps in providing
a more accurate location estimate by mitigating the effect of NLOS errors. While rea-
sonably accurate radio propagation models exist for outdoor conditions[7,14,16], un-
fortunately there are no such unanimously accepted models for indoor environments.
Several authors have, however, attempted for mitigating the effect of NLOS errors
[2,3,4,5,6,10,11]. In the absence of a suitable model for predicting the location of a
mobile terminal, it is possible that the node may be far away from the estimated point.

In this paper, rather than doing a location prediction as mentioned above, we con-
sider the location discovery problem in terms of finding the region where a node is
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guaranteed to be found. The objective of the location identification process then be-
comes minimizing the size of such a region. We assume that a small percentage of the
terminals (nodes) in the network know their locations with a high degree of accuracy -
possibly through GPS access or by some other means. We term such nodes as reference
nodes. We propose a distributed algorithm using computational geometric techniques
to compute the smallest region of residence where a node is guaranteed to be found,
for all non-reference nodes in the network. A unique feature of our algorithm is that the
location regions of the nodes in the network are improved through the exchange of loca-
tion information between the neighbors in O(nD) time, where n and D are the number
of nodes and diameter of the network respectively. Simulation results also demonstrate
that our algorithm succeeds in finding reasonably small stable regions of residence for
all non-reference nodes.

2 System Model

We model an ad hoc network scenario as a graph G = (V, E), consisting of n nodes.
V is the set of all nodes, |V | = n and E is the set of edges in the graph G. The
nodes may be either stationary or mobile. All communication links are assumed to be
bi-directional. We say node v is a neighbor of u, if they are within each other’s hearing
zone. The neighborhood, N(i), of a node i consists of all nodes that within its trans-
mission range. A small percentage of the nodes are assumed to know their individual
locations with high precision, either through GPS or some other means. These nodes
serve as the reference nodes (RN) in the network. Initially, nodes other than the RNs
do not possess any knowledge of their location. The reference nodes are assumed to
possess point locations (zero area regions) while the non-reference nodes are initially
assumed to reside in a region of infinite size. However, in practice, the reference nodes
can have any arbitrary shaped location region. Refn = {u : u ε V , u is a reference
node} denotes the set of reference nodes.

Considering thermal noise at the receiver, NLOS errors and channel characteristics,
the measured range between two nodes u and v can be expressed as

ruv = duv + ηuv + cτuv (1)

where duv represents the unknown Euclidian distance between u and v. ηuv completely
models the combined additive effects of thermal receiver noise, signal bandwidth and
signal-to-noise ratio. ηuv has been shown to be a zero-mean normal random variable
and hence can be either measured or pre-computed [5]. We assume ηuv to be always
additive. cτuv represents the NLOS distance error and is the dominant error contributor
[12], c being the speed of light in air. We define the set RR to be the set of all such
measured ranges for all node-pairs in the network, i.e., RR = {rij : rij ε E, ∀i, j ε V }.
Also, RRi = {rij , j ε N(i)}.

3 Preliminaries

Our proposed algorithm is based on the triangulation technique to compute the region
where a node is guaranteed to be found.
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Definition 1. The region of residence, Ri of a node i is defined to be the region where
i is guaranteed to be found.

The region of residence of a reference node is assumed to be a point location of zero
area. All other nodes have a non-zero finite area region of residence. Our objective is to
find the minimum region of residence of a node i.

Lemma 1. The range measurements obtained for a node u, from a neighbor v ε N(u)
will always be greater than or equal to the Euclidian distance between u and v.

Proof: Follows directly from equation 1. �

Given two nodes u and v and a range measurement ruv from v to u, the region of
residence of u in the view of node v is the region formed by extending v’s region resi-
dence Rv in every direction by the measured range value, ruv . We denote this operation
by the operator⊕, whose left operand is a region of residence and the right operand is a
range value. Thus the region of residence of u in the view of node v is Ruv = Rv⊕ruv .
We call Ruv as the viewed region of residence of node u.

A

B

C

A’

B’

C’

B’’

C’’

A’’

ruv

Fig. 1. Construction of viewed region of residence of a node

Example 1. Suppose node v has a triangular region of residence ∆ABC, and the range
of u measured by v is ruv as shown in Figure 1. We draw a line A′B′ parallel to AB
at a distance ruv from AB and on the opposite side of the node C such that AA′B′B
forms a rectangle. Similarly, we draw a line B′′C′ parallel to BC on the side opposite
to that of A and distant ruv from BC so as to form a rectangle BB′′C′C, and also a
line C′′A′′ parallel to CA on the side opposite to that of B and distant ruv from CA
so that CC′′A′′A is a rectangle. Now from the point A, draw a circular arc of radius
ruv so as to cut the lines A′B′ and C′′A′′ at A′ and A′′ respectively. Similarly, draw
two other circular arcs of radius ruv : i) from B to cut the lines A′B′ and B′′C′ at
B′ and B′′ respectively, and ii) from C to cut the lines C′B′′ and C′′A′′ at C′ and C′′

respectively. The closed convex region A′B′B′′C′C′′A′′ is the resulting Ruv .

It may be mentioned here that the region Ruv can also be viewed as the Minkowski’s
sum [18] of the region of residence R of the node v and a circle of radius ruv centered at
origin. We assume that the initial regions of residence of all nodes are bounded either by
straight line segments or by circular arcs. Hence, the region Ruv will also be bounded
by straight line segments and/or circular arcs only. We state the following result without
proof.
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Lemma 2. Node u is guaranteed to be found at some location inside Ruv.

Theorem 1. The current minimum region of residence, Ru of a node u, based on the
information from its neighbors is the region formed by the intersection of the viewed
regions of residence Rui’s, i ε N(u), i.e.,Ru =

⋂
i ε N(u) Rui.

Proof: The proof follows from lemma 2 as the common intersection region is the small-
est region that satisfies lemma 2 for all neighbors i ε N(u). �

Note that this current minimum region of residence may subsequently get refined
(contracted in size) by improved viewed regions of residences from its neighbors.

Theorem 2. The minimum region of residence of a node u, Ru (based on the infor-
mation from its neighbors) can not subsequently be made larger by an altered viewed
region of residence, Rui from any neighbor i.

Proof: The proof follows directly from theorem 1. �

To find the minimum region of residence, our algorithm proceeds in two steps :

– In the first step, every node u in the network determines its current region of resi-
dence by ranging with each of its neighbors.

– Once u has determined its current minimum region of residence, it attempts to
improve the regions of residence of each neighbor, using its own region of residence
and the range measurements that it obtained from the respective neighbors.

Example 2 below illustrates the working of our algorithm :

Example 2. Consider a node u with three neighbors i, j and k. Figure 2 demonstrates
a probable situation where the triangles ∆ABC and ∆DEF define the region of res-
idence of nodes i and j respectively. PQRS is the region of residence of node k. For
simplicity, we assume the regions of residence as polygonal. Let r1u, r2u and r3u be the
range measurements that u obtains by ranging with i, j and k respectively. According
to the view of node i, u lies in the region Riu, dictated by the shape A′B′B′′C′C′′A′′

as demonstrated in example 1. Similarly, D′E′E′′F ′F ′′D′′ and P ′Q′Q′′R′R′′S′S′′P ′′

define the region of residence of u in the views of the nodes j and k respectively. Fol-
lowing theorem 1, the shaded region LMN defines the minimum region of residence of
node u, where u is guaranteed to be found.

Once the minimum region of residence of node u is found, node u then tries to
refine the minimum region of residence of a neighbor v, ∀v ε N(u), using Ru and the
corresponding measured range ruv from v. The new minimum region of residence of
node v, R′

v is defined as the intersection of the viewed region of residence of v by u,
Rvu and the current minimum region of residence of v, Rv. In Figure 3, region LMN
defines the minimum region of residence of node u. r3u is the measured range from
k to u. The region defined by the dotted lines, L′M ′N ′ defines the viewed region of
residence, Rku of k by u. The region UN ′V Q is the intersection region of the current
minimum region of residence of k, PQRS and L′M ′N ′. Following theorem 1, the new
minimum region of residence of node k is the region UN ′V Q. Node u tries to similarly
improve the regions of nodes i and j using the measured ranges r1u and r2u and its
minimum region of residence,Ru.
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A careful scrutiny of figure 3 in the above example reveals that the part of the
boundary of the region of residence of k which causes a computation (improvement) in
the region of residence for u, and the part of the boundary of the region of residence for
k which is refined (improved) due to this computed part of the region of residence for
u, are mutually disjoint. This observation holds even if the node k would have an initial
region of residence of a different shape.

Lemma 3. Given a minimum region of residence of a node u, Ru and a measured
range ruv from a neighbor v, the improved minimum region of residence of v, R′

v is
given by the intersection of the viewed region of residence of v by u, Rvu and the
current minimum region of residence of v, Rv .

R′
v = Rv ∩Rvu (2)

Proof: The proof follows directly from lemma 2 and theorem 1. �

From lemma 3, we get, R′
v ⊆ Rv. Note that R′

v is generated by introducing some
extra arc and/or straight line segments on Rv due to the region computation initiated
by the node u. Let us denote these set of new arcs and straight line segments by Ev

u.
Elements of Ev

u are either parallel to some boundary edge of Ru or a circular arc of a
circle with radius rvu , centered at some vertex on the boundary of Ru.
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Suppose there is a path in the network starting from a node u0 to some node uk,
given by u0 u1 u2 · · ·uk. If u0 initiates its region computation by its neighbors and gets
its region computed by these neighbors as Ru0 , then Ru0 may cause an improvement
in the region of node u1. This, in turn, may cause an improvement in the region of
the node u2, and so on, so that the process of region refinements may successively
follow through the nodes u1, u2, · · · , uk. In particular, if we now assume that uk = u0,
i.e., u0 u1 u2 · · ·uk is a cycle, then we claim that this process of successive region
refinements will not be able to further refine the region Ru0 of u0 after a finite number
of steps. To establish this claim, we proceed as follows.

Let Eu1
u0

denote the set of newly introduced lines and/or arcs on the boundary of the
minimum region of residence of u1 due to the region computation of u0 caused by all
the immediate neighbors of u0. The changed region R′

u1
of u1 due to Eu1

u0
may cause a

change in Ru2 by introducing some new lines and/or arcs which we denote by the set
Eu2

u0, u1
. In general, we denote the set of newly added lines and/or arcs in the region of

uj , 1 ≤ j ≤ k, by E
uj
u0, u1 ...uj−1 . Because of the properties of Minkowski’s sum of

R′
uj−1

and a circle of radius ruj−1,uj (range value between nodes uj−1 and uj) with
center at the origin, we see that for any j, 1 ≤ j ≤ k, two possible cases may arise :

Case 1: A line segment (arc) in E
uj
u0, u1 ...uj−1 is parallel to some line segment (arc)

in E
uj−1
u0, u1 ...uj−2 (for j > 1) or in Ru0 (for j = 1).

Case 2: An arc in E
uj
u0, u1 ...uj−1 is

i) not parallel to any arc in E
uj−1
u0, u1 ...uj−2 (for j > 1) or in Ru0 (for j = 1),

ii) but is an arc of a circle with radius ruj−1,uj , having center at one point on the
region R′

uj−1
which is the point of intersection of two different arcs or two differ-

ent line segments or an arc and a line segment, at least one of which must be in
E

uj−1
u0, u1 ...uj−2 (for j > 1) or in Ru0 (for j = 1).

This fact is illustrated in Figure 4 where the arcs α and β on R′
uj−1 and R′

uj ,
respectively are parallel to each other, while the arc γ on R′

uj is derived from the point
Q on R′

uj−1 (with Q as center and a radius equal to ruj−1,uj . We also see from Figure 4
that for every point on R′

uj , there exists a unique point on R′
uj−1 from which this point

was derived. Thus, for the point T on R′
uj , the corresponding point on R′

uj−1 is Q,
which is transitively derived from a point P on Ru0 .

Lemma 4. Let T be any point on E
uj
u0, u1 ...uj−1 , and P be the corresponding point on

Ru0 from which T was derived. The Euclidean distance PT is always greater than or
equal to the maximum of all (ruj−1,uj , ∀j, 1 ≤ j ≤ k).

arc α

arc δ

Q

P

arc β

arc η
T

T’

arc γ

Ru0
R’uj-1

R’uj

Fig. 4. Refinements of regions of successive neighbor nodes



68 K. Sinha and A. DattaChowdhury

Proof: We prove this by induction on j. Our claim is trivially true for j = 1. Suppose
the claim is true for j = 1, 2, · · · , j − 1. For j ≥ 1, referring to Figure 4, the Eu-
clidean distance PQ is then greater than or equal to the maximum of (ru0,u1 , ru1,u2 ,. . .,
ruj−2,uj−1). Now, if the point T is on an arc or line segment in E

uj
u0, u1 ...uj−1 parallel to

an arc or line segment in E
uj−1
u0, u1 ...uj−2 , then the Euclidean distance PT = PQ + QT ,

from which the result follows as QT = ruj−1,uj . If, however, the point T is on an arc/line
segment in E

uj
u0, u1 ...uj−1 , not parallel to any arc/line segment in E

uj−1
u0, u1 ...uj−2 , then

the corresponding point Q on R′
uj−1 from which T is derived, must be the point of in-

tersection of two different arcs and/or line segments, as explained above. Without loss
of generality, let Q be the point of intersection of two arcs α and δ in E

uj−1
u0, u1 ...uj−2 , as

shown in Figure 4. The arc δ is mapped to the parallel arc η in E
uj
u0, u1 ...uj−1 . Let the

arcs γ and η intersect at the point T ′. Hence, the line QT ′ is normal to the tangent to
the arc δ, and it follows that ∆PQT is an obtuse-angled triangle with the obtuse angle
at point Q. This implies that the distance PT is greater than either of PQ and QT , and
hence the lemma follows. �

Thus, we see that the part of the region boundary of a neighbor uj of u0, ∀j, 1 ≤
j ≤ k which gets modified (refined) due to the region computation initiated by u0,
is always at a distance greater than or equal to ru0,u1 from the corresponding part of
Ru0 which caused this refinement of Ruj . Hence we get the following important result
which guarantees the termination of the successive refinement scheme.

Theorem 3. If a node u initiates its region computation with the help of range readings
from all of its neighbors, the computed region Ru of u may cause refinements of the
successive neighbors through the whole network, but it will never be able to further
refine Ru of u itself. �

Definition 2. The stable region of residence of a node u is the minimum region of
residence of u which can not be further improved upon using the current global set of
range readings for all node pairs in the network. We denote such a region by Su.

Theorem 4. A node u can compute its stable region of residence once it gets the range
readings of all possible directly communicating nodes in the network along with the
initial region information of all nodes.

Proof: Omitted due to brevity. �

Theorem 5. The computation of the stable regions of residence of all nodes in the
network is functionally equivalent to an all-to-all broadcast of the range information of
all node-pairs in the network (the set RR) and the set Refn.

Proof: To reconstruct the ad hoc network graph centrally, two pieces of information
would be required : (i) the measured ranges of all node pairs and, (ii) the information as
to whether an individual node is a reference node or not. From theorem 4, we see that
if a node possessed the range values of all node-pairs in the network (the set RR) and
the set Refn, it could locally construct the network graph and then compute the stable
regions of residence of all nodes. Since the possession of the set RR and the set Refn

by a node in the network effectively implies a broadcast of these two sets, if every node
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were to locally compute the stable regions of residence, the problem maps to that of
an all-to-all broadcast of the set RRi and status (whether its a reference node) of each
node i in the system. Each node on receiving this information from a neighbor would
attach its own RRi set and its status and broadcast the message again. �

4 Proposed Location Identification Algorithm

Every node in the network maintains a local variable status, which is set to 1 if the
node is a reference node, zero otherwise. Initially, the minimum regions of residence of
all non-reference nodes are assumed to be infinity. Each node i does a ranging with its
neighbors to obtain a set of measured ranges, RRi. i then computes the viewed region
of residence for every node j ε N(i). Node i then exchanges three pieces of information
with each neighbor j ε N(i) - i) value of the status variable, statusi, ii) viewed region
of residence of j, Rji, iii) area of the current minimum region of residence of i, Ai.

Let RRi = {rij : j εN(i)}, T = set of viewed regions of residence, Rij . Once
node i has its viewed region of residence, Rij from its every neighbor j, it computes its
current minimum region of residence using the following algorithm :

Function compute region : Boolean
var Aold, Ai : Real;
begin

for each Rij ε T such that Aj �= ∞ do
/* Compute the minimum region of residence of node i from the viewed regions */
Ri ← Ri ∩ Rij ;

endfor;
Ai ← Area of Ri;
if Ai < Aold then return true; /* Ri improved */
else return false; /* No improvement in Ri */

end.

Once node i computes its minimum region of residence, it tries to improve the
minimum region of residence of each of its neighbors as follows:

Procedure improve region
begin

for each j ε N(i) such that statusj �= 1 do
/* Construct Rji, the viewed region of j */
Rji = Ri ⊕ rij ;
Transmit Rji to node j;

endfor;
end.

The following location identification algorithm is executed by each node i until the
node attains its stable region of residence, Si.

Algorithm location region identify
var region change flag : Boolean;
begin
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while (true)
Get neighbor set N(i);
Generate RRi : measure range with every neighbor j ε N(i);
region change flag = false;
repeat

Get T : viewed regions of residenc Rij from every neighbor j;
if statusi = 0 then region change flag = compute region(i, T );
improve region(i, N(i), RRi);

until region change flag = false; /* iterate until Ri = Si */
endwhile;

end.

4.1 Complexity Analysis

The operations compute region and improve region both need O(∆) time in the worst
case, where ∆ is the maximum node degree in the network. Also, the operation Get T
needs O(∆) time. If we assign a distinct time slot to each node depending on its unique
id number [13] to avoid collision, then each iteration of the repeat loop would need
O(n) time slots. From theorem 5, the algorithm terminates when an all-to-all broad-
cast of the sets RR and Refn is achieved. Assuming that the effect of the viewed range
information of all node pairs can be transmitted in O(1) time slots, the whole communi-
cation process will be completed in O(D) rounds, D being the diameter of the network
(each round consists of O(n) time slots for message communication from all nodes in a
layer to the nodes in the next layer [13]). Hence, the algorithm location region identify
will need O(nD) time.

5 Simulation Results

We experimented with various graph topologies by randomly generating static ad hoc
graphs. All communications were assumed to be symmetrical. We assumed a transmis-
sion range of 30 units of distance for all nodes in the system, and an environment with
a mix of LOS and Obstructed LOS (OLOS) signals. The LOS range errors are drawn
from a gaussian distribution of mean µ and standard deviation σ, while the OLOS range
errors are drawn from an exponential distribution with parameter λ [2]. The parameters
µ, σ and λ characterize the channel characteristics and hence the amount of ranging
errors. We evaluated the performance of our algorithm against varying channel char-
acteristics, percentage of LOS/OLOS signals and percentage of reference nodes in the
system. For each set of parameters, the experiments were repeated for 100 randomly
generated graphs and the area of the stable region of residence of all nodes in the sys-
tem were measured. Figures 5 and 6 demonstrate the median area of the stable regions
of residence for random graphs of 100 nodes. The plots of mean area of the stable
regions of residence look similar to their median counterpart, with the difference that
the mean areas are slightly larger than the median areas. We chose to measure the me-
dian area as it is less affected by outlier cases. The mean area, on the other hand, can
get significantly affected by situations such as a non-reference node, i having only one
neighbor (say j), in which case Ri = Rij and the area of Rij can be either very small or
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Fig. 6. Variation of size of stable region of residence with % of LOS signals and RNs

Table 1. Variation of median area of stable regions of residence with node density

Node Density (nodes/sq. units) % of RNs Median area of stable region (sq. units)

0.01 25 1.980
0.0075 25 2.656
0.005 25 5.249
0.003 25 10.275

quite large, depending on the ranged distance between the two nodes. The plots for the
mean area of the stable regions of residence have been omitted due to space constraints.

Table 1 shows the variation of median area of stable regions of residence with node
density, measured in number of nodes per square unit. The areas depicted are for λ =
5.3, µ = 0.0, σ = 0.03, 80% LOS signals and 25% of the nodes designated as RNs.

6 Conclusion

We have presented a novel approach to the problem of location discovery in an ad hoc
network using computational geometric methods. In contrast to the existing approaches
of estimating a point location, algorithm location region identify computes the region
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of residence for a node, where it is guaranteed to be found. The proposed algorithm
takes only O(nD) time to identify the stable regions of residence for all nodes in the
network. Simulation results show that our algorithm succeeds in finding reasonably
small stable regions of residence for all non-reference nodes under varying conditions.
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Abstract. Localization in mobile ad hoc networks (MANETs) is the
process of fixing the position of a node according to some real or virtual
coordinate system. In many cases, solutions like Global Positioning Sys-
tem (GPS) are not feasible. As a result, several algorithms have been de-
veloped for localization based purely on local communication. However,
many of these suffer from one of the following: flooding of the network,
requirement for global knowledge, or the requirement of “beacon” nodes,
which know their absolute position according to GPS. At the very least,
localization algorithms require parts of the system to be either static
or relatively stable. In this paper, we propose a symmetric localization
algorithm that performs fairly accurate localization. No special elements
like beacons and other static elements are required; however, they are
not excluded.

1 Introduction

Mobile ad hoc networks comprise of computational nodes that can communicate
with one another within a given wireless range. There may be no fixed elements
in the network and the network itself may span areas much larger than the
wireless range of a single node. Depending on the amount of mobility in the
system, the network topology may be subject to frequent changes.

This paper addresses the issue of localization in mobile ad hoc networks. Lo-
calization is the process by which a node positions itself with respect to other
nodes in the network. This positioning may be based on a set of “real” coordi-
nates like the latitude and longitude obtained from GPS, or based on “virtual”
coordinates that applies to the network alone.

GPS based localization has been addressed in [11, 12]. However, GPS based
localization is not always possible or desirable. This is because GPS based sys-
tems are expensive and they are susceptible to signal attenuation under thick
foliage, basements, etc.

Localization algorithms using virtual coordinates have been developed that
are based on measuring physical characteristics like signal strength. Some exam-
ples are [3, 7, 8, 9, 13]. Localization based on physical characteristics has its own
issues of signal attenuation by obstacles and multipath.

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 73–82, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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An alternative method of localization is purely algorithmic. Here, nodes are
only concerned about the other nodes in their vicinity. They have no means
for measuring signal strength, delay or movement. Some example algorithmic
approaches include [1, 2, 4, 5, 10]. However, existing algorithmic approaches suffer
from one or more of the following shortcomings: they require flooding of the
network and/or require the use of beacons, which are special nodes that have
knowledge of their actual coordinates, and/or knowledge of the perimeter of the
network. At the very least, they assume that there is a set of relatively stable
nodes that play a central role in the localization process [2].

The algorithm presented in this paper, which we call Adorn, is symmetric and
requires none of the above. Each node in the network independently computes
its coordinates by communication with its neighbours periodically. There is no
special requirement on any nodes for the localization process. Beacon nodes are
not necessary, although they are not excluded from the model. Beacon nodes
can be used to aid in faster convergence of the algorithm.

2 Related Literature

Nagpal et al. [5] and Niculescu and Nath [6] propose variants over GPS based
triangulation for localization. Both their algorithms require the presence of bea-
con nodes (or “landmarks” as they are called in [6]). Other nodes in the network
calculate their positions based on their hop distances to at least three beacons.

Priyantha et al. [15] propose an approach that is GPS and beacon free. In
the first phase, with the help of a few carefully chosen reference nodes, a fold-
free graph embedding is produced that provides an estimate of the structure of
the network. The other nodes use the hop counts from the reference nodes to
approximate their polar coordinates.

While the above algorithms work well when the network is reasonably static
and predictable, they are not suitable when the network’s main feature is the
unpredictable, highly mobile topology.

Perhaps, our algorithm is closest to the one proposed by Capkun et al. [2],
which takes care of node mobility. The algorithm of Capkun et al. proceeds in
two phases. In the first phase, every node builds its local coordinate system. In
the second phase, each node reorients its coordinate system, with respect to a
set of nodes that have lower mobility than the rest of the nodes, to achieve a
common global orientation.

Iyengar and Sikdar [4] propose an algorithm that claims to be better than
[2] by being more frugal in terms of communication.

However, both the above algorithms suffer from the requirement for a set of
reasonably static subset of nodes, which form and maintain a global coordinate
system. Localization accuracy and convergence depend on the stability of this
set of nodes.

The Adorn approach do not have the above limitations. Our algorithm does
not require any special nodes. Hence, the localization process is symmetric. In
highly mobile networks, convergence is chaotic and it is not possible to predict
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the orientation of the ensuing coordinate system. Convergence can be aided with
the help of beacon nodes which know their own coordinates apriori.

3 Adorn Localization

The Adorn model is based on the following assumptions: (a). In an ad hoc
network, there need not be any fixed elements; (b) Ad hoc nodes may not be
cognizant of their movement; (c). All nodes in the ad hoc network i have the
same wireless range r; and (d). Nodes can communicate with other nodes which
are in their wireless range; however they do not know the relative orientation of
the other node with respect to themselves.

In the Adorn system, nodes maintain a set of 2-dimensional virtual coordi-
nates. Isolated nodes have coordinates (0, 0). When two or more nodes come
within the range of one another, they evolve virtual coordinate axes where they
place themselves on some points along each axis. The correctness of this place-
ment is a measure of how well the nodes preserve the relative ordering among
themselves.

Virtual coordinates are tagged with a “network-id” which specifies the co-
ordinate system where its coordinates hold. Whenever two or more nodes with
different network-ids come within range of one another, one of the network-ids
dominates. Isolated nodes belong to a network whose id is the same as their
node id.

Given a set of ad hoc nodes, formation of the virtual coordinate system begins
independently at different locations in the network. Each coordinate system has
its own network id. Eventually one or a small number of network-ids prevail over
the entire network.

Nodes update their coordinates periodically based on the coordinates of their
neighbours and the neighbours’ neighbours. Nodes are not cognizant of their
own movement. Even if they are, they may not be aware of the direction of
their movement relative to the axes of the virtual coordinate system. Hence the
updation interval does not depend on the movement of nodes.

The formation and maintenance of virtual coordinates is explained from two
scenarios: steady-state behaviour and formative behaviour.

Steady-State Behaviour: Steady-state behaviour is when all nodes have been
assigned coordinates and are updating their coordinates periodically.
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p
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Information about Self

Fig. 1. Response to a RFP message
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Whenever a node needs to update its coordinates (or a new node enters into
a network that is in steady state), it sends out a RFP (request for positioning)
message. Each node that is directly in range receives this message and returns
the following information (schematically shown in Figure 1):

– Its network-id
– Its node id and virtual coordinates, tagged with its current timestamp
– Node ids and virtual coordinates of its neighbouring nodes, tagged with their

timestamps

The timestamps that are stored along with the coordinates help a node to
determine the latest information, especially about the neighbours of neighbours
(or the 2-hop neighbours).

Network-ids specify the coordinate system nodes belong to. Whenever a node
receives responses having different network ids, the node may decide to change
its network id. This decision is based on one of the two strategies for collapsing
coordinate systems, which are explained in section 4.

After the network-id and positions of the 2-hop neighbours are resolved, the
node estimates its own position based on the following rationale: the node has to
lie in the region that is the intersection of all the ranges of its 1-hop neighbours.
However, it should not lie in any part of this region which lies within range of
any of its 2-hop neighbours (schematically shown in Figure 2).

One hop neighbours

Two hop neighbours

Region bounding
estimation area

Fig. 2. Bounds for the area where the node originating the RFP is likely to be. It is
the intersection of ranges of all the 1-hop neighbours(shown in solid lines) minus the
common areas of the 2-hop neighbours(shown in dashed lines).

Let hop1 be the set of all 1-hop neighbours, and hop2 be the set of all 2-hop
neighbours. Let n = |hop1| and m = |hop2|. The node first places itself at the
centroid of all the 1-hop neighbours. That is, x = Σn

i=1xi

n and y = Σn
i=1yi

n . Here
xi is the x coordinate of the ith neighbour and yi is the y coordinate of the ith

neighbour.
At any estimated point (x, y), there is said to be a “repulsive” force from

all 2-hop neighbours, and an “attractive” force from all 1-hop neighbours. The
repulsive forces are computed along x and y dimensions as follows.
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fx
2 = absmaxi(w2e

−dcosθ), 1 ≤ i ≤ m

fy
2 = absmaxi(w2e

−dsinθ), 1 ≤ i ≤ m.

Here d =
√

(x− xi)2 + (y − yi)2 is the distance between the currently esti-
mated point and a given neighbouring node. For 2-hop neighbours, the angle
between them (θ) is computed as θ = tan−1 y−yi

x−xi
. When x > xi, the x com-

ponent of the computed force would be positive. The same is true of the y
component, and the net effect of the force would be directed towards widening
the gap between xi and x.

The magnitude of the repulsive force decreases exponentially as the distance
between the estimated point and the 2-hop neighbour increases. The function
absmax chooses the corresponding force component whose absolute value is the
maximum. If the estimated node lies beyond the nearest 2-hop neighbour, it is
sufficient. The term w2 is a multiplicative factor for the repulsive forces from the
2-hop neighbours. It determines the number of steps by which coordinates are
changed during refinement. In our experiments w2 was kept at a value of 1.

The attractive forces from the 1-hop neighbours are given as follows.

fx
1 = absmaxi(w1(1− e−d)cosθ), 1 ≤ i ≤ n

fy
1 = absmaxi(w1(1− e−d)sinθ), 1 ≤ i ≤ n.

The magnitude of the attractive force increases with distance. The largest
absolute value of the attractive forces is chosen to represent all the forces from
1-hop neighbours. The term w1 is the multiplicative factor for the attractive
forces.

The direction of the attractive forces is opposite to the direction of the repul-
sive forces. This is modeled by calculating the angle θ as follows: θ = tan−1 yi−y

xi−x .
This results in a negative force when x > xi and serves to diminish the distance
between the neighbouring node and the estimated position.

Based on these force vectors improvements are computed separately along x
and y dimensions. x(k + 1) = x(k) + fx

1 + fx
2 and y(k + 1) = y(k) + fy

1 + fy
2 .

The improvement algorithm is said to converge if fx
1 +fx

2 +fy
1 +fy

2 ≤ ε, ε→ 0.
Computation proceeds until it converges or once it reaches a maximum limit on
the number of iterations.

Formative Behaviour: In response to an RFP, if a node receives responses
where every neighbour is in a different network, each network would have a
cardinality of 1. Such a situation arises predominantly in the formative stages
when all nodes have a coordinate of (0, 0) and lie in a network by themselves.

In such a case, the node computing its RFP arbitrarily chooses one of the
neighbouring nodes positioned at (xi, yi) and sets its own coordinates as (xi +
r
2 , yi + r

2 ). Hence, a coordinate system is “pulled out” from one of the origins.

4 Strategies for Collapsing Coordinate Systems

Locally Most Popular (LMP): Whenever a node receives responses from
its neighbours, the node determines the network-id that most of the neighbours
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(including itself) belong to. The node then changes its network-id to this “locally
most popular” network-id.

Network Size Estimate (NSE): Here, we assume that every node maintains
nse, an estimate of the size of the network it belongs to. To start with, each node
has nse equal to 1 (signifying only one node, which is itself). Whenever a node
receives responses from its neighbours, it finds the network with the highest nse.
The node then changes its network-id to the network-id of this network. Once a
node changes its network-id to that of the network with the highest nse, nse of
the network is incremented by 1. Similarly if a node finds a higher value for the
nse of its network from one of its neighbours, it increments its own nse value to
the new value. The nse is thus a monotonically increasing function.

Evaluation results have shown a faster convergence rate for the second (NSE)
strategy as compared to the first (LMP).

Beacons: A third strategy for collapsing coordinates is the use of special nodes
called “beacons” which know their absolute coordinates. All beacons belong to
a single special network id (usually a negative number). Whenever a node finds
this special id in its neighbourhood, it simply changes to this special network.

Beacons with special ids are known to result in much faster convergence than
the above two strategies. However, they do make the algorithm asymmetric,
bringing in the need for special nodes.

5 Analysis

Resolution: The resolution of the coordinate system is the wireless range r.
When all nodes in the network are in range with all other nodes (i.e. when the
network is a clique), two or more nodes could be indistinguishable with respect
to their virtual coordinates even though their real coordinates are not the same.

Minimum Density: It follows from the above that the best setting for com-
puting virtual coordinates is when both hop1 and hop2 neighbours of a node are
non-empty.

Hence for any node, there has to be at least 2 neighbours within its range
such that the neighbours are not in range among themselves. This ensures the
availability of non-empty hop1 and hop2 sets.

Let n be the total number of nodes and N the 2-dimensional surface area in
which the network is situated. Given this, the density of the network is ρ = n

N .
Given any geographic area of radius r within the network ρπr2 gives the number
of nodes in that area.

In order for the system of coordinates to be reliable, each node should have
at least one hop1 neighbour and at least one hop2 neighbour. This condition
is both necessary and sufficient. The algorithm relies upon only hop1 and hop2
neighbours for computing its own coordinates. With only hop1, the node places
itself in the centroid of the neighbours, which may not be accurate.
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Given a node’s location, a hop1 neighbour can be found around a radius r
with a probability of ρ. A hop2 neighbour is one which is in range with the hop1
neighbour but not in range with the original node.

Hence, we have a random variable Φ which defines the following relation
for any three nodes xi, xj and xk in the network: d(xi, xj) ≤ r ∧ d(xj , xk) ≤
r ∧ d(xi, xk) > r. Here d() computes the Eucledian distance between two nodes.

Given any three nodes xi, xj and xk the probability that xk lies within range
of xj and not within range xi is given by the ratio of the area of the shaded
region in Figure 3 to the area of a node’s range.

xk
xi

xj

Fig. 3. Probability of finding a hop1 and a hop2 neighbour

This probability is the ratio of the shaded region to the area of the circle
spanning the range of xj . The area of the shaded region is given by [14]:

S(u) = πr2 − 2r2cos−1(
u

2r
) +

u

2

√
(4r2 − u2)

Here, u = d(xi, xj) is the displacement between the nodes xi and xj . The
random variable Φ is now defined as:

Φ =
∫ r

0

ρS(u)
πr2

du

In order to calculate the lower bound on node density, we set Φ = 1 and
solve the above equation. This results in a value of ρ as (1.14865r − 0.8372)−1.
For a given value of r (say 5 meters), the minimum required density is given by
ρ = 0.2039 nodes per square meter. The number of nodes in this region is given
by ρπr2 � 16. The resolution of the distance between nodes is given by the units
of r (in this case 1 meter, i.e. 16 uniformly distributed nodes are sufficient in the
neighbourhood when wireless range is 5 meters and node distances are measured
with a resolution of 1 meter).

6 Simulation Results

Most of the evaluation experiments were based on a simulated environment
depicting a node space size of 100 by 100 units and node radius of 5 units.
Time is in terms of logical time ticks. Nodes move after random periods of
time whose limit is controlled by a parameter called the “mobility factor” mf .
Performance evaluation tests shown here address the localization algorithm itself
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and not necessarily its applicability to a wireless ad hoc network. This is because,
other physical factors affecting a wireless ad hoc network like signal attenuation,
multipath, etc. are ignored.

The variables that were observed from the simulation runs were the following:
error and numnets. The first refers to the average error in positioning. This is
calculated for each node as follows:

Error Calculation: At random intervals, nodes generate data packets. When
data packets are generated, they are tagged with the current virtual coordinates
(vx, vy) of the node. The real coordinates (x, y) of the location are also recorded.
A timer is then started that runs for a time period of at least mf , allowing the
node to move away. When the timer reaches 0, virtual coordinates (vx′, vy′) are
calculated at the location (x, y) where the packet was generated. The error in
positioning is the Eucledian distance between (vx, vy) and (vx′, vy′).

The rationale for the above method of error calculation is the absence of any
absolute coordinate system against which errors can be measured. A measure of
the goodness of the algorithm is to calibrate how stable the coordinate system is.

The second variable that is observed is the number of networks that prevail
in the system for each tick of the simulation clock.

Figure 4 plots the cumulative average error across time ticks for different
node densities. It is evident that error decreases as node density increases and is
almost close to 0 for node densities greater than 0.2 nodes per square unit when
wireless range is 5 units. This is consistent with the analytical result computed
in the previous section. In these tests mf was set to a moderate value of 50 ticks
between moves.

Figure 5 compares the two strategies for collapsing coordinates. It is clear
that NSE has a much higher rater of convergence than LMP. The figure plots
the number of networks in the system across clock ticks for both the strategies,
for high and moderate mobility values, which can be controlled by the parame-
ter mf .
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Fig. 4. Cumulative average error versus node density
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Fig. 5. Impact of LMP and NSE on convergence
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Fig. 6. Impact of beacons on cumulative average error

Figure 6 plots cumulative average error with and without beacons. The differ-
ence is significant and the availability of beacons result in much smaller position-
ing errors. The density of beacons does not seem to affect the overall positioning
error. Convergence of the network onto a single coordinate system is also faster
with the presence of beacons.

7 Conclusions

It is possible to generate a system of virtual coordinates without the need for
flooding, perimeter nodes or even beacons as shown by the Adorn model. The
model performs fairly accurate localization even in the face of high mobility.
While the model does not require beacons, their availability greatly enhances
localization accuracy. A limitation of this model is that the nodes can only
determine their relative coordinates in a virtual coordinate system. This is not a
major limitation since many applications like data centric routing do not require
absolute positions.
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Abstract. With the increasing programmability of graphics processing units
(GPUs), these units are emerging as an attractive computing platform not only
for traditional graphics computation but also for general-purpose computation. In
this paper, to study the performance of programmable GPUs, we describe the de-
sign and implementation of LU decomposition as an example of numerical com-
putation. To achieve this, we have developed and evaluated some methods with
different implementation approaches in terms of (a) loop processing, (b) branch
processing, and (c) vector processing. The experimental results give four impor-
tant points: (1) dependent loops must be implemented through the use of a render
texture in order to avoid copies in the video random access memory (VRAM);
(2) in most cases, branch processing can be efficiently handled by the CPU rather
than the GPU; (3) as Fatahalian et al. state for matrix multiplication, we find that
GPUs require higher VRAM cache bandwidth in order to provide full perfor-
mance for LU decomposition; and (4) decomposition results obtained by GPUs
usually differ from those by CPUs, mainly due to the floating-point division error
that increases the numerical error with the progress of decomposition.

1 Introduction

The GPU [1] is a single-chip processor, which is designed to accelerate rendering
tasks for interactive visualization. Recently, GPUs on commodity PC graphics cards
are emerging as a novel high performance computing (HPC) platform with providing
faster floating-point operations than CPUs [2]. Newly added functionalities such as pro-
grammability and branch capability make them an attractive HPC platform not only for
visualization purposes but also for general purposes.

Such new functionalities also activate the use of modern GPUs for solving numerical
problems. Thompson et al. [3] implement matrix multiplication on a GPU, achieving
three times higher performance compared with a simple CPU implementation. Larsen
et al. [4] compare their GPU implementation with ATLAS [5], a cache-optimized CPU
implementation. They present two requirements for making their GPU implementa-
tion competitive against ATLAS: one is a significant increase of VRAM access speed
and the other is that of graphics chip core clock. To approach these requirements from
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the software side, Hall et al. [6] propose a VRAM cache and bandwidth aware algo-
rithm with its theoretical evaluation. Their algorithm is evaluated on real graphics cards
by Fatahalian et al. [2]. This experimental evaluation shows that higher VRAM cache
bandwidth is yet essential for GPUs to outperform ATLAS.

In addition to the problem of matrix multiplication, there are a wide variety of nu-
merical applications running on the GPU: the conjugate gradient method [7, 8, 9], the
Gauss-Seidel method [7], the projected Jacobi method [9], and the fast Fourier trans-
form [10]. Thus, many researchers try to accelerate numerical computations using the
GPU. However, it is still not clear what kinds of design guidelines will yield higher
performance on GPUs, mainly due to the rapid advances in GPU architectures. Further-
more, most vendors rarely disclose the details of their GPU architectures.

The goal of our work is to analyze the performance behavior of the GPU, aiming
at making clear the design guidelines for GPU accelerated numerical computations. To
achieve this, we focus on the problem of LU decomposition, which is used for rank-
ing top 500 supercomputers. We present its design with different implementation ap-
proaches in terms of (a) loop processing, (b) branch processing, and (c) vector process-
ing. We also show some performance studies using commodity PC graphics cards.

To the best of our knowledge, the key contributions of the paper are (1) the design
guidelines for the above implementation issues (a)–(c) and (2) the first GPU implemen-
tation for LU decomposition.

The paper is organized as follows. Section 2 presents a brief overview of the GPU ar-
chitecture and summarizes prior strategies for solving numerical problems by the GPU.
Section 3 describes the implementation approaches that compose our methods, and then
Section 4 shows the performance studies obtained on modern graphics cards. Finally,
Section 5 concludes the paper.

2 Graphics Processing Unit (GPU)

2.1 Overview of Architecture

The rendering task, which GPUs originally accelerate, is to compute pixels on the 2-D
image by projecting polygonal objects (triangles) located in the 3-D space. In order to
accelerate this compute-intensive task, modern GPUs [11, 12] employ a pipeline archi-
tecture as shown in Fig. 1. Due to limited space, we introduce only the programmable
part of this pipeline, namely vertex processors (VPs) and fragment processors (FPs).

VPs and FPs are vector processors with 4-length vector registers. These processors
have the following characteristics.

VP: VPs are capable of fast geometric transformation in order to accelerate the pro-
jection of vertices of polygons onto the 2-D space. They are based on a MIMD
structure [13] that allows applying different operations simultaneously to multiple
vertices. Here, the polygonal data must be transferred from the main memory to the
VRAM by using graphics APIs such as OpenGL [14] and DirectX [15].

FP: FPs are capable of rapid mapping of textures onto the 2-D image, aiming at pro-
ducing more realistic images. To perform this, they obtain projected pixels (called
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Fig. 1. GPU pipeline architecture

fragments) from the rasterizer, and then execute some mathematical operations be-
tween the pixels and textures. Here, the textures are read from the VRAM, and the
mapping results are written to any buffer on the VRAM. FPs are based on a SIMD
structure [13] that allows applying the same operation simultaneously to multiple
fragments. There are two characteristics that must be mentioned. (C1) FPs support
4-length vector operations, because they deal with 4-channel (RGBA) data repre-
senting red, green, blue colors and opacity. (C2) Because textures are generally 2-D
images, FPs can be regarded as vector processors that execute independent opera-
tions on each element on a matrix.

As we mentioned in Section 1, recent advances have removed many limitations that
earlier GPUs have. For example, earlier GPUs do not have any control flow mechanism.
Furthermore, only short programs were executable due to the limitation on instruction
count. In contrast, modern GPUs allow more instructions with branch capability and
some GPUs follow a 32-bit single floating-point number representation based on the
IEEE standard [16]. Furthermore, by using the graphics APIs mentioned above, the
rendered results can be transferred (readback) from the VRAM to the main memory.

2.2 Prior Strategies for Accelerating Numerical Computations on the GPU

Recent work [2, 6, 7, 8, 9, 10] uses only FPs for numerical computation while earlier
work [3] uses VPs. This is due to lower performance of current VPs, which are not
competitive against CPUs [6]. For example, as we show later, VPs in nVIDIA’s GeForce
cards provide 338 million vertices/s (namely, vectors/s), whereas FPs provide 3.6 billion
texels/s (vectors/s). Due to this performance characteristic, we also use only FPs for LU
decomposition.

In order to maximize the efficiency on FPs, prior work focuses on characteristics C1
and C2. For example, in a case of matrix multiplication XY = Z, each of elements Zij

can be computed independently. Therefore, FPs are allowed to simply render the result
matrix Z into a VRAM buffer by referring two textures each containing matrix data
X and Y, respectively. Thus, a doubly-nested loop without any dependencies between
loop iterations can be efficiently processed by a single pass of the data through the
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pipeline. Furthermore, to enable vectorization, some researchers pack the matrix data
into the 4-channel texture format. They store an N ×N matrix in an N/4×N texture,
multiplying the elements on four rows and one column at once.

Although the single-pass rendering approach mentioned above is effective for inde-
pendent nested loops, it must not be applied to a dependent nested loop, because such a
loop cannot be processed simultaneously due to dependencies between loop iterations.
This is one of the problems addressed in the paper.

The single-pass rendering approach is also inapplicable to programs whose size ex-
ceeds the limitation on the instruction count. This limitation can be resolved by multi-
pass rendering, which aims at emulating the entire execution by dividing the program
into small parts. In this method, data is repeatedly passed through the pipeline with
varying the program parts at each pass.

In summary, prior work presents the following four guidelines for yielding higher
performance on GPUs:

– Apply single-pass rendering to independent doubly-nested loops that contain a
large amount of computation;

– Pack matrix data into the 4-channel texture format to enable vectorization and to
reduce the usage of VRAM;

– Reduce the amount and number of data transfer between the GPU and the CPU;
– Reduce the number of VRAM accesses to save the VRAM bandwidth.

3 LU Decomposition on the GPU

This section presents the design of LU decomposition on the GPU. Table 1 summarizes
our methods with their theoretical performance.

3.1 LU Decomposition

LU decomposition is a method for solving a linear system Ax = b. It factorizes a ma-
trix A into two triangular matrices: a lower matrix L and an upper matrix U. Then,
the solution x is computed by forward and backward substitution. There are three al-
gorithms for this method: right-looking (see Fig. 2), left-looking, and Crout algorithms

Table 1. Theoretical performance of proposed methods M1, M2, M3, and M4

Vectorization Branch Loop
Rendering pass VRAM copy

Number Weight Number Amount (B)

M1 No CPU
Copying

2N 1
2N 32N(N2 − 1)/3

Switching 0 0

M2 No GPU
Copying

N 1
N 16N(N2 − 1)/3

Switching 0 0

M3 Yes CPU
Copying

8N 1/4
2N 2N(4N2 + 3N − 4)/3

Switching 0 0

M4 Yes GPU
Copying

4N 1/4
2N 2N(4N2 + 3N − 4)/3

Switching 0 0
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1: Algorithm RightLookingLUDecomposition {
2: for (i = 0; i < N ; i + +) {
3: for (j = i + 1; j < N ; j + +) {
4: Aji = Aji/Aii; /* update L */
5: for (k = i + 1; k < N ; k + +)
6: Ajk− = Aik ∗ Aji; /* update U */
7: }
8: }
9: }

Fig. 2. Right-looking LU decomposition algorithm

[17]. Given an N ×N matrix, these algorithms require the same O(N3) time but differ
in parallelism and locality of data access.

Among these algorithms, we select the right-looking version for GPUs, which have
much smaller caches than CPUs [12]. The reason why we select this version is that its
reference area at each decomposition step is smaller than the others. Thus, we think that
current GPUs are not suited to algorithms that require larger caches. Note here that we
currently do not consider pivoting because our main focus is the performance study of
GPUs.

3.2 Design Policy

To realize LU decomposition on the GPU, the following three issues must be resolved.

(a) Loop processing: There are dependencies between the outer i loop iterations in
Fig. 2. Due to these dependencies, we cannot simply apply single-pass rendering to
LU decomposition. A naive solution is to use a multi-pass rendering approach.

(b) Branch processing: While matrix multiplication applies the same operation to all
matrix elements, LU decomposition uses two different operations, each for com-
puting matrices L and U (lines 4 and 6 in Fig. 2). Therefore, we have to select
the correct operation depending on the location of matrix elements. Thus, branch
processing is required for this selection because FPs are SIMD processors.

(c) Vector processing: As same as for matrix multiplication, we should pack matrix
data into the 4-channel format to enable vectorization.

In the following we describe our implementation approaches that address the issues
mentioned above. We present two approaches for each issue. As shown in Table 1, our
proposed methods are combinations of these approaches. The design policies of these
methods are as follows:

– Method M1 eliminates branch operations from the GPU program, though it requires
more passes;

– In contrast, method M2 achieves less passes, though it includes branch operations
in the GPU program;

– The remaining methods M3 and M4 exploit vectorization on the basis of methods
M1 and M2, respectively.
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3.3 Loop Processing

To consider the issue of loop processing, we first characterize the dependencies between
loop iterations. The dependencies in the right-looking algorithm are as follows:

1. The outer i loop iterations cannot independently be processed;
2. The inner k loop iterations can independently be processed;
3. The inner k loop iterations must be processed after completing the assignment (line

4) in the middle j loop.

Due to the first dependency mentioned above, multi-pass rendering is necessary for
LU decomposition. The key idea here is that, according to characteristic C2, single-
pass rendering can be applied to the inner jk loops if these loops are restructured into
an independent loop. The following reconstruction methods can be considered.

– Loop decomposition (method M1, Fig. 3(a)): In this method, a nested loop for
updating L and U (lines 3–7 in Fig. 2) is decomposed into two loops (lines 3–4
and lines 5–7 in Fig. 3). These decomposed loops cannot be processed at once.
However, each loop can be processed in parallel. Therefore, this method requires
two passes for rendering L and U, as illustrated in Fig. 4(a) and (b).

– Loop fusion (method M2, Fig. 3(b)): In this method, the assignment for updating L
(line 4 in Fig. 2) is moved into the inner k loop (line 5–6 in Fig. 3(b)). This elim-
inates the dependencies so that enables parallel processing of the inner jk loops.
Thus, this method requires only a single pass for updating L and U, as illustrated
in Fig. 4(c). However, it increases the time complexity because the assignment is
moved into the inner loop (line 6 in Fig. 3(b)).

The next issue to be addressed is how data can be iteratively passed through the
pipeline. There are two strategies for this issue.

– Copying strategy using a pixel buffer: FPs write their computation results into a
pixel buffer. After this, the buffer context is copied to a texture for the next suc-
ceeding pass. This strategy requires the copy overhead.

– Switching strategy using a render texture: This strategy uses two textures, each for
input and output of FPs. At every pass, FPs switch these textures to prevent VRAM
copies. This strategy requires the switch overhead instead of the copy overhead.

1: Algorithm TwoPassLUDecomposition { 1: Algorithm OnePassLUDecomposition {
2: for (i = 0; i < N ; i + +) { 2: for (i = 0; i < N ; i + +) {
3: for (j = i + 1; j < N ; j + +) /* rendering */ 3: for (j = i + 1; j < N ; j + +) { /* rendering */
4: Aji = Aji/Aii; /* update L */ 4: for (k = i; k < N ; k + +) {
5: for (j = i + 1; j < N ; j + +) /* rendering */ 5: if (i == k) Aji = Aji/Aii; /* update L */
6: for (k = i + 1; k < N ; k + +) 6: else Ajk− = Aik ∗ Aji/Aii; /* update U */
7: Ajk− = Aik ∗ Aji ; /* update U */ 7: }
8: } 8: }
9: } 9: }

10: }
(a) (b)

Fig. 3. Proposed methods. (a) Two-pass method M1 and (b) single-pass method M2.
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Fig. 4. Matrix data rendered at the i-th pass, where 1 ≤ i ≤ N . (a,b) Method M1 renders
matrices L and U in two passes. (c) Method M2 renders them at once. (d) Method M4 integrates
vectorization with M2 by packing matrix data into the 4-channel (RGBA) format.

3.4 Branch Processing

We now describe how methods M1 and M2 resolve the issue of branch processing.
Branches in method M1 are handled by the CPU. In this method, the entire loop is
mapped to two rendering passes, as we mentioned in Section 3.3. Therefore, the CPU
takes the responsibility for loading the appropriate GPU program with its rendering
area. Thus, branches are naturally handled by the CPU. As a result, the GPU is al-
lowed to concentrate on executing the given program without any control flow. On the
other hand, method M2 requires the GPU to process branches. This can be easily im-
plemented by comparing i and k, the location of matrix elements as shown in Fig. 3(b).

In summary, although CPU implementations do not include branch operations, their
GPU versions may include them due to the SIMD architecture. If branch conditions are
expressed by the location in matrix data, such branches can be eliminated from the GPU
program but with more rendering passes.

3.5 Vector Processing

As same as for matrix multiplication [2, 6], we also apply vectorization to our methods
M1 and M2 in order to reduce the execution time. Fig. 4(d) illustrates how the matrix
data are mapped to the texture format. In this method, an N/4 × N texture represents
an N ×N matrix, enabling applying vector operations to the data on four rows and one
column. Note here that we cannot apply them in other directions, for example, to the
data on one row and four columns, because there are dependencies between different
columns (the outer i loop iterations).

Applying vectorization then raises another issue to be addressed. The issue is that, as
shown in Fig. 4(d), the appropriate channel must be selected in order to perform correct
rendering for each column. For example, at the top-left corner of rendering area, we can
see that all of the RGBA channels must be rendered for i = 4, 8, . . ., whereas only the
GBA channels must be rendered for i = 1, 5, . . ..

This issue is the same branch issue addressed in Section 3.4, because its branch
condition can be expressed by the location in matrix data. Therefore, we solve it in the
same manner. That is, we implement four GPU programs, each renders the GBA, BA,
A, and RGBA channels, respectively, and then switch them in a cyclic manner.
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4 Performance Study

We now show performance studies in order to analyze the performance behavior of the
GPU. We study its behavior from the following three viewpoints: design guidelines for
implementation issues (a)–(c); efficiency in terms of cache bandwidth; and numerical
error.

Table 2. Specification of experimental environments

GPU nVIDIA GeForceFX 5900Ultra nVIDIA QuadroFX 3400
Core clock 450MHz 350MHz

Texture fill-rate 3.6Gpixels/s 5.6Gpixels/s
VRAM capacity 128MB 256MB

VRAM bandwidth 27.2GB/s 28.8GB/s
Texture cache capacity Undisclosed Undisclosed

Texture cache bandwidth 11.4GB/s 15.6GB/s
Graphics bus AGP8X PCI Express

CPU Pentium 4 2.6GHz Pentium 4 2.8GHz
OS Red Hat Linux 9 Windows XP

0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 2048
N: Matrix size

M
F

L
O

P
S

M1 w/ copy M2 w/ copy

M3 w/ copy M4 w/ copy

(a)

0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 2048
N: Matrix size

M
F

L
O

P
S

M1 w/ copy M2 w/ copy

M3 w/ copy M4 w/ copy

(b)

0

200

400

600

800

1000

1200

1400

1600

32 64 128 256 512 1024 2048
N: Matrix size

M
F

L
O

P
S

M1 w/ switch M2 w/ switch

M3 w/ switch M4 w/ switch

(c)

Fig. 5. Measured performance for different matrix sizes. (a) GeForce card with the copying strat-
egy. Quadro card (b) with the copying strategy and (c) with the switching strategy.



Performance Study of LU Decomposition on the Programmable GPU 91

Table 2 shows the specification of our two machines used for the study. We have
implemented the four methods using the C++ language, the OpenGL library, and the
Cg language [18]. Note here that render-to-texture functionality is not yet available on
Linux systems. Therefore, we used only the copying strategy for the Linux system.

Fig. 5 shows the measured performance for different matrix sizes N . We can see that
the Quadro card yields the best performance of 1.6 GFLOPS for N = 1024 by using
method M3 with the switching strategy. On the other hand, the GeForce card reaches
1.2 GFLOPS for N = 1024 by using method M3 with the copying strategy.

In this figure, we can also see that methods M2 and M4 on Quadro provide relatively
higher performance than those on GeForce. This indicates that the newer generation of
Quadro reduces the branch overhead on FPs, as compared to GeForce, because these
methods differ from methods M1 and M3 in the use of branch operations.

We next investigate the breakdown of execution time to present design guidelines
for implementation issues (a)–(c). Table 3 shows the breakdown measured on Quadro.

– (a) On loop processing. The switching strategy prevents copies in the VRAM, so
that spends no time T for the VRAM copy, as shown in Table 3. However, instead
of this overhead, the switch overhead is observed in the CPU time C. For example,
method M2 increases time C from 95 ms to 128 ms. However, this switch overhead
is small enough to the entire time A. This is also true for methods M3 and M4,
which require more switches due to vectorization. Therefore, in most cases, the
switching strategy seems better than the copying strategy. One concern is portability
because Linux systems currently support only the copying strategy.

– (b) On branch processing. As compared to method M1, method M2 increases the
GPU time G as matrix size N increases. We can see this increase also in its vector-
ization version M4. This increase is due to the branch overhead occurred on FPs.
Thus, for larger matrices, branch operations should be processed by the CPU in
order to obtain higher performance. In contrast, for smaller matrices, method M1

Table 3. Breakdown of measured time on Quadro. A, G, C, and T represent the entire time, the
GPU calculation time, the CPU calculation time, and the VRAM copy time, respectively.

M1 w/ copying (ms) M2 w/ copying (ms) M3 w/ copying (ms) M4 w/ copying (ms)
N

A A A AG C T G C T G C T G C T
32 9 6 2 1 7 6 1 1 39 12 26 1 51 1 48 1
64 13 8 3 2 10 7 2 1 55 15 38 3 64 3 56 5

128 26 14 6 6 19 12 4 3 86 20 60 6 94 6 82 6
256 79 41 11 26 55 36 6 13 160 36 108 15 160 17 126 16
512 438 250 24 164 335 240 13 82 365 102 201 62 360 84 214 63

1024 3291 2022 64 1205 2691 2050 37 604 1306 566 391 350 1334 592 391 351
2048 34942 21629 108 13206 30545 23752 95 6698 10079 5875 781 3422 10489 6307 761 3421

M1 w/ switching (ms) M2 w/ switching (ms) M3 w/ switching (ms) M4 w/ switching (ms)
N

A A A AG C T G C T G C T G C T
32 8 5 3 — 6 5 1 — 50 28 21 — 63 43 21 —
64 15 7 8 — 9 6 3 — 69 38 31 — 77 46 32 —

128 26 13 13 — 17 10 7 — 103 42 61 — 114 57 57 —
256 67 38 29 — 49 36 13 — 208 68 140 — 206 69 136 —
512 318 243 75 — 306 264 42 — 418 149 269 — 409 164 245 —

1024 1603 1470 133 — 1756 1690 66 — 1096 596 500 — 1135 650 485 —
2048 11564 11249 315 — 13309 13181 128 — 4477 3483 994 — 5048 4124 924 —
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provides higher performance than method M2. This opposite result is due to the
switch overhead mentioned above. That is, though method M1 eliminates branch
operations from the GPU program, it requires an additional overhead for switching
GPU programs. This overhead results in longer time C, increasing the entire time A
especially for smaller N . Thus, there is a tradeoff relation between the GPU branch
and the CPU branch. The tradeoff point is determined by the computational amount
associated with a single pass of rendering. In this experiment, the tradeoff point is
N = 512.

– (c) On vector processing. The timing benefits of vectorization can be observed in
time G. For example, applying vectorization to M1 reduces time G from 11249 ms
to 3483 ms. Thus, the vectorization effect is almost the same value as the vector
length. In addition to this obvious result, vectorization also contributes to the re-
duction of the VRAM copy time T when using the copying strategy. This reduction
comes from the data packing required for vectorization. Actually, time T in M3 is
3422 ms, which is almost 1/4 of time T in M1. Thus, vectorization is essential to
reduce both the GPU time and the VRAM copy time.

We next investigate the efficiency from the viewpoint of cache bandwidth. As Fata-
halian et al. [2] did, we also modified GPU programs such that the programs only access
the matrix data without performing mathematical operations. Then, by measuring the
GPU time, namely the access time, and using the theoretical amount of data accesses
in Table 1, we obtain the throughput of our methods. The best throughput on GeForce
is 8.6GB/s when using method M3 with the copying strategy for N = 1024 and that
of Quadro is 11.4GB/s when using M3 with the switching strategy for N = 2048. Ac-
cording to these results and theoretical bandwidth in Table 2, the efficiency of cache
bandwidth reaches 75% on GeForce and 73% on Quadro. These values are similar to
those of matrix multiplication [2]. Thus, we find that GPUs require higher VRAM cache
bandwidth in order to provide full performance for LU decomposition.

In terms of FLOPS, the efficiency of our methods is estimated as at most 30%. This
efficiency is not competitive against that of CPU implementations. For example, some
CPU implementations [19, 20, 21] optimize locality to achieve higher cache utilization,
so that achieve an efficiency of more than 80%. Therefore, more efficient methods are
required to make GPUs a competitive HPC platform.

Finally, we investigate computation results in terms of numerical errors. In most
cases, there are differences between the CPU and GPU results. These differences are
due to the floating-point error, as presented in Table 4. As Hillesland et al. [22] observed,
our GPUs also do not establish error bounds compatible with the IEEE standard, though
they have the same floating-point representation. In particular, division has larger error
than the other operations, because it is implemented by a combination of reciprocal
and multiplication. Unfortunately, this division error is critical for LU decomposition,
because it increases and propagates the entire error at each decomposition step.

Furthermore, though recent GPUs deal with single-precision floating-point numbers,
they do not support double-precision numbers. Thus, errors caused by this limited pre-
cision are not essentially addressed yet.
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Table 4. Floating-point errors in unit in last place. Errors on Quadro are measured by Paranoia
[22]. In the IEEE standard [16], the result is rounded to the nearest representable number.

Operation IEEE754 Quadro
Multiplication [−0.5, 0.5] [−0.78125, 0.625]

Division [−0.5, 0.5] [−1.19902, 1.37442]
Subtraction [−0.5, 0.5] [−0.75, 0.75]

Addition [−0.5, 0.5] [−1, 0]

5 Conclusions

We have presented the design and implementation of LU decomposition on the pro-
grammable GPU. To study the performance behavior of modern GPUs, we have devel-
oped and evaluated some implementation approaches in terms of (a) loop processing,
(b) branch processing, and (c) vector processing.

The experimental results give four important points: (1) for dependent loops, the
switching strategy using a render texture avoids copies in the VRAM, reducing execu-
tion time by 50%; (2) there is a tradeoff relation between the CPU branch and the GPU
branch, and the CPU branch provides higher performance for the decomposition of ma-
trices larger than 512 × 512; (3) the efficiency of floating-point operations is at most
30%, and as Fatahalian et al. state for matrix multiplication, GPUs also require higher
cache bandwidth in order to provide full performance also for LU decomposition; and
(4) GPUs usually provide different decomposition results from those obtained using a
CPU, mainly due to the floating-point division error that increases the numerical error
with the progress of decomposition.

Thus, as same as for matrix multiplication, we find that current GPUs are not so
suited well for LU decomposition. However, as Moreland et al. [10] pointed out, GPUs
are rapidly increasing their performance beyond the Moore’s law [23]. Therefore, we
believe that this architecture will emerge as an attractive HPC platform, at least for
applications where the error is not a critical problem.
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Abstract. The design of concrete encased electrode grounding systems by con-
ventional computation procedures is a time-consuming task. It happens once the 
electromagnetic representation of the physical system requires the calculation of 
large full matrices. Recently, the possibility of paralleling the procedures in-
volved in such calculations led the authors to implement a C language parallel 
application, based on MPI (Message Passing Interface). This article presents the 
engineering problem associated to this development and the fundamental as-
pects regarding this application, including the evaluation of its efficiency for so-
lution of large grounding systems. 

1   Introduction 

Grounding systems are relevant elements for assuring safety conditions in electrical 
systems and to reduce damages during different occurrences, such as short-circuits 
and faults. They also play an important role in practices intended to prevent damage 
to sensitive electric and electronic equipments.  

Therefore, in electrical engineering, the design of efficient grounding systems is 
always required to avoid risk of serious injury and economical losses. Computational 
models were developed to improve the ability to perform the design process. Some-
times, environmental conditions (very high soil resistivity) and restrictions in the 
available area for system installation make it difficult to develop such efficient de-
signs, even with the available models.  

Very frequently the metallic structure of the building foundations is used to com-
plement the grounding system, in order to achieve the desired efficiency [1]. In this 
case, concrete reinforcing steel bars are placed inside concrete structures to work as 
grounding electrodes. This type of grounding element is called concrete encased 
 electrodes. Nevertheless, the inclusion of the concrete encased electrodes in compu-
tational models consists in a complex task. This motivated the researchers of LRC - 
Lightning Research Center (UFMG) to develop an approach to contemplate this 
aspect, based on the application of the boundary element technique to the electromag-
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netic problem corresponding to the concrete encased electrode [2]. Earlier works [3] 
implemented this approach on sequential program solutions, with no satisfactory 
time-based results. 

This paper presents a new application software, called PENCAPS, that takes ad-
vantage of the parallel processing paradigm to solve the concrete-encased grounding 
electrode problem, with a significant performance gain. The application is able to cal-
culate those quantities of real interest for this engineering design problem that are ba-
sically translated by means of the grounding resistance and the potential distribution 
over the soil. 

Following, section 2 presents the mathematical model that represents the concrete 
encased electrode grounding system. The parallel algorithm implementation is com-
mented in section 3. The results obtained by simulations are shown in section 4. Fi-
nally, some remarkable aspects of this work are emphasized in section 5. 

2   The Mathematical Method 

In order to evaluate the grounding resistance and its potential distribution, the pro-
posed solution applies the electric charge surface method. It takes advantage of an 
electromagnetic property that allows an analogy between surface current density of a 
body and its charge surface, once the conditions imposed to the electric potential and 
to the electric field in the proximities of such a body are the same. 

Fig. 1 represents a concrete block in which an encased electrode is inserted [4]. 
The mathematical model divides the block surface into parts, represented by Si (varies 
from a to f). 

If a surface S is charged with a charge density η, the potential over this surface can 
be computed by equation 1. In this way the potential over a point r, near a second 
point r´, both over the surface S, can be calculated [5]. 
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Fig. 1. A concrete encased electrode. The charge surfaces are depicted as Sa through Sf with its 
unitary vectors. 
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Applying boundary conditions to the potential, the electric potential over the electrode 
can be expressed using the relation of equation 2, where Se is the electrode surface. 
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Once Velet is a known value, which is the electric potential that the electrode has 
been submitted to, during the occurrence into consideration, the corresponding charge 
density η(r´) can be found. 

Equation 3 represents the final relation that express the main solution to the prob-
lem of the concrete encased electrode. In this equation, ρs and ρc represent the soil 
and the concrete resistivities, respectively. 

−

−
+
−

=
S ocs

cs dS
rr

rrnr
r

30
´4

´).(´)(

)(

)(
2)(

πε
η

ρρ
ρρεη  . (3) 

The solution consists in finding all the charge densities, represented by η(r) and 
η(r´). The total current that flows over the electrode can be calculated by equation 4. 

=
eS co

t dS
r

I
ρε

η )(
 . (4) 

And, the grounding resistance, by the Ohm’s law, as shown by equation 5. 
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2.1   Numeric Solution 

The solution of the problem consists in finding a set of ηh(r) approximated charge 
density that, given a surface divided into n parts, can be represented by the equation 6 
[3]. Ni are functions that worth 1 to all points over Si and zero to all the others. 
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Equation 7 represents the system of linear equations that can be solved to find η 
vector.  
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Matrix A elements are calculated by equations 8 and 9, where ri is the central point 
over each one of the n Si surfaces; rj are all the n-1 central points over the rest of the Sj 
surfaces. 
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3   The Parallel Implementation 

The main problem to be solved in the design of a grounding system is to calculate 
the resulting resistance. This calculation involves the construction of matrix A 
(equation 7), whose elements are computed by numerical integrals, as described in 
equations 8 and 9. In addition, the matrix that represents the system geometry is a full 
matrix. These considerations emphasize the large amount of computational effort re-
lated to grounding problem solution. 

In a recent past, the authors had developed a first computational model dedicated to 
the solution of concrete encased electrodes, implementing a sequential program to 
calculate the resistance of earthing systems. This was the first version of PENCAPS 
[3], using conventional processing logic. Although this tool was successfully imple-
mented and had confirmed its potentiality to solve concrete-encased grounding sys-
tems problem, it could not work on large-scale problems. The main difficulty was 
concerned to deal with large dimension matrices and the consequent long time spent 
to find the results. 

This difficulty became a strong motivation for investigating the application of par-
allel processing in grounding project. Therefore, authors decide to implement a paral-
lel version of PENCAPS. 

The parallel approach presented in this work was developed as a set of tools called 
"front-end" and "back-end".  

A front-end tool, developed as a Microsoft Windows application, constitutes the 
user interface with PENCAPS. It was designed as a graphical program with grounding 
project facilities. Geometry visualization is provided and 3D potential profile graphs 
construction is also allowed.  

The front-end is, indeed, a totally functional grounding system project tool, capable 
of doing all the steps needed to prepare the project. Nevertheless, this front-end is a 
sequential application that can not take advantage of the parallel computing paradigm. 
All sequential steps can be performed by this tool. This brings to the user a reliable 
way of controlling the project progress. Fig. 2 shows the front-end interface. 

The back-end is the second PENCAPS tool. It is a text based application, written in 
C standard code with MPI (Message Passing Interface) [6]. This is a performance-
tuned application built upon code portable concern. It was designed to run over any 
cluster-based architecture or MPP (Massively Parallel Processor) capable of compil-
ing and running C/MPI code. 
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Fig. 2. The Front-End 

In a computational ambient that has some kind of sharing file resource like a NFS 
(Network File System) with SMB (Server Message Block) protocol, the user can dis-
patch back-end to run, directly from the front-end. This is done by a built-in telnet cli-
ent that logs on the remote host and passes shell commands to be executed on the 
computer that runs the MPI daemon. When using the back-end over an UNIX com-
patible system, it is necessary to have telnet access to the system. In this way, the 
front-end will be able to run the back-end automatically. 

3.1   Steps of a Concrete Encased Grounding Project 

The concrete encased grounding project consists of a sequence of steps that starts 
from geometry determination and finalizes with grounding resistance calculation. 
Fig. 3 summarizes these steps and shows where parallel approaches are indicated.  

The early steps that comprise geometric aspects do not need to be parallelized once 
they don’t demand great computational effort. The first, the geometry construction, is 
prepared by specifying the electrical system components. 

The user creates two input files to describe the physical system. The first one is 
the "file of objects", which contains each element (grid, ring, wire and block), de-
scribed by its position in the space, its length and name. List 1 shows a sample ge-
ometry file. The second is the "file of attributes". This file contains the electrical 
description of each component, as its resistivity and electrical potential in the pres-
ence of a fault. 
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Fig. 3. Steps of a concrete encased grounding system project 

List 1. The file of  objects.Table 1  

*REMARK 
input file – objects 
<nº obj> <type> x y z dim_x dim_y [parameters] <name> 
*OBJECT 
1  GRID -25.0 -15.0 0.5 50.00 30.00 5 5 16 16 GRID 
2  BLCK 46.0 -4.0 0.5 8.0 1.0 16 8 BLOCK X 
3  RING 45.2 -4.8 0.3 9.6 9.6 16 16 RING1 

The object file, just prepared, provides the necessary information for PENCAPS to 
create the "geometry file". This contains a long list of coordinates, in the three-
dimensional Cartesian plan, that describes either the end point of an element (as a sin-
gle wire) or an intersection among different elements (two or more wires, grids or 
faces of a block). It was implemented a sequential routine that performs this task. 

Next step in grounding project procedure is the mesh generation. The boundary 
element method works dividing the structures into small parts or frames. These 
frames are allocated in a mesh, as the framing result. To do this, informations from 
the new created geometry file and those from attributes file are crossed. A specific se-
quential routine does this work and generates another output, the "mesh file". 

The third project step is the coefficient matrix generation. This is the most time-
consuming task of all procedure. It also demands great processor resources. It is nec-
essary that PENCAPS crosses the mesh data with the electrical components character-
istics (attribute file) and calculates, for each one of the mesh’s rows, the applied nu-
meric integral (as depicted in equations 8 and 9). The results are then stored within 
the coefficient matrix, for further calculation of grounding resistance. 

To calculate matrix A elements, it was implemented a parallel routine, in the gather 
fashion way, that breaks the mesh into small pieces. Each one of the parallel proc-
esses works on a part of the mesh. They compute the values corresponding to their 
own part and send the partial results to the root process. The root, that also works in 
its matrix slice, gathers the partial results and builds the final full matrix. 
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Fig. 4. Parallel building of the matrix of the problem by three processes 

The central problem in this approach is that A is not a homogeneous matrix. Different 
parts of this matrix must be calculated according to different numeric integral equations. 

The process has to be made in four parts, changing the computing equation from 
part to part. In each part, or step, the influence among the two different type of ele-
ments (concrete and electrodes) are considered. First, the influences of electrodes over 
themselves are computed. The second step computes the influence of electrodes over 
concrete surfaces. The third, calculates the influence of concrete block over electrodes 
and the forth and last, evaluates the influence of concrete blocks over themselves. 
Fig. 4 illustrates this procedure. 

All calculations are functions of pre-computed data stored in mesh file. So, compu-
tations can be done in parallel, for different slices of the same matrix. A range of ele-
ments is attributed to each process that can work independent of the others. All proc-
esses can work at the same time. 
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By the end of these calculations, all processes, including root, have one slice of the 
matrix. They send their results to the root and, after the sending step, a new data file, 
containing the full matrix, is written in the disk. 

The next step is the calculation of grounding resistance which consists on the main 
result of the grounding system. It is done by a sequential routine that solves the linear 
equation system, described by the matrix just created, for a given fault potential value. 

Once grounding resistance had been calculated, it is possible to determine the poten-
tial distribution over the soil, as a post processing task. This is done by the last routine. 
An input file indicates the points over which it will be computed the electrical potential. 
The routine applies the electrical charge and the resistance to evaluate the potential. 

This is another parallel routine that works in a master-slave style, sending the co-
ordinates to be calculated to the slave processes. 

At the end of the computation, an output file containing the resultant values is writ-
ten, and the potential 3D graph can be plotted by the front-end. Fig. 5 shows the inter-
actions among master (root) and slaves processes. 

 

Fig. 5. Master-slave processes to compute potential soil profile 

3.2   Complexity Analysis 

The main parallel routine is the matrix building one. It has four separate subroutines, 
each one dealing with a different kind of integral equation. The first equation has a 
loop of size n, where n is the number of line elements. This leads to an O(n) complex-
ity in this phase of the computation. The second has an O(n2) complexity, due to an 
internal loop for solving a double integral equation. The third subroutine solves an 
O(m.n) equation, where m is the number of the four-sided polygons created by the 
mesh structure. The fourth, the heaviest subroutine, is O(m2). 

In all cases, the parallel implementation causes the complexity to a 1/p multiply 
factor, leading the four subroutines complexity to O(n/p), O(n2/p), O(m.n/p) and 
O(m2/p), respectively. 

4   Results 

A case study was proposed to test the program [7]. The grounding system is repre-
sented by the geometry showed in Fig. 6. It is a connected system with two concrete 
encased electrodes, one grid and one direct bared ring. The right encased electrode is 
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Fig. 6. Geometry of the grounding system 

supposed to have an aerial connection to the grid. The soil resistivity is considered 2,500 
Ω.m and the concrete resistivity is 400 Ω.m. A 100 kV potential fault was applied in the 
entire system. The mesh file for this simulation has 4,002 nodes and 3,528 elements. 

Two testbeds were used in the case study. The first one is a cluster of 10 Pen-
tium II / 300 Mhz at the LRC Center, and the second is a high performance cluster of 
10 SMP Pentium III / 1 GHz with a Giga bit Ethernet network at CENAPAD MG/CO 
(High Performance Processing National Center - Minas Gerais and Midwest Region) 
in Belo Horizonte, Brazil. The execution time for one processor was taken as speedup 
1. Fig. 7 shows the speedup [8] as a function of the number of processors, as it was 
measured in the LRC cluster. 

 

Fig. 7. Execution time and speedup for the LRC cluster 
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Fig. 8. Execution time and speedup for the CENAPAD cluster 

The program was run in the CENAPAD cluster and the same measurements were 
taken, as depicted in Fig. 8. 

One can see that the program showed a great speedup as it could find more proces-
sors to spread across. In both cases, it reached a 7 to 8 speedup, reducing the execu-
tion time by almost 8 when 10 processors were applied. 

Although speedup seems to grow with the addition of new processors, it is clear 
that after 6 processors, its behavior is much more modest. This happens because it ex-
ists an intrinsic cost related to the communication time required to send all results to 
the root process and the communication rate increases as the number of processors 
grows. This fact almost annulates the use of more processors. 

5   Conclusion 

This work presented the main technical aspects related to the numerical solution of a 
complex engineering problem: the design of concrete-encased-electrode grounding 
systems. Parallel processing was employed to improve the solution. 

The parallel algorithm was implemented and a computational tool, PENCAPS, was 
developed to perform such type of design. The critical phase of the problem, in terms 
of computational efforts, corresponds to the building of a large dimension full matrix. 
The application of parallel logic allowed the performance improvement of this phase 
and assured a great speedup function, as depicted by the analyzed case study. 

The main result of this work is a new parallel application program that is able to ef-
ficiently solve large scale grounding problems. This valuable tool may help engineers 
on designing more reliable electrical protection systems. 
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Abstract. We recently proposed a new approach to parallelization, by
decomposing the time domain, instead of the conventional space domain.
This improves latency tolerance, and we demonstrated its effectiveness
in a practical application, where it scaled to much larger numbers of pro-
cessors than conventional parallelization. This approach is fundamentally
based on dynamically predicting the state of a system from data of re-
lated simulations. In earlier work, we used knowledge of the science of
the problem to perform the prediction. In complicated simulations, this
is not feasible. In this work, we show how reduced order modeling can be
used for prediction, without requiring much knowledge of the science. We
demonstrate its effectiveness in an important nano-materials application.
The significance of this work lies in proposing a novel approach, based
on established mathematical theory, that permits effective paralleliza-
tion of time. This has important applications in multi-scale simulations,
especially in dealing with long time-scales.

1 Introduction

Many problems in science are formulated as initial value problems. The initial
state of a physical system at some time is given, along with, possibly, some
boundary conditions. A differential equation describes how the state changes
with time, and possibly space. The problem is solved by iteratively computing
the states at successive points in time, using a differential equation solver. We
shall refer to each iteration as a time step. A large computational effort can be
involved when the state of the system is large, or when the number of time steps
is large. In order to reduce the computation time, parallelization is often used,
especially with large physical systems.

Even when the state space is not large, the computational effort can be large
if we need to compute for a large number of time steps. This has been identified
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as one of the important challenges in nanoscale simulations and computational
materials science [3]. Conventional parallelization is not effective in such prob-
lems, because the granularity becomes fine, limiting scalability.

We recently proposed [5,6] a time parallelization approach, to improve scal-
ability. Here, results from related simulations are used to parallelize along the
time domain. The basic idea is to have each processor simulate a different in-
terval of time. The difficulty here is that each processor needs the state of the
system at the beginning of the time interval it simulates, since it solves an initial
value problem. We use the fact that typically the results of prior, related, simu-
lations are available, to predict, in parallel, the states of the current simulation
at desired points in time. The prediction mechanism also ‘learns”, thereby at-
tempting to predict better as the simulation proceeds. The predicted states are
verified in parallel to ensure accuracy of the results.

An important limitation of the earlier approach was that the prediction mech-
anism required some detailed knowledge of the the science of the problem. This
is not easy to obtain in complicated simulation conditions. The main focus of this
work is to show how reduced order modeling can be used to perform predictions
for time parallelization.

The significance of this work lies in presenting an approach to time paral-
lelization that is based on stronger mathematical foundations. This makes time
parallelization of more complex problems too feasible. Time parallelization, espe-
cially for Molecular Dynamics (MD) simulations, has important applications to
long time simulation simulations in computational Chemistry, Physics, Biology,
Materials, and Engineering, making this work important.

The outline of the rest of the paper is as follows. In § 2, we describe a nano-
materials application that will be used to demonstrate the effectiveness of our
technique. We then summarize the time-parallelization approach in § 3. In § 4, we
describe prior and related work. We outline a particular reduced order modeling
method, called Proper Orthogonal Decomposition (POD), and describe its use
in time parallelization, in § 5. In § 6, we show the details of the steps involved
in using POD to time-parallelize our application. We present conclusions and
future work in § 7.

2 Carbon Nanotube Application

Tensile Test on a Carbon Nanotube. The physical system we consider
is a Carbon Nanotube (CNT) [4]. One important application of CNTs is in
nano-composites, where CNTs are embedded in a polymer matrix. In such ap-
plications, it is important to determine the mechanical properties of the CNT.
Some important data for this is obtained from the “tensile test”, in which one
end of the CNT is held fixed, while the other end is pulled at a constant ve-
locity. The response of the material is characterized by the stress (force re-
quired to pull the tube, divided by it cross-sectional area) experienced at a given
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strain (the elongation of the nanotube, relative to its original length). A stress-
strain curve, as shown in Fig. 3 later, describes the response of the material
when it is pulled at the specified velocity (more formally, strain-rate). Another
important property is the strain at which the CNT starts to break.

Molecular Dynamics Simulation of a CNT. The state St of the CNT at
any time t is defined by the position and velocity, at time t, of the atoms in
the CNT. For a CNT with N atoms, there are 6N quantities (three position
coordinates and the three velocity coordinates per atom) that define the state.
The mechanical properties of the CNT at time t can be determined from St.
Given St, we compute the state St+∆t at the next time step t + ∆t, by first
computing forces on each atom due to other atoms [4], and then using Newton’s
laws of motion. A numerical time integration scheme (fourth-order Nordsiek in
our implementation) is used in the latter. In MD computations, the time step
size ∆t is typically required to be less than a femto second (10−15s), to ensure
stability and accuracy.

This small ∆t is an impediment to effective MD computation, because it
makes a large number of time steps necessary. Furthermore, this computation will
not parallelize efficiently using conventional parallelization, for physical systems
of realistic sizes. As an alternative, researchers simulate by pulling the CNT at
a faster rate than is realistic. The faster-rate simulation requires less time than
that for a realistic rate, because the same strain is reached in less time with the
former. It is assumed that the stress-strain relationship determined at the higher
strain rate is the same as that at a lower strain rate. However, it is known that
such an assumption is not accurate when the strain rates vary by several orders
of magnitude [7]. On the other hand, if we could parallelize the computation
efficiently on a large number of processors, then we could reach the desired time
scale with more realistic strain-rates too.

3 Time Parallelization Through Guided Simulations

We recently [5,6] introduced the idea of guided simulations to parallelize along
the time domain. We outline the approach below in Algorithm 1. Some details
are deferred to § 6.

Let us call a few, say 1000, time steps as a time interval. Divide the total
number of time steps needed into a number of time intervals. Ideally, the number
of intervals should be much greater than the number of processors. Let ti denote
the beginning of the i th interval. Each processor i ∈ {1..P}, somehow predicts
the states at times ti−1 and ti, with the state at time t0 being a known ini-
tial state S0. Then it performs accurate computations (MD in our application),
starting from the predicted state at time ti−1 up to time ti. It then verifies if the
prediction for ti is close to the computed result. Both prediction and verifica-
tion are done in parallel. If the predicted result is close to the computed one, then
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TimeParallelize(Initial State S0, Number of processors P, Number of time intervals m)

– i=0; Ŝ0=S0

– WHILE i < m
• FOR each processor j ∈ {1.. min(P, m − i − 1)}

∗ Ti+j−1 = PredictStateAt (time = i+j-1)
∗ Ti+j = PredictStateAt (time = i+j)

∗ Ŝi+j = AccurateComputation(StartState=Ti+j−1 , StartTime=i+j-1,
EndTime=i+j)

∗ UpdatePredictionParameters(CurrentParameters, Ŝi+j , Ti+j)

∗ IF IsDifferenceTooLarge(Ŝi+j , Ti+j)
· THEN Nextj = j
· ELSE Nextj = P

• k = AllReduce(Next, min)
• IF j=k

∗ THEN Broadcast(Prediction Parameters)

• SendReceive(Ŝi+k , From Processor k,To Processor 0 )
• FOR each processor j ∈ {1..P}

∗ i = i + k

Fig. 1. The time parallelization algorithm

the initial state for processor i + 1 was accurate, and so the computed result
for processor i + 1 too is accurate, provided the predicted state for time ti−1

was accurate. If the results differ significantly, then the predicted state for ti
was inaccurate, and we say that processor i erred. Computations for subsequent
points in time too have to be discarded, since they might have started from
an incorrect start state. The next phase starts from computed state for the
latest time that is known to be accurate. The errors observed in the previous
verification step are used to improve the predictor by better determining the
relationship between the current simulation and old ones.

Note the following: (i) Processor 0 always starts from a state known to be ac-
curate. (ii) The algorithm always progresses at least one time interval, since the
accurate computations on processor 0 lead to accurate results on that processor.
(iii) The prediction mechanism has two components – one that uses only prior
simulation data, and another that “learns” the relationship between prior data
and the current simulation based on the difference between the predicted and the
computed states. The learning is represented using some prediction parameters.
These parameters need to be identical on all processors. Otherwise, verification
of prediction at time ti at processor i does not imply that the prediction for
initial state at time ti on processor i + 1 was correct. So these prediction pa-
rameters are broadcast in Algorithm 1. (iv) The answers are always accurate, if
we correctly define “sufficient closeness” of the predicted and computed states;
a good predictor enables greater speedup, while a poor one leads to it becoming
a sequential computation. (v) If the time interval consists of a large number of
time steps, then the communication cost can be made negligible, leading to a
very latency tolerant algorithm.
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4 Related Work

Prior Work. In Algorithm 1, we need implementations of the following func-
tions: (i) PredictStateAt, (ii) UpdatePredictionParameters, and (iii) IsDiffer-
enceTooLarge. We used knowledge of the science to implement those functions
in [6]. A large amount of data, totaling around 500 MBytes, were required for ac-
curate prediction. Determining the permissible difference between predicted and
computed states is application dependent. We defined two states to be equiva-
lent, in our application, if the differences in positions, potential energy (also a
function of positions), and kinetic energy (a function of velocities) were less than
inherent fluctuations, as described in [5,6]. Using data from several time points
of a single simulation that pulled a 1000-atom CNT at 10m/s, we predicted the
behavior of a CNT pulled at 1m/s. The resulting time parallel code ran on 990
processors of the Xeon cluster at NCSA with efficiency greater than 97% [6].

Other Approaches. Due to its importance, there have been several works on
the spatial parallelization of MD, including CNT computations specifically [4].
Time parallelization using the Parareal approach [1] is another promising al-
ternative to conventional parallelization. We described its limitations in detail
in [5]. The speedup and efficiency obtained have been limited. Speedups on sim-
ulated experiments (ignoring communication costs – the experiments were not
on actual parallel machines) ranged between 8 to 130, with efficiency between
25% and 1.3% respectively on some model problems.

5 Application of Reduced Order Modeling to Time
Parallelization

The basic idea behind reduced order modeling is that, while the state space
involved in a simulation might be high dimensional, the states lie close to a
lower dimensional subspace of the larger space. For example, the state of the
CNT with N atoms is defined by 6N quantities, which can be represented by
a vector x ∈ 
6N . If the CNT is pulled in the z direction, then most of the
interesting changes take place in the z coordinates of the atoms. So we expect
to find a smaller dimensional subspace of 
6N , close to which the states lie.

We use Proper Orthogonal Decomposition (POD) for reduced order mod-
eling. The same idea is known by other names, such as Principal Component
Analysis or Karhunen-Loève analysis. We next outline this method, and the
intuition behind it. Further details can be found in [2].

Let x̂(t; v) ∈ 
m denote the state of a system at time t, simulated with
parameters v. For example, in our application, v is a single parameter – the
velocity at which the CNT is pulled. We assume that the states of the simulations
lie close to a smaller dimensional affine subspace (a shifted linear subspace) of

m. The shift is given by some vector µ, and the linear subspace S is given by
the span of some vectors, which we represent as the columns of a matrix U . POD
attempts to find a µ and a U that define this affine subspace µ + span{U}.
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We assume that a database of simulation results exists, with the states of
simulations conducted under different parameters stored, for various values of
time t. We choose n of these states to find a suitable basis U . Proper choice
of these states is an important issue, which we shall not discuss here. Let us
call the chosen states x̂i, 1 ≤ i ≤ n. We consider the case where n < m. We
define µ = 1/n

∑n
i=1 x̂i. Let xi = x̂i−µ. We then construct the snapshot matrix

A = [x1x2 · · ·xn] ∈ 
m×n.
Let A = Ũ Σ̃Ṽ T be the singular value decomposition of A. Here, Ũ =

[u1 · · ·um] ∈ 
m×m and Ṽ ∈ 
n×n are orthogonal matrices, and the rectan-
gular diagonal matrix Σ̃ ∈ 
m×n contains the singular values of A (which are
non-negative) in descending order. The columns of Ũ form a basis for 
m. Col-
umn i of Σ̃Ṽ T gives the coefficients of xi in the basis consisting of columns of
Ũ . The coefficients of columns ui, i ≥ n, are zero. If the xi’s lie close to a d
dimensional linear subspace of 
m, then only the first d singular values are large.
So we define U ∈ 
m×d to consist of the first d columns of Ũ , Σ ∈ 
d×d the
corresponding submatrix of Σ̃, and V ∈ 
n×d the first d columns of Ṽ . Then
A ≈ UΣV T , and σivji is the component of xj along the direction of ui. That is,
xj ≈ Σd

i=1cjiui, where cji = σivji.
The linear subspace S spanned by the columns of U is optimal in the sense

that among all linear subspaces S′ of dimension d, it has a minimum value of
Σn

i=1D(S′, xi), where D(S′, xi) is the square of the distance between xi and S′.
Note that if the xi’s lie close to S, then the original data x̂i’s lie close to the
affine subspace S + µ.

If we just wished to represent the database with less storage, then we can
store µ, U , and the coefficients of U for each state in the database. Since the
columns of U are orthogonal, the coefficients for any vector x̂ are easily obtained
as UT (x̂−µ), involving just a vector subtraction and d dot products. If there are
M states in the database, then the total storage is Md+(d+1)m, with d�M, m,
in contrast to Mm storage required for the original data. In simulating dynamical
systems, the state is expressed as x̂ ≈ µ + Σd

i=1ciui, and this is substituted in
the equations defining the evolution of the state, to come up with equations that
define the evolution of ci’s.

6 Experimental Results

We first show various aspects of the application of POD to prediction, and then
present speedup results. The physical system considered is a 1000-atom CNT
at 300K. The database consisted of tensile test simulation results at velocities
given below, from zero strain to until the CNT starts to break. The time parallel
simulations were performed for velocities of 2m/s and 0.1m/s.

Basis Vectors for the CNT. The states at the following points in time were
used to construct the snapshot matrix A: (i) Velocity = 10m/s: after time steps
– 50,000, 100,000, 200,000, 300,000, and 350,000. (ii) Velocity = 5m/s: after time
steps – 100,000, 200,000, 400,000, 600,000, and 700,000. (iii) Velocity = 1m/s:
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Fig. 2. Left: Plot of singular values against its index on a semi-log scale. The diamonds
show the values for z and the triangles for y. Right: Plot of basis vectors against the
z coordinate value of the corresponding atom in the initial state. The diamonds show
the values for z’s u1, the squares for z’s u2, and the triangles for x’s u1.

after time steps – 500,000, 1,000,000, 2,000,000, 3,000,000, and 3,500,000. (iv)
The initial state, which is identical for all velocities. The above times indicate
that we chose a set of five different strain values, and noted the state at these
strains for each of the three parameters. We generate separate bases for the x,
y, and z coordinates, and so we created three different snapshot matrices, one
for each set of coordinates. Each snapshot matrix is of dimension 800× 16, with
each row corresponding to the position coordinate of an atom moved using MD
(the temperature is held constant, and so we did not include the velocities in
the state).

We then determined µ, Ũ , Σ̃, and Ṽ as described in § 5. For each coordinate,
columns of Û that corresponded to large singular values were usually placed in U .
Apart from the singular value, we also checked to see if the vector represented
a pattern, or just corresponded to random “noise”. Fig. 2 shows that the z
coordinate has one very high singular value, followed by a moderately large one,
followed by several smaller ones. We look further into each ui corresponding to
the larger singular values. Fig. 2 shows the values of the components of u1 and
u2 for z are non-random. On the other hand, u1 of x appears random.

Based on many such observations of the singular values and randomness, we
used u1 and u2 as basis for z’s lower dimensional subspace, and none for x and
y. Consequently, the predicted values for the x and y coordinates are always
µx and µy respectively, while for the z coordinate, we use a two dimensional
subspace µz + span{u1, u2}.

Relationship Between Velocity and Time. The relationship between veloc-
ity and time is important for the following reason. We expect time parallelization
to be effective if we can predict the behavior of a simulation with parameter v,
from those of prior simulations performed under different parameters. We are, in
effect, assuming similarity of behavior under different parameters. However, the
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Fig. 3. Left: Plot of z’s u1 coefficient against the the index of the data point (that is, its
column number in the A snapshot matrix). The diamonds show the values for velocity
1m/s, the squares for 5m/s, and the triangles for 10m/s. The dotted lines connect
points at the same values of strain. Right: Plot of stress versus strain at 0.1m/s. The
solid line represents the exact sequential MD results. The squares represents the time
parallel code on 400 processors. The dash-dotted line with triangles represents direct
prediction.

behavior at time t with parameter v may be similar to the behavior at a differ-
ent time t1 when simulated with parameter v1. For example, in our prior work,
we expected long time behavior at a low strain rate to be related to short time
behavior at a large strain rate. This was based on knowledge of the science of the
problem, and is not often easy to predict. Instead, we identify similar behavior as
having similar values of coefficients for basis vectors with large singular values.
In our application, only z’s u1 has a very large singular value. Fig. 3 shows the
coefficients for z’s u1 are similar for similar strains. This provides a more formal
justification for the assumption used in the previous work, which we use in this
paper too.

Direct Prediction Using Interpolation. We can predict the state x̂(t; v) for a
time-parameter combination not in the database by first predicting the vector of
coefficients, c. This is done by interpolating or extrapolating coefficients of similar
states from the database. The parameter-time relation obtained from the previous
step tells us which states can be expected to be similar. Then the actual state is
easily obtained as x̂(t; v) = Uc + µ. We call this prediction as a direct prediction.
We later explain how the learning mechanism modifies this prediction.

We now give some details of the implementation. We precomputed coefficients
for 40 states at different times (or, equivalently, strains) for each of the velocities:
10m/s, 5m/s, and 1m/s. We also computed coefficients for the initial state, which
was identical for all velocities. These coefficients are easily obtained as UT (x̂−µ)
for a known state x̂. The amount of data is small, and is stored in an array in our
code. Note that even the number of prior results required (121) is fairly small,
requiring less than 10 MBytes of disk space.
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We consider the coefficients to be functions of v and strain ε, in view of the
relationship obtained earlier. When we need the state for velocity v and time
t, we determine ε = vt/L0, where L0 is the original length of the CNT. Then
we determine two velocities v1 and v2 that are closest to v (preferably with
v1 ≤ v ≤ v2) in our database. We identify strains closest to ε in the database,
and then fit a linear surface to these known points and interpolate or extrapolate.

Updating the Predictor. The time parallel code used in this paper performs
a simple form of learning. The learning can be of two types. In the first, the
actual state may still be in the subspace spanned by U , but the predicted coef-
ficients may be systematically incorrect. We will refer to terms that correct for
this difference as corrector coefficients. In the second case, we may need a new
basis vector, which corresponds to a new physical process. Singular value de-
composition of the residuals in the verification step, orthogonal to the subspace
spanned by U , can yield such a basis. We have incorporated the former type of
learning in our implementation.

The corrector coefficients are initially 0. Let processor i start from a predicted
state at time ti and perform accurate MD computations up to time ti+1. Let
the state reached be Ŝ and the predicted state at time ti+1 be T . Processor i
then computes coefficients c = UT (Ŝ − T ) and adds it to the current corrector
coefficients. The lowest indexed processor that erred, or processor P if none
erred, broadcasts its corrector coefficients to all processors. In the next phase
of computations, let T be the state predicted from the interpolation. Then the
actual prediction for that time is taken to be T + Uc. If the systematic error in
coefficients varies slowly with time, then this correction accounts for it. It does
not account for errors that arise from the current simulation leaving the low
dimensional subspace.

Direct prediction can be performed for any point in time. Time parallelization
can be accurate even when direct parallelization is not, for the following reasons.
(i) The corrector coefficients perform a simple form of learning, and make pre-
dictions better. (ii) The verification step can detect errors, and so the results are
accurate, even though the computation slows down. (iii) The computed state
can depart from the low-dimensional subspace, and come closer to the correct
state. The computation may slow down in this case too, since differences between
predicted and computed states are treated as errors in the verification step.

Validation. Fig. 3 shows the stress-strain relationship from the exact sequential
simulation, direct prediction, and the time parallel code. This relationship is the
primary material property of interest. Away from the point when the CNT starts
to break (stress reduces with increase in strain then), direct prediction is quite
accurate. However, close to the point of breakage, it errs. This error can be
traced to its higher errors in potential energy. However, it predicts the time of
start of breakage correctly as at around 17% strain. Note that the stress-strain
relationship obtained from the time parallel code is accurate until the point
of breakage. From a practical point of view, the behavior of the CNT after its
starts breaking is not relevant. We performed similar validation against the exact
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results for 2m/s simulations, and with different numbers of processors. We also
compared other quantities, such as positions and potential energy.

The above observations suggest that direct prediction may be acceptable
when interpolating in a parameter-time range between existing data. However,
extrapolation can lead to errors. For example, the points close to the CNT
breaking involve extrapolation in strain and in velocity. The time parallel code
performs accurately until the point of breakage. After this, since the code does
not correct for the new phenomenon of breaking, the predictions fail. Of course,
this is detected during verification, and so the computation progresses slowly.

When extrapolating data over a wide range, such as performing a very low
strain rate calculation, where new phenomena are likely to occur, direct pre-
diction may not be accurate. Time parallelization, on the other hand, can be
effective there, since it does not give erroneous results. The savings in time us-
ing direct prediction are enormous, when it can be applied. Determining the
stress-strain relationship at a velocity of 0.1m/s, for example, requires about a
week of sequential computing time when we simulate until the CNT starts to
break. This can be done in 10−5s per time point using direct prediction. Time
parallelization yields accurate results up to the point of breakage, and we have
simulated it on hundreds of processors with nearly ideal speedup. So the above
simulation can be completed in less than an hour, accurately, in parallel.

Speedup Results. Speedup results are reported on the Tungsten Xeon cluster
at NCSA. This cluster consists of Dell PowerEdge 1750 servers, with each node
containing two Intel Xeon 3.2 GHz processors, 3 GB ECC DDR SDRAM mem-
ory, 512 KB L2 cache, 1 MB L3 cache, running Red Hat Linux. Myrinet 2000 and
Gigabit Ethernet interconnects are available. We used the Myrinet interconnect.
The ChaMPIon/Pro MPI implementation was used with gcc/g77 compilers for
our mixed C/Fortran code, compiled with ’-O3’ optimization flags set. The MPI
calls were purely in the C code. The timing results are based on wall clock time
when run in non-dedicated mode.

Fig. 4 shows the speedup results, for a simulation at 0.1m/s. Similar results
were obtained with 2m/s simulations, which was run on up to 250 processors. We
can see that speedup is good on up to 400 processors on the Xeon cluster. The
efficiency is greater than 95% for all cases except for 400 processors, where the
efficiency is around 90%. The processors never err in the course of the simulation
(up to the point where the CNT starts to break), and so loss in speed is only
due to the overheads of prediction and communication. These overheads are
small, compared with the computation time. For example, the prediction related
computations take less than 10−4s, the AllReduce ≈ 10−4 − 10−3s for 50-1000
processors, Broadcast ≈ 10−4s for 50-1000 processors, and the Send/Recv about
10−4s. Load imbalance is not an issue, since each processor performs, essentially,
the same amount of computation. All the overheads are insignificant, relative to
the computation time (≈ 13s) for simulating a single time interval. We expect
the loss in efficiency, especially for the 400 processor run, to be due to running
in a non-dedicated mode. For example, we got over 97% efficiency on up to 1000
processors with our previous predictor, when run in dedicated mode. However,
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Fig. 4. Speedup curve. The dashed line shows the ideal speedup, and squares show
the speedup on the NCSA Xeon cluster for a velocity of 0.1m/s, run in non-dedicated

mode, with the new prediction scheme. The circles show speedup on the same machine
with the earlier predictor, for a velocity of 1m/s, run in dedicated mode.

the actual prediction and communication overheads of the previous predictor
are slightly larger than for the new one. In particular, the earlier prediction
related computations took ≈ 10−3s, and Broadcast ≈ 10−1 − 10−2s for 50-1000
processors. In any case, the efficiency is very good with both predictors and they
scale to much larger numbers of processors than conventional parallelization.

7 Conclusions

We have shown that reduced order modeling can provide a systematic procedure
for choosing a basis for modeling the data, without much apriori information on
the physical processes the system is undergoing. Such modeling enables us to pre-
dict the states, for different time and parameter values. Furthermore, the amount
of prior data needed is less. Parallelization of time, using our approach, scales
to at least two orders of magnitude larger numbers of processors than conven-
tional parallelization. Our results are, therefore, of much significance, since they
suggest a general technique for more complicated problems, were less knowledge
of the physical processes is available.

Future work will consist of simulating multiple parameter systems, such as
strain rate, temperature, and CNT diameter. We will also include, in the im-
plementation, the ability to learn about new phenomena the CNT undergoes,
orthogonal to the selected subspace. We plan to use other reduced order mod-
eling techniques too, such as Centroidal Voronoi Tesselations [2]. We will also
perform time parallel simulations under more experimental conditions, apart
than tensile tests, and at lower strain rates, and include the material responses
in multi-scale FEM simulations.
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Abstract. This paper considers the problem of monitoring physiolog-
ical data streams obtained from resource-constrained wearable sensing
devices for pervasive health-care management. It considers Orthogo-
nal decision trees (ODTs) that offer an effective way to construct a
redundancy-free, accurate, and meaningful representation of large
decision-tree-ensembles often created by popular techniques such as Bag-
ging, Boosting, Random Forests and many distributed and data stream
mining algorithms. ODTs are functionally orthogonal to each other and
they correspond to the principal components of the underlying function
space. This paper offers experimental results to document the perfor-
mance of ODTs on grounds of accuracy, model complexity, and resource
consumption.

1 Introduction

Monitoring time-critical data streams using mobile and wearable devices in a
ubiquitous manner is important in many applications. Online classification of
data streams in such resource-constrained environments is a challenging task
that requires light-weight classifiers that are accurate but compact in represen-
tation. This paper considers the classification and monitoring of physiological
data streams using decision tree (e.g., CART[1] and C4.5 [2]) ensembles. En-
semble learning techniques are often used where a single decision tree does not
provide sufficient accuracy. Boosting [3,4], Bagging[5], Stacking [6], and random
forests [7] are some of the well-known ensemble-learning techniques. Many of
these techniques often produce large ensembles that combine the outputs of a
large number of trees for producing the overall output. In many time-critical
applications such as monitoring data streams [8], particularly for resource con-
strained environments [9], using a large ensemble for continuous monitoring is
computationally challenging. A redundancy free and meaningful compact repre-
sentation of large ensembles is therefore needed.
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This paper reports an application of redundancy-free decision trees-ensembles
by constructing Orthogonal Decision Trees (ODTs) [10]. The technique first con-
structs an algebraic representation of trees using multivariate discrete Fourier
bases. The new representation is then used for eigen-analysis of the covariance
matrix generated by the decision trees in Fourier representation. The proposed
approach converts the corresponding principal components to decision trees us-
ing a technique reported elsewhere [9]. These trees are functionally orthogonal
to each other and they span the underlying function space. These orthogonal
trees are in turn used for accurate (in many cases with improved accuracy) and
redundancy-free (in the sense of orthogonal basis set) compact representation
of large ensembles. We use this compact ODT ensemble to implement a sys-
tem for monitoring physiological health data streams that can run on resource
constrained PDA/wearable devices.

The rest of the paper is organized as follows. Section 2 discusses the im-
portance of monitoring physiological data streams using wearable devices and
arm-bands available in the market. Section 3 presents the underlying theory for
representation of decision trees using their Fourier spectra. Section 4 describes
the process of removing redundancy from decision tree ensembles and Section 5
explains the method of constructing ODTs. Sections 6 presents experimental re-
sults for ODTs and compares it with a well known ensemble learning technique.
Finally, Section 7 concludes this paper.

2 Physiological Data Stream Monitoring

Consider a real time environment to monitor the health effects of environmental
toxins or disease pathogens on humans. There are significant advances being
made today in biochemical engineering to create low cost sensors for various
toxins[11] that could constantly monitor the environment and generate data
streams over wireless networks. It is not unreasonable to assume that similar
sensors could be developed to detect disease causing pathogens. In addition,
most state health/environmental agencies and the federal government entities
such as CDC and EPA have mobile labs and response units that can test for
the presence of pathogens or dangerous chemicals. The mobile units will have
handheld devices with wireless connections on which to send the data and/or
their analysis. In addition, each hospital today generates reports on admissions
and discharges, and often reports that to various monitoring agencies. Given
these disparate data streams, one could analyze them to see if correlates can
be found, alerting experts to potential cause-effect relations (Pfiesteria found
in Chesapeake Bay and hospitals report many people with upset stomach who
had seafood recently), potential epidemiological events (field units report dead
infected birds and elderly patients check in with viral fever symptoms, indicating
tests needed for west Nile virus and preventive spraying), and more pertinent in
present times, low grade chemical and biological attacks (sensors detect particu-
lar toxins, mobile units find contaminated sites, hospitals show people who work
at or near the sites being admitted with unexplained symptoms). At present,



120 H. Dutta, H. Kargupta, and A. Joshi

much of this analysis is done “post facto” – experts hypothesize on possible
causes of ailments, then gather the data from disparate sources to confirm their
hypotheses. Clearly, a more proactive environment which could mine these di-
verse data streams to detect emergent patters would be extremely useful. This
scenario, of course, has some futuristic elements.

On a more present day note, there are now several wearable sensors on the
market such as SenseWear armband from BodyMedia1 , Wearable West2, and
LifeShirt Garment from Vivometrics3 that can be used to monitor vital signs for
a person such as temperature, heart-rate, heat flux, SpO2 etc. The sensors in the
SenseWear armband can measure the following: (1) Heat flux (the amount of heat
dissipated by the body), (2) acceleration (3) galvanic skin response (electrical
conductivity between two points on the wearer’s arm, (4) skin temperature,
(5) near-body temperature (air temperature immediately around the wearer’s
armband).

This body monitoring device can be worn continuously, and it can store up
to five days of physiological data before it had to be retrieved. The LifeShirt
Garment is yet another example of an easy to wear shirt, that allows measure-
ment of pulmonary functions via sensors woven into the shirt. Analyzing these
vital signs in real time using small form factor wearable computers has several
valuable near term applications. For instance, one could monitor senior citizens
living in assisted or independent housing, to alert physicians and support per-
sonnel if the signs point to distress. Similarly, one could monitor athletes during
games or practice. Other potential applications include battlefield monitoring of
soldiers, or monitoring first responders such as firefighters.

This paper offers a method for on-line monitoring of physiological data using
ODT ensembles running on wearable or handheld devices. The following section
presents the foundation material needed to understand ODTs.

3 Fourier Spectrum of Decision Trees

This section briefly discusses the background material [9] necessary for the de-
velopment of the proposed technique to construct orthogonal decision trees. The
proposed approach makes use of linear algebraic representation of the trees. In
order to do that that we first need to convert the trees into a numeric tree just in
case the attributes are symbolic. This can be done by simply using a codebook
that replaces the symbols with numeric values in a consistent manner. Since the
proposed approach of constructing orthogonal trees uses this representation as
an intermediate stage and eventually the physical tree is converted back, the
exact scheme for replacing the symbols (if any) does not matter as long as it is
consistent.

Once the tree is converted to a discrete numeric function, we can also apply
any appropriate analytical transformation if necessary. Fourier transformation is
1 http://www.bodymedia.com/index.jsp
2 http://www.smartextiles.info
3 http://www.vivometrics.com
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one such interesting possibility. Fourier bases are orthogonal functions that can
be used to represent any discrete function. Consider the set of all �-dimensional
feature vectors where the i-th feature can take λi different categorical values. The
Fourier basis set that spans this space is comprised of Π


i=0λi basis functions.
Each Fourier basis function is defined as, ψλ

j (x) = 1√
Πl

i=1λi

Π l
m=1 exp

2πi
λm

xmjm ,

where j and x are strings of length �; xm and jm are m-th attribute-value in x and
j, respectively; xm, jm ∈ {0, 1, · · ·λi} and λ represents the feature-cardinality
vector, λ0, · · ·λ
; ψλ

j (x) is called the j-th basis function. The vector j is called
a partition, and the order of a partition j is the number of non-zero feature
values it contains. A Fourier basis function depends on some xi only when the
corresponding ji �= 0. If a partition j has exactly α number of non-zeros values,
then we say the partition is of order α since the corresponding Fourier basis
function depends only on those α number of variables that take non-zero values
in the partition j.

A function f : X
 → 
, that maps an � -dimensional discrete domain to a
real-valued range, can be represented using the Fourier basis functions: f(x) =∑

j wjψ
λ

j (x). where wj is the Fourier Coefficient (FC) corresponding to the par-

tition j and ψ
λ

j (x) is the complex conjugate of ψλ
j (x); wj =

∑
x ψλ

j (x)f(x).
The order of a Fourier coefficient is nothing but the order of the corresponding
partition. We shall often use terms like high order or low order coefficients to
refer to a set of Fourier coefficients whose orders are relatively large or small
respectively. Energy of a spectrum is defined by the summation

∑
j w2

j . Let
us also define the inner product between two spectra w(1) and w(2) where
w(i) = [w(i),1w(i),2, · · ·w(i),|J|]T is the column matrix of all Fourier coefficients
in an arbitrary but fixed order. Superscript T denotes the transpose operation
and |J | denotes the total number of coefficients in the spectrum. The inner prod-
uct, < w(1),w(2) >=

∑
j w(1),jw(2),j. We will also use the definition of the inner

product between a pair of real-valued functions defined over some domain Ω.
This is defined as < f1(x), f2(x) >=

∑
x∈Ω f1(x)f2(x).

Fourier transformations of bounded-depth decision trees have several prop-
erties that makes it an efficient one. Some of the relevant ones are listed below:

1. Energy of the Fourier coefficients decay exponentially with respect to o(j)
where o(j) denotes the order of the partition j.

2. the Fourier spectrum of a decision tree can be efficiently computed [9] and
3. the Fourier spectrum can be directly used for constructing the tree [12].
4. Fourier transformation of decision trees also preserves inner product.

More details can be found elsewhere [13,12].

4 Removing Redundancies from Ensembles

Existing ensemble-learning techniques work by combining (usually a linear com-
bination) the output of the base classifiers. They do not structurally combine
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the classifiers themselves. As a result they often share a lot of redundancies. The
Fourier representation offers a unique way to fundamentally aggregate the trees
and perform further analysis for constructing an efficient representation.

Let fe(x) be the underlying function representing the ensemble of m different
decision trees where the output is a weighted linear combination of the outputs
of the base classifiers. Then we can write,

fe(x) =
m∑
i

αiτ(i)(x) =
m∑
i

αi

∑
j∈J1

w(i),jψ
λ

j (x) (1)

Where αi is the weight of the ith decision tree and Zi is the set of all par-
titions with non-zero Fourier coefficients in its spectrum. Therefore, fe(x) =∑

j∈J w(e),jψ
λ

j (x), where w(e),j =
∑m

i=1 αiw(i),j and J = ∪m
i=1Ji. Therefore, the

Fourier spectrum of fe(x) (a linear ensemble classifier) is simply the weighted
sum of the spectra of the member trees.

Consider the matrix D where Di,j = τ(j)(xi), where τ(j)(xi) is the output of
the tree τ(j) for input xi ∈ Ω. D is an |Ω| ×m matrix where |Ω| is the size of
the input domain and m is the total number of trees in the ensemble.

An ensemble classifier that combines the outputs of the base classifiers can be
viewed as a function defined over the set of all rows in D. If D∗,j denotes the j-th
column matrix of D then the ensemble classifier can be viewed as a function of
D∗,1, D∗,2, · · ·D∗,m. When the ensemble classifier is a linear combination of the
outputs of the base classifiers we have F = α1D∗,1+α2D∗,2+ · · ·αmD∗,m, where
F is the column matrix of the overall ensemble-output. Since the base classifiers
may have redundancy, we would like to construct a compact low-dimensional
representation of the matrix D . However, explicit construction and manipulation
of the matrix D is difficult, since most practical applications deal with a very
large domain. In the following we demonstrate a novel way to efficiently perform
a PCA of the matrix D, defined over the entire domain. The approach uses the
Fourier spectra of the trees and works without explicitly generating the matrix
D. It is important to note that existing PCA-based regression schemes [14] offer
a way to find the weights for the members of the ensemble. They do not offer
any way to aggregate the tree structures and construct a new representation of
the ensemble which the current approach does.

The following analysis will assume that the columns of the matrix D are
mean-zero. This restriction can be easily removed with a simple extension of the
analysis. Note that the covariance of the matrix D is DT D. Let us denote this
covariance matrix by C. The (i, j)-th entry of the matrix,

Ci,j = < D(∗, i), D(∗, j) >=< τ(i)(x), τ(j)(x) >=< w(i),w(j) > (2)

Now let us consider the matrix W where Wi,j = w(j),(i), i.e. the coefficient
corresponding to the i-th member of the partition set J from the spectrum of
the tree τ(j). Equation 2 implies that the covariance matrices of D and W are
identical. Note that W is an |J | × m dimensional matrix. For most practical
applications |J | << |Ω|. Therefore analyzing W using techniques like PCA is
significantly easier. The following discourse outlines a PCA-based approach.
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PCA of the matrix W produces a set of eigenvectors which in turn defines a
set of Principal Components, V1, V2, · · ·Vk. Let γ(j),q be the j-th component of
the q-th eigenvector of the matrix WT W .

Vq =
n∑

j=1

γ(j),qD(∗, j) =

⎡
⎣ n∑

j=1

γ(j),qτ(j)(x)

⎤
⎦

x∈Ω

=

[∑
i

ai,qψ
λ

i (x)

]
x∈Ω

.

Where ai,q =
∑n

j=1 γ(j),qw(j),i. The eigenvalue decomposition constructs a
new representation of the underlying domain where the feature corresponding

to column vector Vq is vq =
∑

i ai,qψ
λ

j (x) i.e., Vq = [vq]x∈Ω. Note that vq is a
linear combination of a set of Fourier spectra and therefore it is also a Fourier
spectrum. Also note that Vq-s are orthogonal [10].

Therefore, we conclude that the spectra corresponding to the orthonormal ba-
sis vectors Vq and Vr are themselves orthonormal. Let fq and fr be the functions
corresponding to the spectra aq and ar . In other words, fq(x) =

∑
i ai,qψi(x) and

fr(x) =
∑

i ai,rψi(x). Then we can conclude that, < Vq, Vr >=< aq, ar >=<
fq(x), fr(x) >. This implies that the inner product between the output vectors
of the corresponding functions are also orthonormal to each other. The following
section defines ODTs that makes use of these principal components.

5 Orthogonal Decision Trees

The analysis presented in the previous sections offers a way to construct the
Fourier spectra of a set of functions that are orthogonal to each other and there-
fore redundancy-free. These functions also define a basis and can be used to
represent any given decision tree in the ensemble in the form of a linear com-
bination. Orthogonal decision trees (ODTs) can be defined as an immediate
extension of this framework.

A pair of decision trees f1(x) and f2(x) are orthogonal to each other if and
only if < fa(x), fb(x) >= 0 when a �= b and < fa(x), fb(x) >= 1 otherwise.
The second condition is actually a slightly special case of orthogonal functions—
orthonormal condition. A set of trees are pairwise orthogonal if every possible
pair of members of this set satisfy the orthogonality condition.

The principal components V1, V2, · · ·Vk computed using the eigenvectors of
the covariance matrix C are orthogonal to each other themselves. Since each of
these principal components is a Fourier spectrum in itself we can always con-
struct a decision tree from this spectrum [10]. Although the tree looks physically
different from the Fourier spectrum, they are functionally identical. Therefore,
the trees constructed from the principal components V1, V2, · · ·Vk also maintain
the orthogonality condition. These orthogonal trees now can be used to represent
the entire ensemble in a very compact and efficient manner. The orthogonality
condition guarantees that the representation is not redundant. These ODTs form
a basis set that spans the entire function space of the ensemble. The overall out-
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put of the ensemble is computed from the output of these orthogonal trees. The
following section reports some experimental results.

6 Experimental Results

This section documents the performance of ODTs on a physiological data set
obtained from the Physiological Data Modeling Contest4 held as part of the
International Conference on Machine Learning, 2004. It is comprised of several
months of data from more than a dozen subjects collected using BodyMedia
wearable body monitors.

In our experiments, the training set consisted of 50,000 instances and 11 con-
tinuous and discrete-valued attributes5. The test set had 32,673 instances. The
continuous-valued attributes were discretized using the WEKA software. The
final training and test data sets had all discrete valued attributes. A binary clas-
sification problem was formulated, which monitored whether an individual was
engaged in a particular activity(class label=1) or not(class label=0) depending
on the physiological sensor readings.

C4.5 decision trees were built on data blocks of size 150 instances; the classi-
fication accuracy and tree complexity (number of nodes in the tree) were noted.
These were then used to compute their Fourier spectra and the matrix of the
Fourier coefficients was subjected to principle component analysis. ODTs corre-
sponding to the significant components were constructed and combined using an
uniform aggregation scheme. The accuracy and size of the ODTs are noted and
compared with the corresponding characteristics of a Bagging ensemble with the
same number of decision trees in the ensemble.

Figure 1 illustrates the distribution of tree complexity and error in classifi-
cation for the original C4.5 trees used to construct an ODT ensemble. The total
number of nodes in the original C4.5 trees varied between three and thirteen.
The trees had an error of less than 25(%). In comparison, the average complexity
of the ODTs was found to be 3 for all the different ensemble sizes. In fact, for this
particular dataset, the sensor reading corresponding to transverse accelerometer
attribute was found to be the most interesting. All the ODTs used this attribute
as the root node for building the trees. The Figure 2(Left) illustrates the distri-
bution of classification-error for an ODT ensemble of 75 trees.

We compared the accuracy obtained from an aggregated ODT to that ob-
tained from a bagging ensemble (using the same number of trees in each case).
Figure 2(Right) plots the error in classification of the aggregated ODT and bag-
ging versus the number of decision trees in the ensemble. We found that the
classification from an aggregated ODT was better than Bagging when the num-

4 http://www.cs.utexas.edu/users/sherstov/pdmc/
5 The attributes used for the classification experiments were gender, galvanic skin

temperature, heat flux, near body temperature, pedometer, skin temperature, read-
ings from the longitudinal and transverse accelerometer and time for recording an
activity called session time.
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Fig. 1. (Left) Histogram of tree complexity and (Right) error in classification for the
original C4.5 trees
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Fig. 2. (Left) Classification error for the ODT ensemble. (Right) Comparison of error
for trees in the ensemble for aggregated ODT versus Bagging.

ber of trees in the ensemble was smaller. With increase in number of trees in the
ensemble Bagging provided a slightly better accuracy.

In the current implementation storing a node data structure in a tree requires
approximately 1 KB of memory. Consider an ensemble of 20 trees. If the average
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Fig. 3. (Left) Plot of Tree-Complexity-Ratio and (Right) Variance captured by the
first principle component versus number of trees in the ensemble

number of nodes in the trees in the Bagging ensemble is 7, then we are required
to store 140 KB of data. ODTs on the other hand are smaller in size, with less
redundancy. In the experiments we performed they typically have a complexity
of 3 nodes. This means that we need to store only 60 KB of data.

We define Tree Complexity Ratio (TCR) as the total number of nodes in
the ODT versus the total number of nodes in the Bagging ensemble. The left
hand side figure 3 plots the variation of the TCR as the number of trees in the
ensemble increases. It may be noted that in resource constrained environments
one can opt for meaningful trees of smaller size and comparable accuracy as
opposed to larger ensembles with a slightly better accuracy.

An ODT also helps in the feature selection process by identifying the impor-
tant features. The right hand side Figure 3 indicates the variance captured by
the first principle component as the number of trees in the ensemble was varied
from 5 to 75 trees. As the number of trees in the ensemble increases, the first
principle component captures most of the variance and those occupied by the
second and third components gradually decreases.

In order to test the response time for monitoring, we performed classification
experiments on an HP iPAQ Pocket PC. We assumed that physiological data
blocks of size 40 instances were sent to the hand-held device. Using training data
obtained previously, we pre-computed C4.5 decision trees. The Fourier spectra
of the trees were evaluated(preserving approximately 99(%) of the total energy)
and the coefficient matrix was projected onto the most significant principal com-
ponents. We also measured the given time required to produce an accuracy rate
from all the instances available by the specified classification scheme. The equiv-
alent ODT consistently outperformed a bagging ensemble. We could not report
detailed experimental results here because of limited space.
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7 Conclusions

Orthogonal decision trees offer an effective way to construct redundancy-free
ensembles that are easier to understand and apply. They are particularly useful
in monitoring data streams using resource constrained platforms where storage
and CPU computing power are limited but fast response is important. ODTs
are constructed from the Fourier spectra of the decision trees in the ensemble.
Redundancy is removed from the ensemble by performing a PCA of these Fourier
spectra. This paper described an application of ODT ensembles for monitoring
physiological data streams in time-critical resource-constrained environments.
We plan to explore additional applications of ODTs in other domains. We are also
working on developing techniques that makes use of the spectral representation
of an ensembles for identifying its various functional and structural properties
(e.g. stability).
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Abstract. Chip MultiThreading (CMT) based systems are being introduced in the 
market by several computer platform vendors. At the same time, cluster comput-
ing platforms are becoming prevalent in market segments which tend to be highly 
price/performance driven. This paper analyzes the architectural space of these two 
prominent computing paradigms in technical computing markets. This analysis is 
carried out in terms of the application turnaround time, throughput, and scalability 
across multiple threads of execution. Additionally, we introduce various subscrip-
tion models to optimize application throughput and turnaround time.  

1   Introduction 

Over the past few years, major computer companies have introduced processors in-
corporating Chip MultiThreading (CMT)[1]. As compute densities become more 
important in data centers, new paradigms in system design are to integrate systems 
functionalities as close to the silicon as possible. Power, floor space, and cost are of 
primary importance in such design considerations. On the performance side, the 
thread level parallelism (TLP) inherent in the enterprise and high-performance com-
puting applications provides a better opportunity to optimize across several threads, 
either of the same multi-threaded workload, or of different workloads. In this paper 
we explore the ideas of throughput computing from the aspect of optimizing work-
loads for a collection of users, reflecting real use of commercial systems, instead of 
the traditional quest for performance for the single threaded job of one single user. 
Thus, we deal with the interplay between the application throughput and the applica-
tion turnaround time for the CMT model for various subscription modes. Compute 
nodes based on the AMD™ Opteron processor and Intel™ Xeon processor have 
proven very successful  for grid computing as cluster nodes connected with an appro-
priate interconnect. We contrast throughput computing and cluster computing to set 
the stage for results with different subscription models and report major throughput 
gains on several applications. Future CMT implementations will further exploit con-
current placement of user threads on shared CPU resources, significantly reducing the 
overheads [7] seen today. We present results with CMT with several important appli-
cations in the energy and life sciences industry and over subscription work model 
results for SPEC OMPM2001 [8].  
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Section 2 deals with the Chip MultiThreading technology. Section 3 explores the 
cluster platforms. Section 4 outlines the subscription work models. Conclusions and 
future work are covered in Section 5. 

2   Chip MultiThreading 

Most server applications these days are multithreaded or multiprocess applications 
with a large amount of Thread Level Parallelism (TLP). These applications handle 
thousands-to-millions of transactions daily, thus necessitating high throughput as the 
primary metric for the computing systems for such applications. These server applica-
tions tend to have limited Instruction Level Parallelism (ILP) and a substantial operat-
ing system activity. They also have limited data and code locality leading to high data 
and instruction cache misses. Similar behavior is also seen on several parallel techni-
cal computing workloads. 

Traditional methods for enhancing performance have been to increase single thread 
performance by emphasizing higher clock rate, out-of-order execution, and increasing 
numbers of functional units resulting in a complex computing core. With increasing 
gap between processor and memory performance, it becomes important to design new  
methods to mask latencies to memory and also the latencies associated with the long 
running I/O operations. These methods need to exploit the design advantages of the 
65 nm process technologies and the needs of the throughput oriented applications.  

Simultaneous MultiThreading (SMT)[5][6] approach involves multiple threads 
(contexts) executing concurrently and utilizing processor resources relying on the 
instruction dependencies within the two or more contexts. A major advantage of SMT 
is that it requires only 5-10% extra transistors for an extra context resulting in almost 
the same manufacturing efficiency as the non-SMT. One of the drawback of the SMT 
approach is the verification complexity. Performance of the SMT core is limited by 
the context switching overhead and the available memory bandwidth.  

Chip MultiProcessing (CMP) provides multiple cores in a single chip. The cores 
are identical. Sun's US-IV is a CMP processor. These first-generation CMP proces-
sors are derived from earlier uniprocessor designs and the two cores generally may 
not share any resources, except for the off-chip data paths.  

CMT (Chip MultiThreading) combines SMT and CMP by providing multiple cores 
per chip and multiple threads per core. CMT threads can be categorized into two 
types, namely, light weight threads and heavy weight threads. Light weight threads 
have modest single thread performance, since they tend to have less complexity 
(one/two-issue, in-order pipeline, little speculation). Light weight threads enable large 
number of strands on the chip and the result in less power-consumption. Heavy 
weight strands offer good to great single thread performance and may not result in 
power-savings. Chip MultiThreading thus focuses on systems integration and ad-
dresses the issues of power, floorspace and cost. On the performance side, throughput 
computing aspect focuses on performance metrics for multiple users and multiple 
jobs, by exploiting thread level parallelism (TLP) more aggressively than it exploits 
instruction level parallelism (ILP). 

Sun has developed its second generation CMT processor, US-IV+ [3], in which the 
on-chip L2 and off-chip L3 caches are shared between the two cores. Sun also re-
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cently announced a 32-way CMT SPARC processor, code-named Niagara [2]. Niag-
ara has eight cores and each core is a four-way SMT with its own private L1 caches. 
All eight cores share a 3MB, 12-way L2-cache. Niagara represents a third-generation 
CMT processor, where the entire design, including the cores, is optimized for a CMT 
design point. Niagara is an example of light weight thread CMT design. 

Early results with the Niagara-based platforms illustrate the benefits of the CMT  
implementation. These results and benefits with the Niagara-based platforms for the 
E-commerce applications and bioinformatics codes have been very encouraging. 
Some results on this platform will be shared at the conference presentation. 

3   Performance Space 

Compute clusters have become appealing with high speed interconnect offerings such 
as the Myrinet [12] and InfiniBand interconnect from SilverStorm [13]. These high 
bandwidth and low latency interconnects result in cluster scalability comparable to 
that achievable with small and medium scale symmetric multiprocessors; due to 
which the compute clusters have become platforms of choice in the HPTC (High 
Performance Technical Computing) markets such as oil & gas, bioinformatics and 
computational fluid dynamics in the manufacturing industry. Efforts are going on to 
employ clusters for on line transaction processing as well. 

3.1   Performance Metrics 

Scalability and computing efficiency are primary performance metrics for the cluster 
platforms. Scalability of a cluster can be defined as the speed up (obtained on a given 
problem size) as a function of the number of cluster nodes. Better the speed up with 
the addition of the number of cluster nodes, better is the scalability. Major factors 
deciding the cluster scalability are the bandwidth and latency characteristics of the 
cluster interconnect and the amount of inter-node communication during the applica-
tion execution. Computing efficiency of a cluster is the ratio of compute power deliv-
ered by the cluster and the theoretical peak compute power of the cluster. 

3.2   Benchmarks 

Compute power in terms of number of floating point operations delivered by the clus-
ter is traditionally measured by the HPL (High Performance Linpack)[10], which is a 
parallel implementation of the linpack benchmark. HPL is employed for the cluster 
rankings by the Top500 organization. HPL performance is not representative of typi-
cal application performance due to its heavy reuse of memory and extensive optimiza-
tion of the benchmark software. HPC Challenge (HPCC) benchmarks [9] were cre-
ated to provide a complete performance metric for high performance cluster comput-
ing platform. HPCC benchmark consists of components to measure the floating point 
capability of a cluster for Matrix Multiplication, FFT (Fast Fourier Transform) com-
putation, the HPL and modules to measure the inter-node communication capabilities. 
HPCC results are available at [9]. For more relevance to end-users, we analyze the 
cluster performance space with prominent applications in the energy and life sciences 
sector as examples below. 
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3.3   ISV Applications 

A market leading reservoir simulation application and a major seismic processing 
application in the oil and gas industry are chosen for these investigations. The reser-
voir simulation application employed computes flows in a reservoir by solving mass 
conservation equations for multi-component multiphase fluid flows in porous media. 
(For details of the applications, please contact the authors). 
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Fig. 1. Scalability of Reservoir Simulation Application on a Cluster 

Cluster configuration C under test is as follows. 

AMD™ Opteron 2.0 GHz, SuSE Linux SLES8 64bit, 2GB/node, mpich v1.2.5.10, 
Myrinet GM v2.0.9. 

Figure 1 shows reservoir simulation application scalability. Scalability of the ap-
plication is limited by the inter node communication after each iteration during the 
solution process, which results in dismal 37% efficiency on 32 nodes. 

3.4   Seismic Simulation 

Seismic processing application chosen delineates hydrocarbon reserves in the area of 
interest. Figure 2 shows scalability of seismic processing application on Cluster C. 
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Fig. 2. Scalability of Seismic Processing Application on a Cluster 
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Load put by the seismic application on the cluster interconnect is little; which is re-
flected in near perfect scalability of the application as the number of cluster nodes is 
increased. The application under consideration achieves 94% efficiency on 16 nodes. 

3.5   Scalability  

Scalability of the applications under cluster, Symmetric MultiProcessing (SMP) and 
CMT models as the number of processors in the models is increased is presented in 
the context of the bioinformatics application BLAST [11] and the reservoir simulation 
application under consideration below. 
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Fig. 3. Scaling of BLAST in CMT and Cluster Environment 
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Fig. 4. Reservoir Simulation in CMT and Cluster Environment 
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Figure 3 below shows the performance of BLAST query1 and query2 in the cluster 
and SMP environments. Cluster environment under consideration is the cluster C 
described in Section 3.3. SMP environment discussed is the Sun Fire 6800 (Solaris 9, 
32 GB, 24 US-III processors). For query1, it is noticed that the query execution per-
formance, as measured by the query runtime, is better in the cluster environment for 
one node in the cluster after which the SMP environment shows better performance; 
this being due to the fact that the SMP memory latency being better than the cluster 
interconnect latency as the number of participating nodes in the computation in-
creases. Query 2 shows better performance in the SMP environment than the cluster 
environment as the number of computing threads reaches 4. This example illustrates 
the power parallelization on the SMP model for these queries. These differences could 
be due to the threading model in use apart from the latency and interconnect differ-
ences between the clusters and the SMP. 

Figure 4 shows the performance of the reservoir simulation application in cluster, 
SMP and (first generation) CMT environments. Cluster environment is the cluster C 
and the SMP environment is the configuration described above. CMT environment is 
the 1st generation CMT-based Sun Fire 6900 (Solaris 9, 32 GB, 24 US-IV chips, 48 
cores or threads).  Cluster performance is better due to the better clock frequency of 
the constituent processor nodes. It is also noticed that the first generation CMT deliv-
ers good scalability and has better performance than the traditional SMP environment 
due to double the number of threads of computation in a chip. 

4   Subscription Work Model 

With the availability of a large number of threads for CMT and nodes in the cluster 
environment, it is interesting to analyze the impact of subscription models on the 
application turnaround time and throughput. Subscription models to be considered 
include fully subscribed model, under subscribed model and overly subscribed model. 
A fully subscribed model indicates that the number of application threads spawned 
equals the number of available threads. An overly subscribed model indicates that the 
number of the application threads spawned is greater than the number of available 
threads, where as the under subscribed model consists of the number of application 
threads less than the number of available threads/nodes.  

 

Fig. 5. CMT Threads in Time and Space 
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Figure 5 shows the spatio-temporal arrangement for the CMT threads. It shows the 
compute cycles of the threads [2-4] during the memory access by the thread 1, thereby 
showing 100% processor utilization. In actual practice, the processor utilization will 
be less than the 100% due to the memory contention and delays such as the lock ac-
quisition latencies. An analytical model for the processor utilization in a time quan-
tum T =Tc+Td can be developed as follows. 

P = pTc/(Tc+Td) (1) 

where p is the number of active threads/cores  

         Tc is the computation cycle time of a thread. 
         Td is the average delay associated with the thread. 

From equation (1), it can be seen that if the application involves delays due to long 
disk accesses, contention at the system bus leading to less than optimal utilization of 
the processor pipeline, such an environment is suited for oversubscribing. 

Turnaround (response) time Vs Throughput is an important metric for throughput 
computing. Our major focus needs to be on finding out the achievable throughput 
while maintaining the turnaround (response) time within acceptable levels. Trade off 
between turnaround time and throughput is driven by the choice of the computing 
(CMT or cluster) model, platform characteristics (number of nodes, CPU clock fre-
quency, interconnect latency, interconnect bandwidth and memory subsystem per-
formance), subscription model, operating system capabilities and application charac-
teristics. The trade off between turnaround time and throughput and interplay of re-
source utilization and the subscription models is explained below. 

Figure 6 shows the impact of running multiple reservoir simulation application in-
stances on cluster C. Running two instances of the application results in double the 
throughput but only 20% increase in the turnaround time, where as running four in-
stances of the application results in up to 40% increase in turnaround time for a 
throughput increase by a factor of 4. 
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Fig. 6. Subscription Models in a Cluster for Reservoir Simulation 
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Fig. 7. Oversubscribed mode studies on CMT with SPEC OMPM2001 

Another result we share in this version is our experiments with SPEC OpenMP 
Medium benchmarks (SPEC OMPM2001) [8] in over subscribed mode. In the over-
subscribed mode several benchmarks are performing close to a single threaded execu-
tion, meaning that we can execute 2 or 4 threads with a minor overhead of <10%. 
Examples of these types of codes are the 328 and 330 benchmarks in the Figure be-
low. On the other hand there are several benchmarks that are resource limited, like 
310, 312, 314, 316 that degrade severely in oversubscribed modes. Memory band-
width limits and scheduling overheads are mainly responsible for such degradation. It 
is noticed that for all the SPEC OMPM2001 codes, except the 328 and 330 bench-
marks, the fully subscribed mode is the best at present.  

Figure 6 illustrates an example of an application (reservoir simulation) in the clus-
ter environment where over subscription does not affect the turnaround time substan-
tially, where as Figure 7 shows an example of a benchmark  (SPEC OMPM2001) 
where over subscription affects the turnaround time to a major extent. Behaviors in 
Figure 6 and Figure 7 can be explained by the Equation (1). Figure 6 indicates an 
application environment where the Td is high. Td is high due to the synchronization 
delays at each iteration. The availability of system resources (due to wait from threads 
in the first application instance) leads to better system utilization with scheduling and 
execution of the threads from the second instance of the application, leading to better 
throughput. Execution environment of Figure 7 is an example consisting of threads 
competing for system bus and memory leading to contention for the resources in the 
oversubscribed mode leading to higher throughput at the cost of longer response 
times. 

5   Conclusions and Future Work 

Chip MultiThreading based systems with multiple threads of computation on a single 
die are now becoming available from Sun Microsystems and other vendors. These 
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systems with lots of thread level parallelism and power advantages will be the prime 
movers of the enterprises of the future. Changing competitive performance and 
price/performance landscape, for multi-threading architectures and clusters will re-
quire applications optimizations geared towards both run time and throughput. These 
advances in the field of computing and practices related to floor space and power 
consumption will usher the enterprise computing into new era of utility computing. 
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Abstract. In cluster computing, InfiniBand has emerged as a popu-
lar high performance interconnect with MPI as the de facto program-
ming model. However, even with InfiniBand, bandwidth can become a
bottleneck for clusters executing communication intensive applications.
Multi-rail cluster configurations with MPI-1 are being proposed to alle-
viate this problem. Recently, MPI-2 with support for one-sided commu-
nication is gaining significance. In this paper, we take the challenge of
designing high performance MPI-2 one-sided communication on multi-
rail InfiniBand clusters. We propose a unified MPI-2 design for differ-
ent configurations of multi-rail networks (multiple ports, multiple HCAs
and combinations). We present various issues associated with one-sided
communication such as multiple synchronization messages, scheduling of
RDMA (Read, Write) operations, ordering relaxation and discuss their
implications on our design. Our performance results show that multi-
rail networks can significantly improve MPI-2 one-sided communication
performance. Using PCI-Express with two-ports, we can achieve a peak
MPI Put bidirectional bandwidth of 2620 Million Bytes/s, compared to
1910 MB/s for single-rail implementation. For PCI-X with two HCAs,
we can almost double the throughput and reduce the latency to half for
large messages.

1 Introduction

High computational power of commodity PCs combined with the emergence of
low latency and high bandwidth interconnects has led to the trend of cluster
computing. In this area, Message Passing Interface (MPI) [6] has become the de
facto standard for writing parallel applications. MPI-2 has been introduced as a
successor of MPI-1 with one-sided communication as one of its main additional
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features. Recently, InfiniBand Architecture [8] has been proposed as the next gen-
eration interconnect for inter-process communication and I/O. Due to its open
standard and high performance, InfiniBand is becoming increasingly popular for
cluster computing. However, even with InfiniBand, network bandwidth can be-
come the performance bottleneck for communication intensive applications. This
is especially the case for clusters built with SMP (2-16 way symmetric multi-
processor systems) machines, in which multiple processes may run on a single
node and must share the node bandwidth. Multi-rail [11](multiple ports, multiple
HCAs and combinations) cluster configurations with MPI-1 are being proposed
to alleviate this problem. Compared to MPI-1, MPI-2 is the next generation
MPI standard with one-sided operations (such as MPI Put and MPI Get). This
leads to the following challenges:

1. How to design support for one-sided operations on multi-rail InfiniBand clus-
ters?

2. How much benefits can be achieved compared to the single-rail implementa-
tion?

In this paper, we take on these challenges. We propose a unified MPI-2 de-
sign with different configurations of multi-rail networks (multiple ports, multiple
HCAs and combinations) for one-sided communication. We present various issues
associated with one-sided communication (multiple synchronization messages,
scheduling of RDMA (Read, Write) operations, scheduling policies, ordering re-
laxation) and discuss their implications on our design.

We implement our design on MVAPICH21 and evaluate it with micro-bench-
marks on different multi-rail configurations. Our performance results show that
multi-rail networks can significantly improve MPI-2 one-sided communication
performance. Using two-ports on EM64T cluster with PCI-Express, we can
achieve an MPI Put bandwidth of 1500 Million Bytes/s (MB/s), and a bidi-
rectional bandwidth of 2620 MB/s. Using two-HCAs on IA32 cluster with inde-
pendent PCI-X buses, we can achieve a MPI Put bandwidth of 1750 MB/s, and
a bidirectional bandwidth of 1810 MB/s.

The rest of the paper is organized as follows: In section 2, we provide back-
ground information for InfiniBand, MVAPICH2 and multi-rail configurations. In
section 3, we describe the multi-rail MPI-2 design for one-sided communication
and discuss the design issues. In section 4, we present performance results of our
multi-rail MPI-2 implementation. In section 5, we present the related work. In
section 6, we conclude and discuss our future directions.

2 Background

In this section, we provide background information for our work. First, we pro-
vide a brief introduction of InfiniBand. Then, we discuss some of the internals
1 MVAPICH/MVAPICH2 [13] are high performance MPI-1 and MPI-2 implemen-

tations from The Ohio State University, currently being used by more than 250
organizations across 28 countries.
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of MPI-2 one-sided communication and their implementations over InfiniBand.
We also present a brief overview of multi-rail InfiniBand clusters.

2.1 Overview of InfiniBand

The InfiniBand Architecture (IBA) [8] defines a switched network fabric for in-
terconnecting processing nodes and I/O nodes. It provides a communication and
management infrastructure for inter-processor communication and I/O. In an In-
finiBand network, processing nodes and I/O nodes are connected to the fabric
by Host Channel Adapters (HCA). HCAs sit on processing nodes. InfiniBand
Architecture supports both channel and memory semantics for Reliable Con-
nection service. In channel semantics, send/receive operations are used for com-
munication. In memory semantics, InfiniBand supports Remote Direct Memory
Access (RDMA) operations, including RDMA write and RDMA read. RDMA
operations are one-sided and do not incur software overhead at the remote side.
In these operations, the sender can directly access remote memory by posting
RDMA descriptors.

2.2 MPI-2 One-Sided Communication

In MPI-2 one-sided communication, the sender can access the remote address
space directly. Such one-sided communication is also referred to as Remote Mem-
ory Access or RMA communication. In this model, the origin process (the process
that issues the RMA operation) provides necessary parameters needed for com-
munication. The area of memory on the target process accessible by the origin
process is called a Window. MPI-2 specification defines various communication
operations:

1. MPI Put operation transfers the data to a window in the target process
2. MPI Get operation transfers the data from a window in the target process
3. MPI Accumulate operation combines the data movement to target with a

reduce operation

As per the semantics of one-sided communication, the return of the one-sided
operation call does not guarantee the completion of the operation. In order to
guarantee the completion of one-sided operation, explicit synchronization oper-
ations must be used. We mainly focus on active synchronization in this paper.

2.3 Multi-rail InfiniBand Configurations

Multi-rail networks can be built by using multiple HCAs on a single node, or
by using multiple ports in a single HCA. In an MPI application, any pair of
processes can communicate with each other. This is implemented in MPICH2
designs by an abstraction called virtual channel. A virtual channel can be re-
garded as an abstract communication channel between two processes. In [11],
we have proposed enhanced virtual abstraction to provide a unified solution to
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support multiple HCAs, multiple ports, and multiple paths in a single port. In
our proposed design, a virtual channel can consist of multiple virtual subchannels
(referred as subchannels from here on-wards). Each subchannel refers to a path
of communication between end nodes.

2.4 MVAPICH2

MVAPICH2[13] is our high performance implementation of MPI-2 over Infini-
Band. The implementation is based on MPICH2. As a successor of MPICH[6],
MPICH2[1] supports MPI-1 as well as MPI-2 extensions including one-sided
communication. One sided communication can be implemented using a vari-
ety of approaches. One approach is to use the point to point implementation
provided by MPICH2 for one-sided communication. This approach involves the
remote host for communication and synchronization operations. In the second
approach, the one-sided operations are implemented at the CH3 level by ex-
tending the CH3 interface [10, 9]. This approach shows benefits with respect to
latency and bandwidth for regular communication patterns. It also provides bet-
ter overlap between computation and communication along with scalability. We
refer to the first approach as Point to Point Based and second approach as Direct
One Sided. Fig. 1 shows the path taken by these approaches. In this paper, we
design the Direct One Sided over multi-rail InfiniBand clusters implementation
along with active mode of synchronization.

Point to Point Based

Direct One Sided

ChannelChannel

MPI 2

ADI3

CH3

TCP Socket SHMEM RDMA
Channel

InfiniBand
Sys V

Shared MemorySHMEM

CH3’
(Direct

One Sided)

Scheduling of RDMA Read
and RDMA Write Operations

Relaxation
Ordering

Policies
Scheduling

Synchronization
Messages

Multiple

Multiple Subchannels

MPI 2

ADI3

One Sided
Direct

Multi−rail
Layer

InfiniBand

Fig. 1. Implementations of one-sided
communication in MVAPICH2

Fig. 2. Basic Architecture

3 Multi-rail Layer Design for MPI-2 One Sided
Communication

In this section, we present the design issues involved with MPI-2 one-sided com-
munication on multi-rail InfiniBand clusters.
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3.1 Basic Architecture

The basic architecture of our design to support multi-rail networks for MPI-2
one-sided communication is shown in Figure 2. In the figure, we can see that
besides the MPI-2, Direct One Sided layer and InfiniBand layer, our design
consists of an intermediate layer, Multi-rail Layer.

This layer takes the responsibility of scheduling messages on the available
subchannels. Besides this, it takes care of the correctness issues like Multiple
Synchronization Messages and efficiency issues like Scheduling Policies, Ordering
Relaxation and Scheduling of RDMA Read and RDMA Write Operations.

In this section, we discuss the design challenges involved for multi-rail MPI-2
design associated at the Multi-rail Layer.

Multiple Synchronization Messages: In order to initiate the one-sided com-
munication, the origin process calls win start to open a window. The target pro-
cess posts the buffers for the window. Once the one-sided communication is done,
a synchronization message needs to be sent to the target process. The receipt of
synchronization message guarantees the data transfer of previously issued RMA
operations. However, when multiple subchannels are used, data transfer on one
subchannel might not have finished even though other subchannels would have
received the synchronization message. Hence, we need to issue synchronization
messages on each subchannel. It is to be noted, that when the load on sub-
channels is balanced, the transfer of synchronization messages along multiple
subchannels takes place in parallel, incurring very small overhead.

Scheduling of RDMA Read and RDMA Write Operations: In MPI-
1, usually the two sided communication uses either RDMA Write or RDMA
Read for data transfer in InfiniBand. For many MPI-2 applications, in one-sided
communication, the MPI Put and MPI Get operations are implemented using
RDMA Write and RDMA Read, respectively. Since RDMA Read and RDMA
Write utilize bandwidth in different directions, it is important to schedule them
independently with respect to each other’s load on different subchannels.

In order to achieve this, we propose a load based fragmentation policy dis-
cussed in the next section, which maintains independent queues of MPI Put and
MPI Get operations issued in an epoch. Trivally, this policy would fragment the
messages equally on all subchannels in the presence of only one kind of one-sided
operation. In presence of a combination of one-sided operations, each having the
same size, this policy would fall back to equal fragmentation.

Scheduling Policies Classification Based on Message Size: In this paper,
we classify the policies used for scheduling based at different layers. As proposed
in [7], we use reordering and no reordering policies at the CH3’ (Direct One
Sided) Layer. At the multi-rail layer, we do a classification of the policies based
on the message size. We employ the following policies:

– Round Robin
– Load Balanced Fragmentation
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For small messages, we employ round robin policy. In this policy, the complete
message is sent using one of the available subchannels in a round robin fashion.
Fragmentation incurs overhead of posting descriptors on multiple subchannels,
which is significant for small messages. Hence, we employ a switchover threshold,
messages of size less than this threshold are scheduled in a round robin fashion.
For large messages, we primarily use Load Balanced Fragmentation policy. In
this policy, we divide the message in chunks and schedule them, so that the load
on all subchannels is balanced. This policy leads to optimal utilization of all
subchannels for medium to large messages.

Ordering Relaxation: Two-sided communication requires messages to be pro-
cessed in order at the receiver side. One sided communication imposes no or-
dering requirements for messages within an epoch, by the definition from the
semantics. As a result, the one-sided approach does not need to maintain or-
dering at the receiver side. We simplify our design by incorporating this fact,
reducing the overhead of bookkeeping at the receiver side.

4 Performance Evaluation

In this section, we evaluate the performance of our multi-rail MPI-2 design over
InfiniBand. We show the performance benefit which can be achieved with multi-
rail design compared to the single-rail implementation.

4.1 Experimental Testbed

We evaluated our implementation with multiple HCAs on IA32 systems com-
prising of independent PCI-X buses, and on EM64T systems comprising of PCI-
Express bus and multiple ports per adapter. Our experimental testbed comprises
of two clusters.

IA32 Cluster with Multiple HCAs: This cluster consists of two SuperMicro
SUPER X5DL8-GG nodes with ServerWorks GC LE chipsets. Each node has
dual Intel Xeon 3.0 GHz processors, 512 KB L2 cache, and PCI-X 64-bit 133
MHz bus. We have used InfiniHost MT23108 Dual-Port 4x HCAs from Mellanox.
The ServerWorks GC LE chipsets have two separate I/O bridges and three PCI-
X 64-bit 133 MHz bus slots. To reduce the impact of I/O bus contention, the
two HCAs are connected to separate PCI-X buses connected to different I/O
bridges.

EM64T Cluster with Multiple Ports: This cluster consists of two EM64T
nodes having 8X PCI Express slots. Each node has two Intel Xeon CPUs run-
ning at 3.4 GHz processors, 512 KB L2 cache and 1 GB of main memory. This
cluster uses III Generation MT25208 4X Dual Port HCAs from Mellanox. A
combined unidirectional bandwidth of 8X can be used, when both ports are
used for communication.
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4.2 One Sided Communication Micro-benchmarks

In this section, we introduce the micro-benchmarks used to evaluate the MPI-2
one-sided operation performance. We use such as uni- and bi-directional band-
width, as well as micro-benchmarks with other communication patterns.

Two processes are involved in uni-directional bandwidth test. The origin pro-
cess starts a window access epoch, issues a window of RMA operations (MPI Put
for MPI Put bandwidth test, MPI Get for MPI Get bandwidth test), and ends
the access epoch. The target process just starts and ends a window exposure
epoch. This step is repeated for multiple iterations. For bidirectional bandwidth
test, both processes starts and end a window exposure epoch.

In the Interleaving test, the origin process issues a window of MPI Put
operations followed by a window of MPI Get operations. Due to the im-
pact of reordering at CH3’ layer, interleaving of these operations provides
almost bidirectional bandwidth throughput in comparison to unidirectional
throughput.

4.3 Performance Benefits of Multi-rail Design

To evaluate the performance benefits of our multi-rail MPI-2 design, we compare
it with our original MVAPICH2 design, which can only use only one-port of a nic.
In the multi-rail design, we use load balanced fragmentation for large messages
and round robin scheme for small messages. We present performance comparisons
using latency for MPI Get operation and bandwidth and bidirectional bandwidth
for MPI Put operations.

Microbenchmark Evaluation for Basic One Sided Operations: In
Figures 3 and 5 we present the results for MPI Put bandwidth and bidirectional
bandwidth respectively for the IA32 cluster with multiple HCAs. We show the
results for EM64T with two-ports on PCI-Express in Figures 4 and 6.

In Figure 3, we observe that for small messages (less than or equal to
1KBytes), both multi-rail design and the original implementation perform com-
parably. For large messages, multi-rail design outperforms the original imple-
mentation considerably. With multi-rail design, we can achieve a maximum peak
unidirectional MPI Put bandwidth of 1750 MB/s in comparison to 880 MB/s
for our original implementation. We also notice, that due to the absence of ren-
dezvous protocol, medium size messages (2KB - 16KB) can take advantage of
load balanced fragmentation policy for multi-rail design.

We observe a similar trend for dual-port on EM64T in Figure 4. For messages
of size greater than 8KBytes, we use fragmentation policy. We can achieve a peak
bandwidth of 1500 MB/s using multi-rail design, in comparison to 971 MB/s for
the original implementation capable of using only one-port of a nic.

In figures 5 and 6, we compare the performance of MPI Put bidirectional
bandwidth for IA32 cluster and EM64T cluster, respectively. For IA32 cluster,
due to the bottleneck of PCI-X, we can achieve only 941 MB/s for original imple-
mentation. However, using multi-rail design we can achieve a peak bidirectional
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bandwidth of 1810 MB/s. For EM64T cluster, we can achieve a peak bidirec-
tional bandwidth of 2620 MB/s with two-ports in comparison to 1910 MB/s
using the original implementation.

In figures 7 and 8, we present the results for MPI Get latency for IA32 and
EM64T cluster, respectively. We observe that we perform almost similar with the
original implementation for small messages. For large messages, we can improve
the latency by 45% for IA32 cluster and 33% for EM64T cluster by using multi-
rail design.

Impact of Reordering on One Sided Communication: Figure 9 shows the
performance achieved by a combination of policies at the CH3’ layer and Multi-
rail layer. At the multi-rail layer we use load balanced fragmentation policy.
At the CH3’ layer, we compare impact of reordering with no reordering, when
combined with the multi-rail policy specified above.

For IA32 cluster using two-nics, we can achieve almost 1703 MB/s with-
out reordering, which is close to the multi-rail peak unidirectional bandwidth.
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With single-rail implementation, we can achieve a peak bandwidth of 880 MB/s
without reordering. We notice that with reordering for two-nics, we can almost
achieve 1800 MB/s, almost the peak bidirectional bandwidth with two-nics. With
single-rail implementation, due to the limitation of PCI-X, we can achieve only
907 MB/s.

In figure 10, we evaluate the performance of CH3’ layer reordering, compared
to the no reordering policy for the EM64T cluster. We use the load balanced
fragmentation at the multi-rail layer. Using two-ports and reordering, we can
achieve 2604 MB/s, which is almost the peak bidirectional bandwidth avail-
able with two-ports. It is interesting to notice, that reordering with single-rail
implementation outperforms the combination of no reordering with multi-rail
implementation. We attribute it to the fact that, PCI-Express can achieve 8X
bidirectional bandwidth with one-port. However, due to the contention at the
NIC, we cannot achieve a combined 8X unidirectional bandwidth using two-
ports. Using reordering with single-rail implementation, we can achieve 1900
MB/s. However we can only achieve a peak bandwidth of 1474 MB/s using
multi-rail implementation with no reordering. With no reordering for single-rail
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implementation, we can achieve 962 MB/s, which is close to the unidirectional
bandwidth available with the single-rail implementation.

5 Related Work

In this section we discuss related work on one-sided communication model as well
as multi rail networks. In [15], reordering of one sided operations is proposed
to reduce the cost of lock synchronization operation. Besides MPI, some other
programming models which provide one-sided communication are ARMCI [14],
GASNET [2] and BSP [5]. Using interconnection networks for different topologies
has been studied in [4]. Using multirail networks to build high performance
clusters is proposed in [3].

However, none of the above works have focussed on design of MPI-2 one-sided
communication operations with multirail InfiniBand clusters.

6 Conclusions and Future Work

In this paper, we have presented the challenges (Multiple synchronization mes-
sages, handling multiple HCAs, scheduling policies, ordering relaxation) associ-
ated with desigining MPI-2 one-sided communication over multirail Infiniband
networks. We have implemented our design and presented the performance eval-
uation for microbenchmarks. We have observed that multirail InfiniBand clusters
can significantly improve the performance for one-sided communication. Using
a two rail cluster, we have achieved almost doubled the throughput and reduced
the latency to half with MPI Put and MPI Get operations for large messages.
We have also observed that reordering policy can significantly improve the per-
formance for communication patterns with a mix of one-sided operations.

In future, we plan to evaluate our implementation on large scale clusters
for applications with one-sided communication. We also plan to evaluate the
scheduling policies in depth, to take care of different communication patterns
for one-sided communication.

7 Software Distribution

As indicated earlier, the open-source MVAPICH2 [12] software is currently being
used by more than 250 organizations world-wide. The latest release is 0.6.5. The
proposed MPI-2 multirail one-sided communication solution will be available in
the 0.7.0 release.
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Abstract. The All-to-all broadcast collective operation is essential for many par-
allel scientific applications. This collective operation is called MPI Allgather
in the context of MPI. Contemporary MPI software stacks implement this collec-
tive on top of MPI point-to-point calls leading to several performance overheads.
In this paper, we propose a design of All-to-All broadcast using the Remote Di-
rect Memory Access (RDMA) feature offered by InfiniBand, an emerging high
performance interconnect. Our RDMA based design eliminates the overheads as-
sociated with existing designs. Our results indicate that latency of the All-to-all
Broadcast operation can be reduced by 30% for 32 processes and a message size
of 32 KB. In addition, our design can improve the latency by a factor of 4.75
under no buffer reuse conditions for the same process count and message size.
Further, our design can improve performance of a parallel matrix multiplication
algorithm by 37% on eight processes, while multiplying a 256x256 matrix.

1 Introduction

The Message Passing Interface (MPI) [1] has become the de-facto standard in writ-
ing parallel scientific applications which run on High Performance Clusters. MPI pro-
vides point-to-point and collective communication semantics. Many scientific applica-
tions use collective communication to synchronize or exchange data [2]. The All-to-all
broadcast (MPI Allgather) is an important collective operation used in many ap-
plications such as matrix multiplication, lower and upper triangle factorization, solving
differential equations, and basic linear algebra operations.

InfiniBand [6] is emerging as a high performance interconnect for interprocess com-
munication and I/O. It provides powerful features such as Remote DMA (RDMA)
which enables a process to directly access memory on a remote node. To exploit the
benefits of this feature, we design collective operations directly on top of RDMA. In
this paper we describe our design of the All-to-all Broadcast operation over RDMA
which allows us to eliminate messaging overheads like extra message copies, protocol
handshake and extra buffer registrations. Our designs utilize the basic choice of algo-
rithms [17] and extend that for a high performance design over InfiniBand.
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We have implemented and incorporated our designs into MVAPICH [14], a popular
implementation of MPI over InfiniBand used by more than 250 organizations world
wide. MVAPICH is an implementation of the Abstract Device Interface (ADI) for
MPICH [4]. MVAPICH is based on MVICH [10]. Our performance evaluation reveals
that our designs improve the latency of MPI Allgather on 32 processes by 30% for
32 KB message size. Additionally, our RDMA design can improve the performance of
MPI Allgather by a factor of 4.75 on 32 processes for 32 KB message size, under
no buffer reuse conditions. Further, our design can improve the performance of a par-
allel matrix multiplication algorithm by 37% on eight processes, while multiplying a
256x256 matrix.

The rest of this paper is organized as follows: in Section 2, we provide a back-
ground on the topic. Our motivation is described in Section 3. In Section 4, we describe
our RDMA based design in detail. Our experimental evaluation is described in Sec-
tion 5. Various related works are mentioned in Section 6. Finally, this paper concludes
in Section 7.

2 Background

2.1 Overview of InfiniBand Architecture

The InfiniBand Architecture [6] defines a switched network fabric for interconnecting
processing and I/O nodes. In an InfiniBand network, hosts are connected to the fabric by
Host Channel Adapters (HCAs). InfiniBand utilities and features are exposed to appli-
cations running on these hosts through a Verbs layer. InfiniBand Architecture supports
both channel semantics and memory semantics. In channel semantics, send/receive op-
erations are used for communication. In memory semantics, InfiniBand provides Re-
mote Direct Memory Access (RDMA) operations, including RDMA Write and RDMA
Read. RDMA operations are one-sided and do not incur software overhead at the remote
side. Regardless of channel or memory semantics, InfiniBand requires that all commu-
nication buffers to be “registered”. This buffer registration is done in two stages. In the
first stage, the buffer pages are pinned in memory (i.e. marked unswappable). In the
second stage, the HCA memory access tables are updated with the physical addresses
of the pages of the communication buffer.

2.2 MPI Allgather Overview

MPI Allgather is an All-to-all broadcast collective operation defined by the MPI
standard [12]. It is used to gather contiguous data from every process in a communicator
and distribute the data from the jth process to the jth receive buffer of each process.
MPI Allgather is a blocking operation (i.e. control does not return to the application
until the receive buffers are ready with data from all processes).

2.3 Related Algorithms and Their Cost Models

Several algorithms can be used to implement MPI Allgather. Depending on system
parameters and message size, some algorithms may outperform the others. Currently,
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MPICH [4] 1.2.6 uses the Recursive Doubling algorithm for power-of-two process num-
bers and up to medium message sizes. For non-power of two processes, it uses the
Bruck’s algorithm [3] for small messages. Finally, the Ring algorithm is used for large
messages [17]. In this section, we provide a brief overview of the Recursive Doubling
and Ring algorithms. We will use these algorithms in our RDMA based design.

Recursive Doubling: In this algorithm, pairs of processes exchange their buffer con-
tents. But in every iteration, the contents collected during all previous iterations are
also included in the exchange. Thus, the collected information recursively doubles. Nat-
urally, the number of steps needed for this algorithm to complete is log(p), where p is
the number of processes. The communication pattern is very dense, and involves one
half of the processes exchanging messages with the other half. On a cluster which does
not have constant bisection bandwidth, this pattern will cause contention. The total
communication time of this algorithm is:

Trd = ts ∗ log(p) + (p− 1) ∗m ∗ tw (1)

Where, ts = Message transmission startup time, tw = Time to transfer one byte, m =
Message size in bytes and p = Number of processes.

Ring Algorithm: In this algorithm, the processes exchange messages in a ring-like
manner. At each step, a process passes on a message to its neighbor in the ring. The
number of steps needed to complete the operation is (p − 1) where p is the num-
ber of processes. At each step, the size of the message sent to the neighbor is same
as the MPI Allgather message size, m. The total communication time of this
algorithm is:

Tring = (p− 1) ∗ (ts + m ∗ tw) (2)

3 Can RDMA Benefit Collective Operations?

Using RDMA, a process can directly access the memory locations of some other pro-
cess, with no active participation of the remote process. While it is intuitive that this
approach can speed up point-to-point communication, it is not clear how collective
communications can benefit from it. In this section, we present the answer to this ques-
tion and present the motivation of using RDMA for collective operations.

3.1 Bypass Intermediate Software Layers

Most MPI implementations [4] implement MPI collective operations on top of MPI
point-to-point operations. The MPI point-to-point implementation in turn is based on
another layer called the ADI (Abstract Device Interface). This layer provides abstrac-
tion and can be ported to several different interconnects. The communication calls pass
through several software layers before the actual communication takes place adding
unnecessary overhead. On the other hand, if collectives are directly implemented on
top of the InfiniBand RDMA interface, all these intermediate software layers can be
bypassed.
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3.2 Reduce Number of Copies

High-performance MPI implementations, MVAPICH [14], MPICH-GM [13] and
MPICH-QsNet [15] often implement an eager protocol for transferring short and
medium-sized messages. In this eager protocol, the message to be sent is copied into
internal MPI buffers and is directly sent to an internal MPI buffer of the receiver. This
causes two copies for each message transfer. For a collective operation, there are either
2 ∗ log(p) or 2 ∗ (p − 1) sends and receives (every send has a matching receive). It is
clear that as the number of processes in a collective grows, there are increasingly more
and more message copies. Instead, with RDMA based design, messages can be directly
transferred without undergoing several copies, as described in section 4.

3.3 Reduce Rendezvous Handshaking Overhead

For transferring large messages, high-performance MPI implementations often imple-
ment the Rendezvous Protocol. In this protocol, the sender sends a RNDZ START mes-
sage. Upon its receipt, the receiver replies with RNDZ REPLY containing the memory
address of the destination buffer. Finally, the sending process sends the DATA message
directly to the destination memory buffer and issues a FIN completion message. By
using this protocol, zero-copy message transfer can be achieved.

This protocol imposes bottlenecks for MPI collectives based on point-to-point de-
sign. The processes participating in the collective need to continuously exchange ad-
dresses. However, these address exchanges are redundant. Once the base address of the
collective communication buffer is known, the source process can compute the desti-
nation memory address for each iteration. This computation can be done locally by the
sending process by calculating the array index for the particular algorithm and itera-
tion number. Thus, for each iteration, RDMA can be directly used without any need for
address exchange [16].

3.4 Reduce Cost of Multiple Registrations

InfiniBand [5], like most other RDMA capable interconnects, requires that all com-
munication buffers be registered with the InfiniBand HCA. This “registration” actually
involves locking of pages into physical memory and updating HCA memory access ta-
bles. After registration, the application receives a “memory handle” with keys which
can be used by a remote process to directly access the memory. Thus, for performing
each send or receive, the memory area needs to be registered.

Collective operations implemented on top of point-to-point calls would need to
issue several MPI sends or receives to different processes (with different array off-
sets). This will cause multiple registration calls. For current generation InfiniBand soft-
ware/hardware stacks, each registration has high setup overhead of around 90 µs
(section 5). Thus, point-to-point implementation of collectives requires multiple reg-
istration calls with significant overhead. However, the RDMA based design would need
only one registration call. The entire buffer passed to the collective call can be registered
in one go. Thus, this will eliminate unnecessary registration calls.
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4 Proposed RDMA Based All-to-All Broadcast Design

In this section, we describe our RDMA based design in detail. However, before we
use RDMA, we have to deal with several design choices that are posed by the RDMA
semantics.

4.1 RDMA Design Choices: Copy Based or Zero Copy

As stated in section 2.1, InfiniBand (like other modern RDMA capable interconnects)
requires communication buffers to be registered. Thus, for transferring a message, either
(1) the message is copied to a pre-registered buffer, or (2) the message buffer itself is
registered at both sender and receiver ends. Approach (2) allows us to achieve zero-
copy. Since copy cost is small for smaller messages, approach (1) is used for small
messages. As the copy cost is prohibitive for larger messages, approach (2) is used for
messages exceeding a certain threshold.

4.2 RDMA-Based Design for Recursive Doubling

We propose a RDMA based design for Recursive Doubling (RD) algorithm. In RD,
the size of the message exchanged by pairs of nodes doubles each iteration along with
the distance between the nodes. If m is the message size contributed by each process,
the amount of data exchanged between two processes increases from m in the first
iteration to mp

2 in the log(p)th iteration. As we observed in section 4.1, the optimal
method to transfer short messages is copy based and for longer messages, we need to
use zero copy. However, since in the RD algorithm, the actual message size in each
iteration changes, we also have to dynamically switch between copy based and zero
copy protocols to achieve an optimal design.

Hence, we switch between the two design alternatives at an iteration k (1 ≤ k ≤
log(p)) such that the message size being exchanged, 2k−1m, crosses a fixed threshold
MT . The threshold MT is determined empirically. Hence, message exchanges in the
first k dimensions use a copy-based approach, and those in higher dimensions from
k + 1 through log(p) use a zero copy approach.

For performing the copy based approach, we need to maintain a pre-registered
buffer. We call it “Collective Buffer”. The design issues relating to maintaining this
buffer and buffering schemes are described as follows:

Collective Buffer: This buffer is registered at communicator initialization time. Pro-
cesses exchange addresses of their collective buffers also during that time. Some pre-
defined space in the collective buffer is reserved to store the peer addresses and com-
pletion flags required for zero-copy data transfers. Data sent in any iteration comprises
data received in all previous iterations along with the process’ own message.

Buffering Scheme: In RD, data is always sent from and received to contiguous loca-
tions in either the collective buffer or the user’s receive buffer. Since the amount of data
written to a collective buffer cannot exceed MT , the collective buffer never needs to be
more than 2MT which is 8 KB (ignoring space for peer addresses and completion flags)
for a single Allgather call.
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4.3 RDMA Ring for Large Messages

We implement the Ring algorithm for MPI Allgather over RDMA only for large
messages and large clusters. As observed in [17], large clusters may have better near-
neighbor bandwidth. Under such scenarios, it is beneficial for MPI Allgather to
mainly communicate between neighbors. The Ring algorithm is ideal for such cases.
Since we implement this algorithm for only large messages, we use a complete zero
copy approach here. The design in this case is much simpler. The benefit of the RDMA-
based scheme comes from the fact that we have a single buffer registration and a single
address exchange performed by each node instead of p registrations, and (p−1) address
exchanges in the point-to-point based design. We use this Ring algorithm for messages
larger than 1 MB and process numbers greater than 32.

5 Experimental Evaluation

In this section, we evaluate the performance of our designs. We use three cluster con-
figurations for our tests:

1. Cluster A: 32 Dual Intel Xeon 2.66 GHz nodes with 512 KB L2 cache and 2 GB of
main memory. The nodes are connected to Mellanox MT23108 HCA using PCI-X
133 MHz I/O bus. The nodes are connected to Mellanox 144-port switch (MTS
14400).

2. Cluster B: 16 Dual Intel Xeon 3.6 GHz nodes (EM64T) with 1MB L2 cache and
4 GB of main memory. The nodes are connected to Mellanox MHES18-XT HCA
using PCI-Express (x8) I/O bus.

3. Cluster C: 8 Dual Intel Xeon 3.0 GHz nodes with 512 KB L2 cache and 2 GB of
main memory. The nodes are connected to the same InfiniBand network as Clus-
ter A.

We have integrated our RDMA based design in the MVAPICH [14] stack. We refer
to the new design as “MVAPICH-RDMA”. The current implementation of
MPI Allgather over point-to-point is referred to as “MVAPICH-P2P”. Our exper-
iments are classified into three types. First, we demonstrate the latency of our new
RDMA design. Secondly, we investigate performance of the new design under low
buffer re-use conditions. Finally, we evaluate the impact of our design on a Matrix Mul-
tiplication application kernel which uses All-to-all broadcast.

5.1 Latency Benchmark for MPI Allgather

In this experiment, we measure the basic latency of our MPI Allgather implemen-
tation. All the processes are synchronized with a barrier and then MPI Allgather
is repeated 1000 times, using the same communication buffer. The results are shown
in Figures 1 and 2 for Cluster A and in Figures 3 for Cluster B. The results from both
Clusters A and B follow the same trends. The results are explained as follows:

Small Messages: As described in section 3, the RDMA based design can avoid the
various copy and layering overheads in different layers of the MPI point-to-point im-
plementation. The results indicate that latency can be reduced by 17%, 13% and 15%
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Fig. 1. MPI Allgather Performance on 16 Processes (Cluster A)
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Fig. 2. MPI Allgather Performance on 32 Processes (Cluster A)
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Fig. 3. MPI Allgather Performance on 16 Processes (Cluster B)

for 16 processes on Cluster A (Fig 1(a)), 32 processes on Cluster A (Fig 2(a)) and 16
processes on Cluster B (Fig 3(a)) for 4 byte message size, respectively.

Medium Messages: For medium sized messages, the point-to-point based design re-
quired rendezvous address exchange for transferring messages at every step of the algo-
rithm. However, for the RDMA based MPI Allgather, no such exchange is required
(section 4). We note from section 2.3, the number of steps increases as the number of
processes, and so does the cumulative cost of address exchange. Our RDMA based
design is able to successfully avoid this increasing cost.
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The results indicate that latency can be reduced by 23%, 30% and 37% for 16 pro-
cesses on Cluster A (Fig 1(b)), 32 processes on Cluster A (Fig 2(b)) and 16 processes
on Cluster B (Fig: 3(b)) for 32 KB message size, respectively.

Large Messages: Large messages are also transferred using the same zero copy tech-
nique used for medium sized messages. Hence, the same address exchange cost can be
saved (as described in the previous case). However, since the message sizes are large,
the address exchange forms a lesser portion of the overall cost of MPI Allgather.
The results for large messages indicate that latency can be reduced by 7%, 6% and 21%
for 16 processes on Cluster A (Fig 1(c)), 32 processes on Cluster A (Fig: 2(c)) and 16
processes on Cluster B (Fig 3(c)) for 256 KB message size, respectively.

Scalability: We plot the MPI Allgather latency numbers with varying process
counts, for a fixed message size to see the impact of RDMA design on scalability.
Figure 5.1 shows the results for 32 KB message size. We observe that as the number
of processes increase, the gap between the point-to-point implementation and RDMA
design increases. This is due to the fact that the RDMA design eliminates the need for
address exchange (which increases as the number of processes).
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5.2 MPI Allgather Latency with No Buffer Reuse

In the above experiment, we measured the latency of MPI Allgather when uti-
lizing the same communication buffers for a large number of iterations. The cost of
registration was thus amortized over all the iterations by the registration cache main-
tained by MVAPICH. However, it is not necessary that all MPI applications will always
reuse their buffers. In the case where applications use MPI Allgather with different
buffers, the point-to-point based design will be forced to register the buffers separately,
thus incurring high cost. The cost of just memory registration is shown in Figure 5.1.
We observe that memory registration is in fact quite costly.

In the following experiment, we conduct the same latency test (as mentioned in
previous section), but the buffers used for each iteration are different. Figures 5(a) and
5(b) show the results for Clusters A and B, respectively.

The RDMA based MPI Allgather performs 4.75 and 3 times better for Cluster
A and B for 32 KB message size, respectively.

5.3 Matrix Multiplication Application Kernel

In the previous sections, we have seen how the RDMA design impacts the basic latency
of MPI Allgather. In order to evaluate the impact of this performance boost on end-
MPI applications, we build a distributed-memory Matrix Multiplication routine over the
optimized BLAS provided by the Intel Math Kernel Library [7]. We use a simple row-
block decomposition for the data. In each iteration, the matrix multiplication is repeated
with a fresh set of buffers. This application kernel is run on Cluster C using 8 processes.
We observe that using our RDMA design, the application kernel is able to perform 37%
better for an array size of 256x256, as shown in Figure 5(c).

6 Related Work

Recently, a lot of work has been done to improve the performance of collective op-
erations in MPI. In [17] the authors have implemented several well known collective
algorithms over the MPI point-to-point primitives. In [9], [16] and [11] the authors
have shown the benefits of using RDMA for MPI Barrier, MPI Alltoall and
MPI Allreduce collective primitives respectively. In addition, researchers have been
focusing on framework for non-blocking collective communication [8]. However our
work is different from the above since our work mainly focuses on the All-to-all broad-
cast of messages using RDMA feature and intelligently choosing the thresholds for
copy and zero-copy approaches. Our solution is also according to the MPI specification
which require blocking collectives.

7 Conclusion and Future Work

In this paper, we proposed a RDMA based design for the All-to-all Broadcast collective
operation. Our design reduces software overhead, copy costs, protocol handshake – all
required by the implementation of collectives over MPI point-to-point. Performance
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evaluation of our designs reveals that the latency of MPI Allgather can be reduced
by 30% for 32 processes and a message size of 32 KB. Additionally, the latency can be
improved by a factor of 4.75 under no buffer reuse conditions for the same process count
and message size. Further, our design can speed up a parallel matrix multiplication
algorithm by 37% on 8 processes, while multiplying a 256x256 matrix.

In the future. We will investigate impact on real world applications in much larger
clusters. We will also consider utilizing the RDMA based All-to-all broadcast for de-
signing other collectives like RDMA based All-to-all personalized exchange [16].
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Abstract. Current interconnect standards providing hardware support
for quality of service (QoS) consider up to 16 virtual channels (VCs) for
this purpose. However, most implementations do not offer so many VCs
because they increase the complexity of the switch and the scheduling de-
lays. In this paper, we show that this number of VCs can be significantly
reduced. Some of the scheduling decisions made at network interfaces
can be easily reused at switches without significantly altering the global
behavior. Specifically, we show that it is enough to use two VCs for QoS
purposes at each switch port, thereby simplifying the design and reducing
its cost.

1 Introduction

The last decade has witnessed a vast increase in the variety of computing devices
as well as in the number of users of those devices. In addition to the traditional
desktop and laptop computers, new handheld devices like pocket PCs, PDAs,
and multimedia cellular phones have now become household names.

The main reasons for the widespread use of computing devices are the avail-
ability of cheaper and more powerful devices and, even more importantly, the
huge amount of information and services available through the Internet. These
services rely on applications executed in many servers all around the world. Clus-
ters of PCs have emerged as a cost-effective platform to implement these services
and run the required Internet applications. These clusters provide service to
thousands or tens of thousands of concurrent users. Many of these applications
are multimedia applications, which usually present bandwidth and/or latency
requirements [1]. These are known as QoS requirements.

In the next section, we will be looking at some of the proposals to provide
QoS in clusters and system area networks. Most of them incorporate 16 or even
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more VCs, devoting a different VC to each traffic class. This increases the switch
complexity and also prevents the use of these VCs for other purposes (for in-
stance, to provide adaptive routing or fault tolerance). Moreover, it seems that,
when the technology enables it, the trend is to increase the number of ports
instead of increasing the number of VCs per port [2].

In the recent switch designs, the buffers at the ports are implemented with a
memory space organized in logical queues. These queues consist in linked lists of
packets, with pointers to manage them. Our experience with communications’
hardware manufacturers [3] has taught us that the complexity of the switch and
the scheduling delays heavily depend on the number of queues at the ports. VCs,
which can be used for many purposes, are implemented as queues of this kind.
Then, a reduction of the number of VCs necessary to support QoS can be very
helpful in the switch design.

In this paper, we show that it is enough to use two VCs at each switch port
for the provision of QoS. One of these VCs is used for QoS traffic and the other
one for best-effort traffic. Although this is not a new idea, the novelty of our
proposal lies in the fact that the global behavior of the network is very similar
as if it had much more VCs. This can be achieved by reusing in the switches some
of the scheduling decisions made at network interfaces. Simulation results show
that applications achieve an adequate QoS performance, but with a reduced
processing delay and using fewer VCs, which results in less chip area.

The remainder of this paper is structured as follows. In the following section
the related work is presented. In Section 3 we present our strategy to reduce the
number of VCs required for QoS support. Details on the experimental platform
and the performance evaluation are presented in Section 4. Finally, Section 5
summarizes the results of this study and identifies directions for future research.

2 Related Work

During the last decade several switch designs with QoS support have been pro-
posed. All of them incorporate VCs in order to provide QoS support. In these
proposals, different scheduling algorithms are used to arbitrate between the dif-
ferent existing traffic flows, providing each one with QoS according to its re-
quirements.

The Multimedia Router (MMR) [4] is a hybrid router. It uses pipelined circuit
switching for multimedia traffic and virtual cut-through for best-effort traffic.
Pipelined circuit switching is connection-oriented and needs one VC per connec-
tion. This is the main drawback of the proposal because the number of VCs per
physical link is limited by the available buffer size and there may not be enough
VCs for all the possible existing connections. Therefore, the number of multi-
media flows allowed is limited by the number of VCs. Moreover, the scheduling
among hundreds of VCs is a complex task.

MediaWorm [5] was proposed to provide QoS in a wormhole router. It uses a
refined version of the Virtual Clock algorithm [6] to schedule the existing VCs.
These VCs are divided into two groups: One for best-effort traffic and the other
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for real-time traffic. Several flows can share a VC, but 16 VCs are still needed to
provide QoS. Besides, it is well known that wormhole is more likely to produce
congestion than virtual cut-through. In [7], the authors propose a preemption
mechanism to enhance MediaWorm performance, but in our view that is a rather
complex solution.

InfiniBand was proposed in 1999 by the most important IT companies to
provide present and future server systems with the required levels of reliability,
availability, performance, scalability and QoS [8]. Specifically, the InfiniBand
Architecture (IBA) proposes three main mechanisms to provide the applications
with QoS. These are traffic segregation with service levels, the use of VCs (IBA
ports can have up to 16 VCs) and the arbitration at output ports according to an
arbitration table. Although IBA does not specify how these mechanisms should
be used, some proposals have been made to provide applications with QoS in
InfiniBand networks [9].

Finally, PCI Express Advanced Switching (AS) architecture is the natural
evolution of the traditional PCI bus [10]. It defines a switch fabric architecture
that supports high availability, performance, reliability and QoS. AS ports in-
corporate up to 20 VCs that are scheduled according to some QoS criteria. In
the AS specifications, three possible arbiters are proposed, one of them being
table-based.

All the proposals studied use a significant number of VCs to provide QoS
support. If a great number of VCs is implemented, it would require a significant
fraction of chip area and would make packet processing a more time-consuming
task. Moreover, in all the cases, the VCs are used to segregate the different traffic
classes. Therefore, it is not possible to use the available VCs to provide other
functionalities like adaptive routing or fault tolerance when all the VCs are used
to provide QoS support.

On the other hand, there have been proposals which use only two VCs. For in-
stance, the Avici TSR [11] is a well-known example of this. It is able to segregate
premium traffic from regular traffic. However, it is limited to this classification
and cannot differentiate among more categories. In the recent IEEE standards,
it is recommended to consider seven traffic classes [12]. So, although being able
to differentiate two categories is a big improvement, it could be insufficient.

In contrast, the novelty of our proposal lies in that although we use only two
VCs in the switches, the global behavior of the network is very similar as if the
switches were using much more VCs. This is because we are reusing at the switch
ports the scheduling decisions performed at the network interfaces, which have
as many VCs as traffic classes. In the end, the network provides a differentiated
service to all the traffic classes considered.

To the best of our knowledge, only Katevenis and his group [13] have proposed
something similar before. The basic idea of their architecture is to map the
multiple priority levels onto the two existing queues, for each crosspoint buffer.
The operation of the system is analogous to a two-lane highway, where cars drive
in one lane and overtake using the other. However, this proposal is complex
because it needs specific hardware and signaling. Furthermore, it is more limited
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in its scope than ours, because it is aimed to a single-stage router based on a
single buffered crossbar. This crossbar has small buffers at the crosspoints that
the authors split into two VCs. In contrast, our proposal is a simpler and more
general technique, as we will see in the next section.

3 Reducing the Number of VCs for QoS Support

In this section, we present our proposal for QoS provision with reduced resources.
The basic idea consists in using only two VCs at the switch ports. One of these
VCs would be used for QoS packets and the other for best-effort packets. We
reuse at switches the scheduling decisions performed at network interfaces. This
allows us to achieve a performance similar to that obtained by systems with
much more VCs.

Figure 1 shows an example of a network interface that is connected to a
switch. Note that at both the network interface and the switch input port, there
are several VCs. When a packet arrives at the switch, the header is analyzed
and the packet is then usually stored in a VC according to the flow or class to
which it belongs to. However, packets arriving at the switch have been previously
sorted by the network interface according to some criteria. If we separate the
packets in different VCs, we are losing this order, which may contain enough
information to simplify the scheduling at the switch. However, it is not enough
to put all the packets in the same VC to reuse the scheduling decisions. It is
also necessary that the arbiter implementing this technique considers the global
priority level of the packets, as opposed to the traditional 2 VC design, which
would only consider two categories: premium and regular.

In order for our proposal to be effective we need two assumptions. The first
assumption we make is that a static priority criterion exists to order packets. In
this way, every packet would be stamped with a priority level. This is necessary
because we will maintain the incoming order along the whole network. This is not
a big deal because queuing delays for QoS traffic will be short, and therefore, the
packet ordering established at network interfaces does not need to be changed
at any switch in the path.

Fig. 1. QoS support at the network interface and the switch
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The second assumption is that there must be a connection admission control
(CAC) for the traffic with QoS requirements so that no link is oversubscribed
by QoS traffic. This requirement is needed to provide bandwidth guarantees and
avoid starvation of the QoS traffic. The CAC is also necessary to assure that
this kind of traffic will flow with short delays.

Note that although we assume that QoS traffic does not oversubscribe any
link, no assumption is made about best-effort traffic. Thus, if we did not separate
QoS traffic and best-effort traffic, the total bandwidth demand for a given output
link could exceed the available bandwidth. For this reason, we cannot use just
one VC, and therefore we propose to use two VCs at the switches.

It is important to note that the order of the different best-effort traffic classes
is also kept with this design. Although we use only one VC for best-effort traffic,
we also consider the different priorities of packets belonging to this group. This
means that the switch will also differentiate among this kind of packets, as we
will see in the next section.

Now, we will proceed to describe in depth how our proposal works. Let us sup-
pose that severalpackets arrive at a switch fromanetwork interface. Taking into ac-
count that the interface implements a priority-based arbiter, the first packet should
be the one with the highest priority. So, instead of separating the packets among
several VCs according to their traffic classes, we put them all in the same queue
in the arrival order. Later, when the switch must decide which packets should be
transmitted, it will seek in the input queues. It is only necessary to look at the first
packet in each queue, because its position at the front of the queue indicates that
it had a higher priority when it left the network interface.

Obviously, the network interface can only arbitrate among the packets it
holds at a given moment. Therefore, when no more high-priority packets are
available, a low-priority QoS packet can be transmitted. If this packet has to wait
at a switch input queue, and other packets with higher priority are transmitted
from the network interface, they would be stored in the same VC as the low-
priority packet, and be placed after it in the queue. Thus, the arbiter would
penalize the high-priority packets, because they would have to wait until the
low-priority packet is transmitted. But this situation, which we call order error,
has a small impact on performance because there is bandwidth reservation for
QoS packets. This means that all the QoS packets will flow with short delay.

In the performance evaluation section, we will see that the order errors have
a low impact on the performance. However, they make latency and jitter more
variable. Although the average value will remain similar, peak values will be
increased slightly. The other main limitation of this technique is the necessity of
a CAC, which is not always possible or practical. However, most of the recent
interconnect proposals (InfiniBand or AS) include a CAC in their specification.

4 Performance Evaluation

In this section, we show the behavior of our proposal and we compare it with the
performance of traditional switches. First, we will explain the simulated network
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architecture. Next, we will give details on the parameters of the network and the
load used for the evaluation. Finally, we present and comment the results.

4.1 Simulated Architecture

Our objective is to evaluate the performance of our technique under fair condi-
tions. In order to achieve this, we will define a complete network architecture,
including all the elements necessary to work. However, many of them are not
directly related with our work. We do not aim at achieving the best performance
or proposing a whole new switch design, but, instead, we aim at defining a fair
scenario in which compare several switch architectures. For that reason, we have
not used state-of-the-art routing techniques, congestion control mechanisms, etc.
We have used the most popular and well-known solutions for these issues.

The network used to test the proposals is a perfect-shuffle multi-stage inter-
connection network (MIN) with 64 end-points. We have chosen a MIN because
it is a usual topology for clusters. However, our proposal is valid for any net-
work topology, including both direct networks and MINs. The switches use a
combined input and output buffer architecture, with a crossbar to connect the
buffers. No packets are dropped because we use credit-based flow control. The
parameters of the network elements used in this performance study are given
in Table 1. Note that we are assuming some internal speed-up (×1.5), as it is
usually the case in most commercial switches.

Virtual output queuing (VOQ) is implemented to solve the head-of-line block-
ing problem at the switch level. However, this does not increase the necessary
buffer memory, only the crossbar scheduling time. Note that, nowadays, the
queues are implemented logically over a shared space. That means that adding
more queues implies more pointers and more complex arbiters, but not more
buffer space. Furthermore, most of current commercial switches include VOQ as
the technique to minimize the effects of head-of-line blocking.

In Table 1 we also show the amount of memory at each port. It is the mini-
mum necessary space to achieve the peak throughput. Taking into account that
there is credit-based flow control and we are using Virtual Cut-Through switch-
ing, it would be necessary a space at each VC of one maximum packet size plus
one round-trip-time. However, since it is common to use maximum packet size,
we round the number up, resulting in two whole packets, which results in 4
Kbytes for each VC. Note that switches using our proposal save memory (and
thus chip area) at the ports by a factor of 4 compared with the 8 VC case.

Table 1. Simulation parameters

Switch ports 8
Packet size 64 to 2048 bytes

Packet header size 8 bytes
Control message size 8 bytes

Crossbar scheduling time 20/10 ns

Port buffer size 32 Kbytes
Channel bandwidth 2 Gb/s
Crossbar bandwidth 3 Gb/s
Network interfaces 64

Output scheduling time 10/5 ns
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The scheduling delays have been chosen to reflect the actual delays in real
implementations and the use of fewer VCs with our proposal. We have considered
the research in the area, like Peh’s work [14], which indicates that the arbitration
time is logarithmic in the number of VCs. In Table 1, the number before the slash
is the delay for 8 VC switches and the number after the slash is the delay for 2
VC switches (both traditional and using our technique). Therefore, we obtain a
speed-up of 2.0 using our proposal.

The CAC we have implemented is a simple one, based on average bandwidth.
Each connection is assigned a path where enough resources are assured. We also
use a load balancing mechanism, which consists in assigning the least occupied
route among those possible. There exist more complex and powerful mechanisms,
but this is enough to test our proposal.

4.2 Traffic Model

In Table 2 the characteristics of the traffic injected in the network are included.
We have considered the traffic classes (TCs) defined by the IEEE standard
802.1D-2004 [12] at the Annex G, which are particularly appropriate for this
study. However, we have added an eighth TC, Preferential Best-effort, with a
priority between Excellent-effort and Best-effort. In this way, the workload is
composed of 8 different TCs. Each TC has decreasing priority, such that TC 7
has the highest priority and TC 0 has the lowest.

The proportion of each category has been chosen to provide meaningful re-
sults. Our intention is to put the network in a situation where the different TCs
have to compete for limited resources. We also want to have diversity between the
sources, combining different packet sizes and different traffic distributions, that
is, constant bit rate (CBR) flows combined with variable bit rate (VBR) flows. It
is possible that this mix of traffic is not actually present in a real-life cluster, but
it serves perfectly to evaluate the different architectures we are testing.

The destination pattern is based on Zipf’s law [15], as recommended in [16],
with k = 1. In this way, the traffic is not uniformly distributed, but, instead,
for each TC and input port it is established a ranking among all the possible

Table 2. Traffic injected per host

TC Name % BW Packet size Notes
7 Network Control 1 64 bytes self-similar
6 Audio 15.625 128 bytes CBR 64 Kb/s connections
5 Video 15.625 ≤ 2 Kbytes 750 Kb/s MPEG-4 traces
4 Controlled Load 15.625 2 Kbytes CBR 1 Mb/s connections
3 Excellent-effort 13.031 2 Kbytes self-similar
2 Preferential Best-effort 13.031 2 Kbytes self-similar
1 Best-effort 13.031 2 Kbytes self-similar
0 Background 13.031 2 Kbytes self-similar
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destinations. Therefore, there will be destinations with a higher chance of being
elected by a group of flows, where this probability is obtained with the aforemen-
tioned Zipf’s law. The global effect is a potential full utilization of the network,
but with a reduced performance compared with a uniform distribution.

The packets are generated according to different distributions, as can be seen
in Table 2. Audio, Video, and Controlled Load traffic are composed of point-to-
point connections of the given bandwidth. The self-similar traffic is bursty traffic
generated with on/off sources, governed by Pareto distributions, as recommended
in [17].

4.3 Simulation Results

In this section, the performance of our proposal is shown. We have considered
three traditional QoS indices for this performance evaluation: Throughput, la-
tency, and jitter. Note that packet loss is not considered because no packets are
dropped due to the use of credit-based flow control. Maximum jitter determines
the receiver’s user space for audio and video. Inappropriate results of latency
or jitter may lead to dropped packets at the application level. For that reason,
we also show the cumulative distribution function (CDF) of latency and jitter,
which represents the probability of a packet achieving a latency or jitter equal
to or lower than a certain value.

We have performed the tests considering three cases. First, we have tested
the performance of our proposal, which uses 2 VCs at each switch port. It is
referred in the figures as New 2 VCs. Note that, with our proposal, the network
interfaces still use 8 VCs. Second, we have decided to perform the test with
traditional switches using 8 VCs because this number matches the number of
TCs. In this case, it is referred in the figures as Traditional 8 VCs. Third, we have
also tested a traditional approach with 2 VCs, noted in the figures as Traditional
2 VCs. In this case, the network interfaces also use 2 VCs. Therefore, we have
two references to compare our proposal, one being the lower bound (Traditional
2 VCs) and the other the upper bound (Traditional 8 VCs).

Figure 2 shows the latency results for TC 7, which corresponds to Network
Control traffic. The throughput of this TC, which is not shown, is the optimum
in the three cases. We can see that the three cases succeed in getting a reason-
able average latency. However, the Traditional 2 VCs case achieves the worst
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performance when the input load is high. In Figure 2, we can also see the CDF
of latency at a network load of 1.0. For the Traditional 8 VCs and the New 2
VCs cases, the results are quite good. However, for the Traditional 2 VCs case
the results are not so suitable, because many packets have a latency far above
the average. In this figure, maximum values are represented by vertical lines.

In Figure 3, we show the performance of Audio traffic. According to the IEEE
guidelines, this TC should achieve latency and jitter values lower than 10 ms.
This is achieved in the three cases. However, the Traditional 2 VCs case yields
an inadequate performance, in terms of latency and jitter, at high load. Note
that our proposal increases slightly the maximum latency and jitter. However,
the results are still acceptable and a significant improvement over the Traditional
2 VCs approach.

The Video traffic results (Figure 4) are very similar to the audio traffic.
Again, the performance of the network using our technique is quite close to the
results obtained with the Traditional 8 VCs approach. Note that the use of VBR
traffic does not affect the performance of our proposal.

Finally, the three network models provide a maximum throughput to the
Controlled Load traffic, as can be seen in Figure 5. In this case, the New 2
VCs case provides a higher average latency than the obtained by the Traditional
2 VCs case. This is due to the differentiation among the QoS TCs. With our
technique, the TCs with the most priority are treated preferently from the TCs
with the least priority. However, the bandwidth is guaranteed and, according to
the IEEE guidelines, there is no real need for a very low latency in this case. At
this point we can conclude that the performance of our proposal for QoS traffic
is very similar to that obtained with a switch design with more VCs.
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In Figure 6 we can see the throughput for the best-effort TCs. In these cases,
the Traditional 2 VCs approach produces the same performance for all the TCs,
which is an inadequate behavior, because Excellent-effort and Preferential Best-
effort traffic should have better performance. The reason for this inadequate
behavior is that in the Traditional 2 VCs model, all the best-effort classes look
the same for the schedulers at both the network interfaces and the switches.

On the other hand, the arbiters using our technique take into account the
priority of the packets, even if they share the same VC. For that reason, our
proposal, which devotes a single VC in the switches for all the best-effort TCs,
can provide a behavior similar to that of the Traditional 8 VCs approach, which
uses 4 VCs for the best-effort TCs.

The Best-effort and Background TCs obtain a slightly worse performance
with our technique if we compare it with the performance of the Traditional 8
VCs case. This is due to a lower global throughput of the network using our
technique, but it only affects the TCs with the least priority, which is alright.



168 A. Mart́ınez et al.

According to these results, we can conclude that our proposal can provide
an adequate QoS. We only need two VCs at the switches, which simplifies the
arbitration algorithm. The switches also incorporate 1/4 the memory at the
ports and have a reduced arbitration delay, which is 50% of the necessary time
in a traditional approach with more VCs. This scheme is simpler than today’s
trends but as powerful as the more complex arbiters with many more VCs.

5 Conclusions

The proposal of this paper consists in making the network elements cooperate,
building together ordered flows of packets. Consequently, the switches try to
respect the order in which packets arrive at the switch ports, which is probably
correct. This allows a drastic reduction in the number of VCs required for QoS
purposes at each switch port.

This study has shown that it is possible to achieve a more than acceptable
QoS with only two VCs. We reuse in the switches some of the scheduling de-
cisions made at the network interfaces. This opens up the possibility of using
the remaining VCs for other concerns, like adaptive routing or fault tolerance.
Furthermore, it is also possible to reduce the number of VCs supported at the
switches, thereby simplifying the design, or increasing the number of ports.

The results we have presented in the previous section have shown that our
proposal provides a very similar performance compared with a traditional archi-
tecture with 8 VCs, both for the QoS traffic and the best-effort traffic. Comparing
our technique with a traditional architecture with 2 VCs, our proposal provides
a significant improvement in performance for the QoS traffic, while for the best-
effort, the traditional model is unable to provide the slightest differentiation.

We are currently examining a number of possible extensions to the work here
presented. First, we are preparing a study on more complex switch models that
can benefit from our proposal, such as switches using EDF arbitration. Second,
we intend to use this technique in other environments, like Internet routers or
networks on chip. Finally, we are considering to code the switches and network
interfaces with a hardware description language, which can then be implemented
in FPGAs to examine the actual reductions of delays and area.
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scalable and cost-effective congestion management strategy for lossless multistage
interconnection networks. In: Proceedings of the 11th International Symposium on
High-Performance Computer Architecture. (2005)



Providing Full QoS Support in Clusters Using Only Two VCs 169

4. Duato, J., Yalamanchili, S., Caminero, M.B., Love, D., Quiles, F.: MMR: A high-
performance multimedia router. Architecture and design trade-offs. In: Proceedings
of the 5th Symposium on High Performance Computer Architecture. (1999)

5. Yum, K.H., Kim, E.J., Das, C.R., Vaidya, A.S.: MediaWorm: A QoS capable router
architecture for clusters. IEEE Trans. Parallel Distrib. Syst. 13 (2002) 1261–1274

6. Zhang, L.: VirtualClock: A new traffic control algorithm for packet switched net-
works. ACM Transaction on Computer Systems 9, 2 (1991) 101–124

7. Yum, K., Kim, E., Das, C.: QoS provisioning in clusters: An investigation of router
and NIC design. In: Proceedings of the 28th Annual International Symposium on
Computer Architecture, IEEE Computer Society (2001)

8. InfiniBand Trade Association: InfiniBand architecture specification volume 1. Re-
lease 1.0. (2000)

9. Alfaro, F.J., Sánchez, J.L., Duato, J.: QoS in InfiniBand subnetworks. IEEE Trans.
Parallel Distrib. Syst. 15 (2004) 810–823

10. Advanced switching core architecture specification. Technical report, (available at
http://www.asi-sig.org/specifications for ASI SIG members)

11. Dally, W., Carvey, P., Dennison, L.: Architecture of the Avici terabit switch/router.
In: Proceedings of the 6th Symposium on Hot Interconnects. (1998)

12. IEEE: 802.1D-2004: Standard for local and metropolitan area networks.
http://grouper.ieee.org/groups/802/1/ (2004)

13. Chrysos, N., Katevenis, M.: Multiple priorities in a two-lane buffered crossbar. In:
Proceedings of the IEEE Globecom 2004 Conference. (2004)

14. Peh, L., Dally, W.: A delay model and speculative architecture for pipelined routers.
In: Proceedings of the 7th International Symposium on High-Performance Com-
puter Architecture. (2001)

15. Zipf, G.K.: The Psycho-biology of Languages. Houghton-Miffin, MIT (1965)
16. Elhanany, I., Chiou, D., Tabatabaee, V., Noro, R., Poursepanj, A.: The network

processing forum switch fabric benchmark specifications: An overview. IEEE Net-
work (2005)

17. Jain, R.: The art of computer system performance analysis: techniques for experi-
mental design, measurement, simulation and modeling. John Wiley and Sons, Inc.
(1991)



Offloading Bloom Filter Operations
to Network Processor for Parallel Query

Processing in Cluster of Workstations

V. Santhosh Kumar1, M.J. Thazhuthaveetil1,2, and R. Govindarajan1,2

1 Supercomputer Education and Research Centre
2 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560 012, India

gvsk@hpc.serc.iisc.ernet.in
{mjt, govind}@{csa, serc}.iisc.ernet.in

Abstract. Workstation clusters have high performance interconnects with pro-
grammable network processors, which facilitate interesting opportunities to of-
fload certain application specific computation on them and hence enhance the per-
formance of the parallel application. Our earlier work in this direction achieves
enhanced performance and balanced utilization of resources by exploiting the
programmable features of the network interface in parallel database query ex-
ecution. In this paper, we extend our earlier work for studying parallel query
execution with Bloom filters. We propose and evaluate a scheme to offload the
Bloom filter operations to the network processor. Further we explore offloading
certain tuple processing activities on to the network processor by adopting a net-
work interface attached disk scheme. The above schemes yield a speedup of up
to 1.13 over the base scheme with Bloom filter where all processing is done by
the host processor and achieve balanced utilization of resources. In the presence
of a disk buffer cache, which reduces both the disk and I/O traffic, offloading
schemes improve the speedup to 1.24.

1 Introduction

Cluster computer systems, assembled from commodity off-the-shelf components, have
emerged as a viable alternative to high-end custom parallel computer systems for ap-
plications demanding high performance [1]. An important component in such cluster
computer systems is their high performance interconnect with programmable network
interfaces such as Myrinet, Quadrics, and Infiniband [6]. The network processors avail-
able in such programmable interfaces often have the capability to perform application
related processing, thus facilitating interesting opportunities to enhance application per-
formance in cluster systems.

Our earlier work [10] demonstrates offloading the tuple splitting computation (to
determine on which cluster node a tuple is to be processed), and tuple processing com-
putation to the network processor results in significant performance improvement. Fur-
ther, this work [10] also explored the benefits of attaching the disks to network interface.

In this paper, we first study the performance of a base case where all the application
related tuple processing is performed by the host processor (HP). Using a Bloom fil-
ter [7] reduces the host processor workload as it eliminates the processing of tuples that

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 170–179, 2005.
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are not selected (whose join key attribute do not match) by the join operation. Further,
the Bloom filter reduces the data transferred over the network. Our simulation results
indicate that although query execution time reduces significantly, HP utilization still re-
mains high. We therefore propose offloading the Bloom filter operations from the host
processor (HP) to the network processor (NP). Performance evaluation indicates a re-
duction in execution time by about 8%. Further offloading of tuple processing activities
is possible by attaching the disk directly to NI as in [10]. This results in a performance
improvement of upto 13%. With this offloading the disk becomes the bottleneck. To
overcome this we study the impact of caching of tuples of frequently used relations or
intermediate relations. With a cache hit ratio of 0.5, our schemes result in an execution
time speedup of 1.24 over the Base scheme with an identical cache hit ratio. Further the
utilization of key resources viz, HP, NP, and Disk are well balanced.

In the following section we provide the necessary background. In Section 3 we
describe the Petri net model developed in [10] for the Base Scheme and extend the
same for the Base scheme with Bloom filter. Section 4 discusses the NP Bloom scheme
where Bloom filter operations are offloaded to NP. In Section 5 we describe the Network
Interface with attached Disk and Bloom Filter scheme and evaluate its performance.
Concluding remarks are provided in Section 7.

2 Background

Clusters: A cluster of workstations is a distributed memory machine where each node
is a stand-alone system, with CPU and memory connected by the memory bus, and
peripherals like disk, and network interface attached to the I/O bus. Typical high
performance cluster interconnects like the Myrinet network interface (NI) [13] have
NIs with a programmable network processor (NP), on board memory (SRAM), a host
DMA engine (HDMA), an EBUS (External Bus) Interface (64-bit), a send DMA en-
gine (SDMA) and a receive DMA engine (RDMA). The HDMA is used to transfer data
across the I/O bus to the node memory. SDMA and RDMA are used to transfer data
from the NI SRAM to the communication network (switch), and vice-versa. It is also
equipped with a memory-to-memory copy engine (MCE). The switch employs worm-
hole routing to transfer packets between network interfaces. Research [14] in commu-
nication layers for high performance scientific applications has led to the development
of user-level communication techniques which have reduced the involvement of HP in
communication to deliver better application performance. We, therefore, assume such a
user-level communication layer in our system.

Parallel Query Processing: In a relational database system queries composed of re-
lational operators like select and join are used to manipulate data. The join operator,
which combines tuples from two relations based on a common attribute, is the most cru-
cial and expensive operator [8]. Hash-based join algorithms are more efficient than other
join algorithms, such as sort-merge or nested-loop, in systems with large main memo-
ries [8]. So, in this work, join operators in queries are executed using hash-join algo-
rithms. Several parallel query processing techniques have been devised and employed
in parallel database machines to improve query execution time [4]. A cluster of work-
stations is essentially a shared-nothing architecture, in which intra-operator parallelism
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is better exploited [4,11] with horizontally partitioned relations. We therefore consider
only exploiting intra-operator parallelism and horizontally partitioned relations.

When a query involves multiple joins, a query tree or a query execution plan is
used to represent the scheduling sequence of the constituent operations. Query trees are
characterized as left-deep, right-deep or bushy trees. Right-deep and bushy trees have
multiple operators simultaneously active, and are suitable for pipelined implementa-
tions in multiprocessor systems [12,3]. Left-deep trees plan allows only one operator is
active on all the nodes and is well suited to shared-nothing architectures. Hence, we
adopt a left-deep query tree plan.

In the hash join, there are two phases, namely (i) the Build Phase, where the inner
relation is hashed on the join attribute and the hash table is built and (ii) the Probe Phase,
where the outer relation is hashed on the join attribute using the same hash function
used to probe the hash table, and result tuples are generated on successful matches. In
the parallel version, first a separate hash function is used to determine the cluster node
where the tuples will be processed. We refer to this activity as tuple splitting. Tuples are
routed to their cluster nodes and then the join operation (build or probe) takes places
on that node. Thus both phases of parallel join involve communication between cluster
nodes. In case select or project operation exists along with join, select or project is first
applied on the tuples before the join operation.

Bloom Filter: Bloom filters [2] are used in distributed databases to improve the join
performance by reducing the amount of tuple processing being performed by the host
processor and the amount of data transferred over the network [7]. Bloom filter is a
bit vector representation of the set of keys which can be queried to check if a key is
present. This is used in the join process as follows: Initially the bit vector is initialized
to all zeros. Each tuple of the inner relation is hashed on the join attributes to the corre-
sponding bit in the bit vector. Then the same hash function on the join attribute of the
second relation is used to generate an index. If the corresponding bit of the bit vector
is zero, then the actual hash table probe operation can be avoided. On the other hand a
successful check in the bloom filter does not necessarily indicate that the key is present
in the hash table, and so the probe operation has to be done. Thus, the Bloom filter can
give rise to false positives.

3 Base Scheme

In our Base Scheme all activities related to query processing are performed by the host
processor (HP). The network processor (NP) is involved only in message sends and
receives among the cluster nodes. We evaluated the performance of the Base Scheme
through simulation of a Petri Net (PN) model.

3.1 Base Scheme Description

Figure 1 shows our Petri net model of a single node in the cluster performing the parallel
query execution on a cluster. Since our modifications are centered around the hash join,
for clarity, the PN model for the join operations are described. We use the name of a
timed transition e.g., T Build, to represent the duration of the timed transition.
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Fig. 1. Petri net model for Disk and Join operations

The number of tuples to be processed is modeled by available tokens in place
P TupAv. T Split transition models the duration to compute the cluster node id to
which tuples are to be routed. T Split fires depending on the availability of HP (mod-
eled by place P HP roc). We assume that the tuples are uniformly distributed across
nodes and hence T Self fires with probability 1/N and and T Other with a probability
(N − 1)/N , where N is the number of nodes in the cluster. T Build represents the dura-
tion of per tuple build operation, which fires with the availability of HP, during the build
phase.T P robe represents the HP duration forper-tuple probe operation which is enabled
during the probe phase. Based on the join selectivity (denoted by JoinSelP rob), certain
tuples qualify in the join process (modeled byT TupSel) while others are dropped (mod-
eled by T TupDrp). Tuples which fire T Other are grouped into messages (T Move)
and enqueued by HP to be transmitted by NI. T Send and T Recv model the software
overhead incurred by HP for initiating a send/recv operation.

The architectural parameters of our model are set to represent contemporary high
performance computing nodes. We measured the time taken for various tasks on a
2.4GHz Pentium 4 processor based system and scaled them to 3.6GHz, so as not to
overestimate the benefits of offloading. The parameters for host communication over-
heads were obtained from measurements on Myrinet user-level messaging software
running on Myrinet LANai 9.2 processor [6]. Network Interface Parameters values
are estimated assuming a NI SRAM bandwidth of 2.664GB/s (333MHz, 64 bit bus).
The network link bandwidth is assumed to be 4GB/s based on the Myrinet specifica-
tions [13]. This value is also used to fix the switch delay for a packet; the bisection
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bandwidth of the switch must be greater than the link bandwidth to support simultane-
ous connection between input and output ports of the switch.

The I/O bus transfer time parameters are set assuming 2GB/s, similar to the PCI-
Express-1X bus [9] bandwidth. The disk I/O time is set assuming the ability to deliver
1.28GB/s (4 * 320MB/s SCSI disk), in 64KB chunks.

We set the database related parameters based on the TPC-H benchmark [16]. TPC-
H queries 3,5,7-10 were modeled, each using a separate PN model. We assume a tuple
size of 128B for all relations. The number of tuples per table is set so that the horizontal
partition of the relation in each node occupies 1GB. Further, we assume that there is no
skew in the data, i.e., the frequency of all key values used in the join attributes occur with
equal frequency. When join is performed, a part of the tuple is projected out. The size
of the projected tuple is assumed to be 32 bytes. The model parameter values for selec-
tivity ratios were obtained using measurements from query execution on a single node
running PostgreSQL. The values for the various architectural parameters and those for
the TPC-H queries used in our performance evaluation study can be found in [10].

We validated our Petri net model with performance measurements from a unipro-
cessor implementation of Hash-join, and MPI based implementations on 2 nodes and 4
nodes [10].

3.2 Performance of Base Scheme

We simulated our Petri net models using CNET, an event-driven petri net simulator [17].
The simulator reports the total simulation time for the Petri net model, as well as the
total firing times for each timed transition. All reported results are for 8 node cluster1

averaged across 3 independent runs for each query.
We use relative speedups of query execution times for performance comparison

and the utilization of resources like host processor (HP), Disk, I/O Disk, I/O NIC,
Switch (SW) and network processor (NP) to identify the bottleneck resources. In dis-
cussing the results, we report the average of the execution time of all the queries. Rel-
ative speedup of a scheme, is the ratio of the average query execution time in the Base
scheme (with BS-1X parameters) to that in the proposed model.

Table 1 shows that query execution time is dominated by the tuple processing cost
of HP, which has the maximum resource utilization of 97.4%. We found that doubling
tuple processing cost of HP for Base Scheme (BS-2X) power yielded a speedup of 1.78
with respect to BS-1X configuration, showing that tuple processing activities done by
HP are a significant factor in query execution time. This motivated us to study the effect
of Bloom filter operations on the performance of query execution time.

3.3 Base Scheme with Bloom Filter

In the context of a parallel join operation, the Bloom filter can be incorporated in two
ways depending on whether the filter operations are performed before the tuples are
transmitted to their destination node (referred to as Global Bloom Filter), or after they

1 We have studied the performance for 4 node, 8 node and 16 node clusters in our earlier
study [10], and found that the performance study exhibits similar results.
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Table 1. Comparison of Resource Utilization of Base Schemes with Bloom Filter

Utilization Exec Relative
Model Disk HP I/O Disk I/O NIC SW NP Time(s) Speedup

BS-1X 35.7 97.4 22.5 7.9 16.4 0.1 2.05 1.00
BS-2X 63.5 86.6 39.9 14.0 29.2 0.1 1.15 1.78
GBF 60.5 73.6 38.1 5.4 11.2 0.1 1.21 1.69
LBF 58.9 85.2 37.1 13.0 27.1 0.1 1.24 1.65

arrive at the destination node (referred to as Local Bloom Filter). The advantage with
Global Bloom Filter (GBF) is that, it does not transmit unwanted tuples to remote nodes
by performing the filter operation first. This reduces I/O and network traffic. However
it becomes necessary to exchange the Bit filters after the build phase. In contrast, in
the Local Bloom Filter (LBF), the filter is built for tuples that arrive at the destination
node.

To estimate Bloom filter model parameters we used an implementation of Jenkins’s
hash function[5] and measured the execution time for 6M keys, requiring 1 bit for 1
key 2. We found that per key time for filter operations is 0.051µs, with the computation
component of filter operation (hash function computation) is 0.0195µs and memory
access time is 0.0315µs3.

Table 1 shows the relative speedup and resource utilizations for Global and Local
Bloom filter implementation referred to as GBF and LBF schemes, compared to the
Base scheme (BS-1X). We find that both schemes give a significant speedup in exe-
cution time (1.69 for GBF and 1.65 LBF). Also, HP utilization reduces from 97.4%
for the Base scheme to 73.6% and 85.2% for GBF and LBF respectively due to the
early dropping of tuples and the reduction in probe operations during the Bloom filter
operation.

Further, we observe that utilization of HP for GBF scheme (73.6%) is lower than
that of LBF (85.2%) scheme. This is because GBF reduces the communication over-
head incurred by HP. This results in an improved speedup in execution time for GBF
scheme (1.69) as compared to LBF scheme (1.65).

While Bloom filter achieves a significant speedup in query execution, we find that
HP has a high utilization and NP a low utilization. Hence we ran additional experiments
for the GBF by doubling the host processing power and found an increase in speedup
from 1.69 to 2.25, implying that the host processing power is the dominant factor with
BS-1X configuration for the GBF scheme. We next study the impact of offloading
Bloom filter operations to NP.

4 Network Processor Running Bloom Filter

Offloading the Bloom filter operations to the NP results in two schemes, NP-LBF and
NP-GBF, depending on whether its a local or global filter scheme. In the NP-GBF,

2 The Bloom filter gives a false positive rate of 22.1%.
3 We found that the time for BuildFilter and CheckFilter operations are approximately the same.

This is reasonable due to the high memory access cost, which is required for both operations.
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Table 2. Comparison of Resource Utilization and Speedup: GBF vs. NP-LBF

Utilization Relative
Scheme HP:NP Disk HP I/O Disk I/O NIC SW NP MCE Speedup

GBF 60.5 73.6 38.1 5.4 11.2 0.1 0.0 1.00

NP-LBF

1:1/8 56.9 63.3 35.8 2.3 26.2 59.8 3.10 0.97
1:1/6 63.2 69.2 39.8 2.5 28.9 50.6 3.40 1.04
1:1/4 65.3 72.7 41.1 2.6 30.0 36.5 3.50 1.08
1:1/2 65.3 72.7 41.1 2.6 30.0 21.0 3.50 1.08
1:1 65.3 72.7 41.1 2.6 30.0 13.2 3.50 1.08

since the filter operations are to be performed before the transmitting the tuples to the
destination, all the tuples would have be transferred to the NI. Earlier work [10] has
shown that this could cause the I/O bus to be a bottleneck, restricting the performance
enhancements possibilities. So we consider only the NP-LBF scheme where the filter
operations are performed by the NP after the tuples arrive at the destination node.

Table 2 shows the resource utilizations and speedup for GBF and NP-LBF. We use
GBF for comparison purposes as it was better of the schemes compared in Table 1.
When HP : NP ratio, which models the relative processing power of HP and NP, is
1:1/8, NP-LBF does not perform as well as GBF, having a relative speedup of 0.97. As
the processing power of NP is increased, and at HP : NP ratio of 1:1/4, the speedup
improves to 1.08. Further, we see a reduction in NP utilization (from 59.8% to 36.5%),
implying that it is no longer a bottleneck and its processing power is sufficient for
Bloom filter operations to be performed by NP. The HP utilization increases to 72.7%
suggesting that tuple processing costs are a dominant factor in query execution as NP
processing power increases. Disk utilization is also comparable to that of HP, indicating
that it is also a bottleneck resource.

Since HP is the resource with highest utilization, we also simulated the NP-LBF
scheme for HP : NP ratio of 1:1/4, with double the HP and NP processing powers. We
observed that the relative speedup increases from 1.08 (NP-LBF-1X) to 1.42 (NP-LBF-
2X). This motivated us to next consider further options to offload some tuple processing
work from HP to NP.

5 Network Interface with Attached Disk and Bloom Filter

Here we consider the idea of attaching the disk to the network interface directly in-
stead of to the system bus, proposed in our earlier work [10], which gives opportunity
for additional tuple processing to be offloaded to the NP. The operations of node id
computation and communication of tuples can then be performed by NP, along with the
Bloom filter activities.

There are two ways to organize the Bloom filter in the NID model as in the Base
Scheme a) Local Bloom filter with NID (NID-LBF) b) Global Bloom filter with NID
(NID-GBF). In both NID-GBF and NID-LBF schemes, the NP does the job of reading
the tuples directly from the disk, routing the tuples to the destination node and the filter
operations, and the HP performs the hash build and hash probe operations. They differ
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Table 3. Comparison of Resource Utilization and Speedup for NID Schemes

Utilization Relative
Scheme HP:NP Disk HP I/O Disk I/O NIC SW NP MCE Speedup

GBF 60.5 73.6 38.1 5.4 11.2 0.1 0.0 1.00

NID-LBF

1:1/8 55.4 41.3 0.0 3.5 25.5 59.3 29.9 0.92
1:1/6 61.1 45.5 0.0 3.8 28.1 50.4 33.0 1.01
1:1/4 64.8 48.4 0.0 4.1 29.8 37.6 35.0 1.07
1:1/2 67.5 50.3 0.0 4.2 31.0 23.2 36.4 1.12
1:1 68.7 51.3 0.0 4.3 31.6 15.5 37.1 1.13

NID-GBF

1:1/8 57.3 42.9 0.0 3.6 9.4 61.2 6.4 0.95
1:1/6 63.4 47.5 0.0 4.0 10.4 52.1 7.1 1.05
1:1/4 68.2 51.0 0.0 4.3 11.2 39.3 7.6 1.13
1:1/2 68.2 51.0 0.0 4.3 11.2 23.0 7.7 1.13
1:1 68.2 51.1 0.0 4.3 11.2 14.9 7.6 1.13

only in when the filter operations are performed, i.e., before sending the tuples to the
remote node or on receiving the tuples at the remote node.

Table 3 compares the resource utilizations and speedup for NID-LBF, NID-GBF,
and GBF schemes. When for HP : NP ratio is 1:1/8 both NID-LBF and NID-GBF
schemes have a speedup less than 1. Further NP is the resource with highest utiliza-
tion (59.3% for NID-LBF, 61.2% for NID-GBF), suggesting that NP’s is the bottleneck
resource. With an increase in the processing power of NP from 1:1/8 to 1:1/4, NID-
LBF and NID-GBF attain speedups of 1.07 and 1.13 respectively. Also, NP utilization
decreases to 37.6% and 39.3% for NID-LBF and NID-GBF respectively, indicating
that NP is no longer the bottleck resource. Further increase in NP’s processing power
does not yield any benefit, as the disk unit becomes the resource with higher utilization
(greater than 64.8%).

6 Performance with Disk Caching

The discussions in the previous sections indicate that when the processing power of NP
is greater than 1/4th the processing power of HP, the bottleneck shifts to disk. Using
large memory caches for tuples of often used relations can help by reducing the load on
the disk. Such caches can be modeled by means of a Buffer Hit Probability (BHP ). or
intermediate relations (in a sequence of database operations) improve performance. In
this section we explore the possibility of using such a cache in GBF, NP-LBF, NID-LBF
and NID-GBF schemes. For the later two schemes the cache has to be maintained in the
NIC.

We observe from Table 4 that the speedup is less than 1 when NP’s processing power
lower than 1/4th of HP. At lower processing power, NP is the bottleneck resource, as
seen from the high utilization of NP > 56.7%. As NP’s processing power increases
to 1:1, we see a relative speedup of 1.10, 1.09, and 1.24 for NP-LBF, NID-LBF and
NID-GBF respectively. The additional improvement in performance is due to the buffer
cache. We also find the the key resources HP, NP, Disk achieve balanced resource uti-
lizations.
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Table 4. Comparison of Resource Utilizations and Speedup with Memory Cache for BHP=0.5

Utilization Relative
Scheme HP:NP Disk HP I/O Disk I/O NIC SW NP MCE Speedup

GBF 38.1 90.8 24.0 6.7 13.9 0.1 0.0 0.0 1.00

NP-LBF

1:1/8 34.1 68.4 21.5 2.4 29.6 68.8 3.6 0.89
1:1/6 37.1 78.5 23.4 2.8 33.0 57.7 3.9 0.97
1:1/4 40.9 88.2 25.7 3.2 36.6 44.5 4.3 1.07
1:1/2 41.7 91.1 26.2 3.3 37.6 26.3 4.4 1.09
1:1 41.7 91.1 26.2 3.3 37.6 16.5 4.4 1.10

NID-LBF

1:1/8 31.3 45.8 0.0 3.9 28.3 65.7 33.2 0.82
1:1/6 34.9 51.4 0.0 4.3 31.7 56.8 37.1 0.92
1:1/4 35.4 52.0 0.0 4.4 32.0 40.5 37.5 0.93
1:1/2 40.6 59.5 0.0 5.0 36.7 27.4 43.1 1.07
1:1 41.8 61.0 0.0 5.1 37.6 18.4 44.0 1.09

NID-GBF

1:1/8 32.5 48.1 0.0 4.1 10.5 68.6 7.2 0.86
1:1/6 36.8 54.1 0.0 4.6 11.8 59.4 8.1 0.97
1:1/4 41.6 61.7 0.0 5.2 13.5 47.5 9.2 1.10
1:1/2 47.2 69.3 0.0 5.8 15.2 31.2 10.4 1.24
1:1 47.4 69.6 0.0 5.9 15.2 20.3 10.4 1.24

7 Conclusions

Optimizing the performance of these parallel query processing clusters is commercially
important. In our earlier work we had evaluated both software and hardware modifica-
tions, exploiting the programmable features of NP to a achieve higher performance with
balanced utilization of system resources. Using a Bloom filter reduces the host proces-
sor workload as it eliminates the processing on tuples that are not selected (whose join
key attribute do not match) by the join operation. Further the Bloom filter also reduces
the data transferred over network. In this work we offload the Bloom filter activities to
the network processor and evaluated its benefits. We evaluate the performance of the
proposed modifications using timed Petri net models. We find that offloading Bloom
filter processing from the host processor to the network processor results in execution
time speedup of upto 1.24, and achieves a balance resource utilization. We suggest that
if future network interfaces are equipped with programmable processor of high power,
applications should be able to exploit them in improving system performance.
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Abstract. A new parallel algorithm to compute Euclidean metric-based
Hausdorff distance measures between binary images (typically edge
maps) is proposed in this paper. The algorithm has a running time of
O(n) for images of size n × n. Further, the algorithm has the following
features: (i) simple arithmetic (ii) identical computations at each pixel
and (iii) computations using a small neighborhood for each pixel. An
efficient cellular architecture for implementing the proposed algorithm
is presented. Results of implementation using field-programmable gate
arrays show that the measures can be computed for approximately 88000
image pairs of size 128×128 in a second. This result is valuable for real-
time applications like object tracking and video surveillance.

1 Introduction

Model-based recognition is an important problem in computer vision. This is
the problem of locating an object, of which the computer has a model, in an
image. A powerful method for model-based recognition is based on the Haus-
dorff distance [1, 2, 3, 4, 5, 6] between two images. Some real-time applications of
Hausdorff distance are object tracking [4], video sequence matching [5] and face
recognition-based video surveillance [6]. The distance measures the degree of
mismatch between the images. Tolerance to the presence of outliers and missing
feature pixels due to occulusion can be accomplished with suitable modifica-
tions [1].

A direct method of computation of Hausdorff distance H(A, B) between a
pair of binary images A and B, each of size n × n, is based on finding the
nearest foreground pixel in B to every foregound pixel in A and vice versa.
The computation takes O(nAnB) time where nA and nB are the number of
foreground pixels of A and B (and in the worst case, nA = nB = O(n2)). The
computations of Hausdorff distance-related measures which this paper deals with
have the same time complexity by direct method. Efficient sequential algorithms
whose running time is linear in the size of the image have been developed [7, 8].
For large image sizes, further speedup is desirable.
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Some parallel algorithms for Hausdorff distance computation are available in
the literature [9, 10, 11, 12]. Implementations of these algorithms are on trans-
puters [9], distributed systems [10], massively parallel computers such as MasPar
[11] and SYMPHONIE [12]. The arrangements involve numerous general-purpose
processors. The recent work on Hausdorff distance has been on its applications.
To the best of our knowledge, a cost-effective application-specific architectural
solution for its computation in real-time applications is not available in litera-
ture. This paper reports a new hardware algorithm to compute two Euclidean
metric-based measures related to H(A, B): (i) H2(A, B) and (ii) an integer ap-
proximation to H(A, B). Both of these quantities take integer values (unlike
H(A, B)) and they can be computed readily in hardware. The new algorithm
can be easily mapped on to a cellular array of processors. Results of FPGA-based
implementation of the architecture show that the hardware can process images
much faster than the video rate and confirm the suitability for real-time image
matching. Further, a speed-up by a factor in excess of 8000 over a C-based PC
implementation is shown.

2 Definitions and Notations

Consider two binary images A and B (typically edge maps) each of size n × n
and consisting of foreground (black) and background (white) pixels. The Haus-
dorff distance (based on Euclidean distance metric) between the images with
foregrounds FA and FB is H(A, B) = max{h(A, B), h(B, A)} where h(A, B) =
maxpA∈FA d(pA, FB) = maxpA∈FA minpB∈FB d(pA, pB) h(A, B) and h(B, A) are
the directed Hausdorff distances from A to B and B to A respectively, and
d(pA, FB) is the Euclidean distance between pixel pA of A and the foreground
FB of B.

While H(A, B) is a real number, H2(A, B) is an integer (since pixel coor-
dinates are integers). The latter may be used for digital hardware based image
matching. Hi(A, B) may be expressed as max[hi(A, B), hi(B, A)] where hi(A, B)
and hi(B, A) are integer approximations to the directed Hausdorff distances
h(A, B) and h(B, A) respectively. The relationship between hi and h is given
by (hi(A, B) − 0.5) < h(A, B) ≤ (hi(A, B) + 0.5). Similar relationship exists
between Hi and H . Since Hi differs from H only by ± 0.5 pixel unit, Hi is ade-
quate for image matching applications. Other quantities used in this paper are as
follows:

bA(p0): binary value of pixel p0 in image A
d(p0), sqd(p0): Euclidean distance and its square in pixel units between p0

and its nearest foreground pixel
(∆r(p0), ∆c(p0)): displacement vector pointing to the nearest object pixel

nw(p0): flag (set to 1 when p0 is newly added to dilated image)

The neighbourhood of p0, N(p0), consists of eight immediate neighbours sur-
rounding p0. If p0 is a corner pixel in the image, then its neighbours inside the
image grid are only of interest.
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3 Main Ideas in Computation

We sketch the novelty in the computation of two measures here. The computation
of these quantities is based on two subalgorithms to compute (i) hi(A, B) and
h2(A, B), and (ii) hi(B, A) and h2(B, A). The procedure to compute hi(A, B)
and h2(A, B) is described below. An analogous procedure applies to hi(B, A)
and h2(B, A).

hi(A, B) is related to h(A, B) and the following result on h(A, B) is important
for the development of our algorithm.

hi(A, B) is computed by dilating uniformly the foreground FB of image B
(For hi(B, A), dilation of FA is performed). hi(A, B) is initialized to 0 and
dilation is performed iteratively. At each iteration, the foreground is dilated
by one pixel unit and hi(A, B) is incremented by 1. The procedure terminates
when the dilated FB fully covers FA upon placing image B over image A. The
dilation based on city-block and chessboard metrics can be done recursively
by considering a small neighbourhood for each pixel. However, Euclidean met-
ric involves nonlinear operations that are hard to decompose into local neigh-
bourhood operations for recursive dilation. Here, we propose an algorithm for
Euclidean metric-based dilation involving only local neighbourhood operations
on each pixel.

A number of quantities related to hi(A, B) need to be initialized and up-
dated during the iterative process. The definition of hi(A, B) suggests use of
d(p0).

The algorithm for dilation sets (∆r, ∆c) of pixels in FB to (0, 0) and then
iteratively computes those of others. At each iteration k, there are certain back-
ground pixels p0 near the boundary of the ‘current’ dilated foreground whose d
lies between k−0.5 and k+0.5. These pixels get added and form the new bound-
ary of the dilated foreground. This can be stated in terms of the integer sqd(p0)
as the set of background pixels that satisfy (k2−k) < sqd(p0) ≤ (k2+k). sqd(p0)
is computed using (∆r, ∆c) of neighbours pi ∈ N(p0) belonging to dilated FB .
Each (∆r(pi), ∆c(pi)) gives rise to an estimate (∆ri, ∆ci) for (∆r(p0), ∆c(p0)).
∆ri = ∆r(pi) + 1 if p0 and pi lie in different rows and ∆ri = ∆r(pi) otherwise.
Similarly, ∆ci = ∆c(pi) + 1 if they lie in different columns and ∆ci = ∆c(pi)
otherwise. (∆r(p0), ∆c(p0)) takes the value of (∆ri, ∆ci) that yield the minimum
in Equation (1).

sqd(p0) = min[∆ri
2 + ∆ci

2] (1)

Since we are simply comparing sqd with (k2 + k) to determine ‘new dilated
foreground’ pixels, we can define a quantity called α as (k2 + k)− sqd(p0). It is
worth noting that α(p0) can be expressed in terms of α(pi), ∆r(pi) and ∆c(pi)
without explicitly computing sqd(p0) or k2. Expanding ∆r2

i and ∆c2
i in terms of

∆r(pi) and ∆c(pi) in Equation (1), sqd(p0) can be expressed as sqd(pi)+βri+βci

where βri = 2∆r(pi) + 1 if p0 and pi lie in different rows and βri = 0 otherwise.
Similarly, βci = 2∆c(pi)+1 if they lie in different columns and βci = 0 otherwise.
Substituting this expression for sqd(p0) in α(p0), we have
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α(p0) = max
pi∈N(p0)

[αi] (2)

where αi = α(pi)− βri − βci.
A central feature of the proposed algorithm is that each α is only O(log n)

and further, α(p0) (for background pixels p0 ∈ B) is obtained at a given itera-
tion incrementally using ∆r, ∆c and α of neighbours pi (obtained in previous
iteration) belonging to dilated FB. If α(p0) ≥ 0, p0 will get added to form the
new dilated FB and

(∆r(p0), ∆c(p0)) = (∆ri, ∆ci) (3)

where i corresponds to neighbour pi that satisfies Equation (2).
Once (∆r, ∆c) of a pixel is known, its α needs to be updated for two successive

iterations as it depends on k. α(k)(p0) at iteration k is expressed in terms of
α(k−1)(p0) at iteration k − 1 as follows:

α(k)(p0) = 2k + α(k−1)(p0) (4)

can be obtained using α(k)(p0) = k2 + k − sqd(p0) and α(k−1)(p0) = (k − 1)2 +
(k−1)−sqd(p0). hi(A, B) is the final value of k while h2(A, B) is now computed
using hi(A, B) and α values of p0 ∈ FA that lie on the boundary of the final
dilated FB . The farthest pixel from FB is one among these pixels. The minimum
α corresponds to the maximum sqd and hence h2(A, B) is given by

h2(A, B) = h2
i (A, B) + hi(A, B)− min

p0∈FA

[α(p0)] (5)

4 Proposed Algorithm

The algorithm initializes ∆r, ∆c and α to 0 for all pixels. Three quantities,
namely bA, bB and nw, are introduced to facilitate hardware implementation of
the algorithm. bA(p0) and bB(p0) represent the binary values of p0 in images A
and B respectively. bA(p0) is initialized to 1 for p0 ∈ FA and to 0 for others.
bB(p0) is initialized similarly. nw is a flag assigned to each pixel for keeping track
of the boundary of dilated FB. nw is initialized to 0 for all pixels.

ALGORITHM HD AtoB
Inputs: Images A and B.
Outputs: hi(A, B) and h2(A, B).
Step 1: Computation of hi(A,B)

repeat iteration {dilation process}
for all pixels p0 do in parallel
switch (bB(p0))
1: { pixel p0 is in dilated FB }

Update α(p0) as in Equation (4)
bA(p0)=0 { bA(p0) is set to 0 since p0 ∈ FB }
nw(p0)=0 {p0 is not new in dilated FB}
break { switch bB(p0) = 1 }
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0: { check whether p0 belongs to dilated boundary of FB }
if there exists pI ∈ N(p0) such that bB(pI) = 1 do

Compute α(p0) as in Equation (2)
if (α(p0) ≥ 0) do

Compute (∆r(p0), ∆c(p0)) as in Equation (3)
bB(p0) = 1
bA(p0) = 0
nw(p0) = 1 {p0 is newly added to dilated FB}

end if
end if
break { switch bB(p0) = 0 }

end for
k = k + 1

until bA(p0) = 0 for all pixels
hi(A,B) = k

Step 2: Computation of h2(A,B)

{Filter valid α values}
for all pixels p0 do in parallel

if not[p0 ∈ FA and nw(p0) = 1] do
α(p0) = MAX {maximum value assigned to invalid α. MAX can be n2 }

end if
end for
{Let α values of pixels be represented by α(1), α(2), . . . , α(n2). Assume n2 to be power of 2.}
for l = 1 to log2n

2 do {l: a level in the tree }
for i = 1 to n2/2l do in parallel {i: a node in a level}

α(i) = min[α(2i), α(2i − 1)]
end for

end for
h2(A,B) = h2

i (A, B) + hi(A, B) − α(1) {α(1) has the minimum }

The computation of h2(A, B) relies on hi(A, B) obtained in Step 1. A proce-
dure similar to the one given will output hi(B, A) and h2(B, A). Hi(A, B) is the
maximum of hi(A, B) and hi(B, A) while H2(A, B) is the maximum of h2(A, B)
and h2(B, A).

4.1 Complexity Analysis

The time complexity purely depends on the number of iterations to compute
hi(A, B) and the height of the tree in the computation of h2(A, B). Since the
dilation for the computation of hi(A, B) is based on Euclidean distance, the
dilation distance cannot be greater than the length of the diagonal of the image
grid. For an n×n image, this length is

√
2n. The number of iterations is directly

proportional to the dilation distance and hence O(n) iterations are required
for dilation. The height of tree is of O(log n). The time complexity of the entire
algorithm is therefore O(n). The space complexity of the algorithm is O(n2 log n)
since at most O(log n) space is required for storing ∆r, ∆c and α for a pixel
(Entities such as nw, bA and bB require constant space).
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5 VLSI Architecture

The proposed algorithm is amenable for mapping on to a hardware consisting
of (i) a cellular architecture that implements Step 1 of algorithm and (ii) an
additional logic (h2AdlLogic) for h2(A, B) that implements Step 2.

5.1 Cellular Architecture

The architecture has n× n array of identical cells. Each cell is connected to the
eight neighbouring cells surrounding it. A cell consists of storage elements ∆r,
∆c, α, bA and bB, and logic circuits for computing them. The iteration number k
is generated by an external counter and the cells are updated synchronously with
respect to an external clock. The speed of operation of the cellular architecture
depends primarily on the delay due to a cell.

M1

� � �

��

�

��

�

�

�

storage elements

CL for
(∆ri, ∆ci)

α(pi)

i=1 to 8

∆r(pi), ∆c(pi)

αi, Bi∆ri, ∆ci

bB(pi)

k

clock

∆rM , ∆cM , αM

∆r(p0), ∆c(p0), α(p0), bA(p0), bB(p0)

reg ∆creg ∆r reg α ff bA ff bB ff nw

M3

M2

CL for
α

CL for
αi

Fig. 1. Different modules of a cell. CL denotes ‘combinational logic’.
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Table 1. Value of select for different cases of inputs to comparator-multiplexer mod-
ule. “-” indicates “don’t care”.

bB(pj) bB(pk) Bj Bk cmp select comments
0 0 - - - - both αj & αk are invalid
1 0 - - - 0 αj is only valid
0 1 - - - 1 αk is only valid
1 1 0 0 1 0 both are valid and positive. αj > αk

1 1 0 0 0 1 both are valid and positive. αk > αj

1 1 1 1 1 0 both are valid and negative. αj > αk

1 1 1 1 0 1 both are valid and negative. αk > αj

1 1 0 1 - 0 αj is positive. αk is negative
1 1 1 0 - 1 αj is negative. αk is positive

Design of a Cell. The different modules of a cell are shown in figure 1. The
module M1 computes ∆ri and ∆ci. The module M2 computes αi, i = 1 to 8,
given in equation (2).

Once αi, ∆ri and ∆ci for i=1 to 8 have been computed, these values are given
to the module M3 along with bB(pi) and borrow bits Bi from the subtracters
of M2. M3 has seven comparator-multiplexer modules arranged in three levels
(four at the first level, two at the second level and one at the third level) to
compute max[αi], i = 1 to 8, in equation (2). In the figure, max[αi] is denoted
by αM . Further, M3 allows the values of ∆ri and ∆ci, corresponding to the i
that yields αM . These values are denoted by ∆rM and ∆cM .

The comparator-multiplexer module takes two sets of inputs, setj = {αj , ∆rj ,
∆cj , bB(pj), Bj} and setk = {αk, ∆rk, ∆ck, bB(pk), Bk}. It has a comparator to
compare αj > αk and a multiplexer that outputs either setj or setk depending
on the value of select input of multiplexer. setj is output when select=0 while
setk is output when select=1. The comparator is designed for comparing two
unsigned binary numbers. bB(pj)=1 means the value of αj is valid. Bj=1 means
αj is negative and cmp=1 means αj > αk. The value of select for different
cases is tabulated in table 1. It is obtained using an AND-OR-NOT logic that
implements [bB(pj) ∧ bB(pk)] ∨ [bB(pj) ∧ bB(pk) ∧ Bj ∧ Bk ∧ cmp] ∨ [bB(pj) ∧
bB(pk) ∧Bj ∧Bk ∧ cmp] ∨ [bB(pj) ∧ bB(pk) ∧Bj ∧Bk] as given by the table.

αM is then added to 2k. The output α(p0) of the adder is given as input to the
register reg α. ∆rM and ∆cM are given as inputs to the registers reg ∆r and
reg ∆c. The flip-flops ff bA and ff bB are input with ‘0’ and ‘1’ respectively.
A T flip-flop (ff nw) is used for nw.

5.2 Design of h2AdlLogic

The various modules of the design is shown in Figure 2. The final values of α
and nw obtained from the cellular architecture are input to module M1. Based
on the values of nw and binary values of pixels of image A, the module filters
valid α values and assigns a maximum value (say, MAX) to each invalid α.
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Fig. 2. Block diagram of the design for h2(A, B)

MAX is the maximum possible value that reg α in the cell can store. For each α
corresponding to pixel p0, a 2-input MUX whose inputs are MAX and α realizes
the filter logic. The select input of MUX is generated with an AND-NOT logic
whose inputs are nw(p0) and binary value of p0 in A.

The modified values of α are input to module M2 where the minimum α
is found. The binary-tree structured minimum finding is implemented with 2-
input minimum computation logic blocks as shown in the figure. A sequential
logic with n2/2 such blocks whose outputs are fed back to the inputs of the
first n2/4 blocks realizes the module. Once the inputs are initialized with the
modified values of α, the module finds the minimum when clocked. The output
of the first block gives the minimum after log2 n2 (height of tree) clock pulses.

The minimum α along with the final value (hi(A, B)) of external counter (that
generates iteration number k for the cellular architecture) are given to module
M3 which computes h2(A, B). The module is realized with a multiplier, an adder
and a subtracter.

5.3 Implementation and Performance

The design has been coded in VHDL (a hardware description language) and
its functional behavior has been tested in ModelSim. The design has then been
implemented in Xilinx FPGA. It has been mapped onto one of the target devices
of Xilinx. An appropriate device has been chosen taking into consideration the
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number of logic blocks and pins available. The specifications of the target device
are as follows - family:Virtex-E; device:xcv3200e; package:fg1156; speed grade:-
6. After mapping the design on to a Xilinx device, placement and routing of
FPGA components are performed.

Since a cellular architecture consists of locally connected identical cells, the
delay due to interconnections is negligible. Hence, the time (Thi) taken to com-
pute hi(A, B) can be obtained from the maximum clock rate (fc) obtained from
the implementation of a cell. The number of clock pulses (nhi) needed for compu-
tation equals the number of iterations taken which is less than or equal to dmax,
the maximum possible distance value. That is, nhi ≤ dmax, where dmax =

√
2n.

The period (Tc) of a clock pulse is 1/fc seconds and hence Thi ≤ dmax×Tc. The
time to compute both hi(A, B) and hi(B, A) is 2Thi. The number of image pairs
(Nhi) per second that can be processed on a cellular architecture is �1/2Thi�.

The additional time Ta required to compute h2(A, B) depends on the max-
imum path delays (TM1 and TM3) of combinational logic of modules M1 and
M3 as also on maximum clock frequency fM2 required for the operation of
M2. The time (TM2) taken for finding minimum in M2 is log2 n2/fM2 since
the operation requires log2 n2 clock pulses. Hence, Ta = TM1 + TM2 + TM3 =
TM1 + log2 n2/fM2 + TM3. The net time Th taken to compute h2(A, B) is less
than or equal to Thi + Ta. The number of image pairs Nh per second that can
be processed by the entire design is 1/2Th. The percentage increase in time (t%)
for the computation of h2(A, B) due to h2AdlLogic is (Ta/Thi)× 100.

Let Gc, GαM1, GbM2 and GM3 be respectively the equivalent gate count
of Xilinx components consumed by the following designs: a cell, the logic that
processes a single α in M1 of h2AdlLogic, a block in M2, and M3. The equivalent
gate counts Ghi and Ga for n × n cellular architecture and h2AdlLogic are
estimated to be n2Gc and n2GαM1+(n2/2)GbM2+GM3. The percentage increase
in gate count (g%) for the computation of h2(A, B) is (Ga/Ghi)× 100.

Some results for an image of size 128×128 are as follows. fc, TM1, fM2, TM3,
Gc, GαM1, GbM2 and GM3 obtained from the implementation are 33 MHz, 8.6
ns, 159 MHz, 26.5 ns, 196, 66, 153 and 6800 respectively. Thi ≤ 5.5 µs and Nhi ≥
91150 while Th ≤ 5.62 µs and Nh ≥ 88920. Nhi and Nh are much greater than
the video rate, which is about 30 frames per second and hence the computation
of Hausdorff distance on a cellular architecture-based hardware is well-suited for
real-time applications. The equivalent gate counts Ghi and Ga are computed
to be roughly 3.2 million and 2.3 million respectively. Each of the designs for
hi(A, B) and h2AdlLogic will therefore fit into one Virtex-E chip whose gate
count is approximately 4.1 million. t% is 2.2 % while g% is 72 %. Comparing
with the computation of hi(A, B), there is negligible increase in time but a
moderate increase in gate count for the computation of h2(A, B).

6 Conclusions

In this paper, a new cellular architecture-directed parallel algorithm with a run-
ning time of O(n) has been proposed to compute two measures, namely H2(A, B)
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and Hi(A, B) between binary images A and B, each of size n×n. Hi(A, B) is ad-
equate for matching applications as it differs from H(A, B) by atmost ±0.5 pixel
unit only. H(A, B) may be obtained from H2(A, B) in software when required.
Features of the proposed algorithm are (i) simple arithmetic operations (ii) iden-
tical computations for each pixel and (iii) computations of a local nature at each
iteration. Results of implementation show that the hardware-based Hausdorff
distance computation can process images much faster than the video rate and
is therefore appropriate for real-time image matching applications such as ob-
ject detection and tracking in video and face detection for biometric surveillance
system.
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Abstract. We consider the problem of estimating the location of a mov-
ing target in a 2-D plane. In this paper, we focus attention on selecting
an appropriate 3rd sensor, given two sensors, with a view to minimize
the estimation error. Only the selected sensors need to measure distance
to the target and communicate the same to the central “tracker”. This
minimizes bandwidth and energy consumed in measurement and commu-
nication while achieving near minimum estimation error. In this paper,
we have proposed that the 3rd sensor be selected based on three mea-
sures viz. (a) collinearity, (b) deviation from the ideal direction in which
the sensor should be selected, and (c) proximity of the sensor from the
target. We assume that the measurements are subject to multiplicative
error. Further, we use least square error estimation technique to estimate
the target location. Simulation results show that using the proposed al-
gorithm it is possible to achieve near minimum error in target location.

1 Introduction

We consider the problem of estimating the location of a moving target ‘T’ in
a 2-D plane. The target is moving at varying speed and direction (see Figure
1). For the present, we assume that the target is not aware of its own location.
Or, if it is aware of its location, then it does not share this information with
any other device. In either case, we assume that it is possible for sensors, such
as s1 located at [x1, y1], to “measure” the distance from/to the target, located
at (x0, y0), and thereby estimate the location of target ‘T’. Several methods for
measuring distance between a sensor and the target are available. See [1], [2] for
methods based on radio signal strength (RSSI) and [3], [4] for methods based on
time difference of arrival (TDOA).

Irrespective of the method used to measure distance, all such measurements
are subject to error. Two models have been studied, viz. (a) additive, and (b)
multiplicative. In this paper, we confine ourselves to using the multiplicative
model for errors. Let di

A and di
M be the actual and measured distance between

target and the ith sensor. The multiplicative error in measurement by ith sensor,
ei

m = di
A− di

M = γ εmeas

2 di
A where, εmeas is a measure of the amount of measure-

ment error, and −1 ≤ γ ≤ 1. That is, the error is uniformly distributed with
endpoints (1 − εmeas

2 )di
A and (1 + εmeas

2 )di
A, zero mean and standard deviation

of σi
m = 1√

3
( εmeas

2 )di
A.

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 190–200, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Sensor Selection Heuristic in Sensor Networks 191

Even though the distance between a given sensor and the target is known
only with some error, it is possible to use distance measurements from 3 or more
sensors to ‘estimate’ the location of the target assuming that (a) the location of
the sensors is known to the central device responsible for estimating the location
of the target, (b) the clocks of the sensors are synchronized so that the sensors
“measure” distance at approximately the same time, and (c) the sensors are able
to communicate their measurements to this central device, also referred to as
the “tracker”.

Since the target is moving and since a sensor must be within a certain dis-
tance from the target (before it can detect the presence of the target and measure
distance), we assume that there are several sensors, {si} = Σ, spread across the
2-D plane. In fact, we assume that there are three or more sensors located in and
around every point in the 2-D plane so that we can compute an estimate based
on measurements from a subset of three sensors suitably selected to minimize
estimation error. This approach also allows one to minimize communication over-
heads and conserve battery power available to sensors. Further, since the target
is moving, the collection of sensors changes every time an estimate is required to
be obtained. Specifically, we assume that as the target moves, if sensors {s1, s2,
s3} have made measurements at time tk, then at time tk+1, we drop one of the
sensors s1, s2, or s3 and select a sensor s4 suitably so as to minimize the error
in estimated location of the target. Accordingly, this paper is about suitably
selecting the 3rd sensor from a set of Nk+1 sensors.

2 Mobile Target Tracking

We now outline the overall scheme for tracking the target as it moves in the 2-D
plane.

Let Lk = [xk, yk] be the actual location of the target at time tk. Let L̂k−1 =
[x̂k−1, ŷk−1] and L̂k = [x̂k, ŷk] be the estimated location of the target at time tk−1

and tk, respectively (see Figure 2). The latter estimate L̂k is obtained using (a)
an a-priori estimate of the target’s location L̄k = [x̄k, ȳk], and (b) measurements
made at tk by sensors σ1

k, σ2
k, and σ3

k located at λ1
k, λ2

k, and λ3
k, respectively. The

a-priori estimate L̄k = [x̄k, ȳk] may be based on its estimated location at time
instants tk−1 and tk−2. (see Figure 2).

The new estimate of the location of the target at time tk+1 is obtained on
the basis of new distance measurements d1

k+1, d2
k+1 from σ1

k+1, σ2
k+1 respectively,

and d3
k+1 from a newly selected sensor σ3

k+1. Sensor σ3
k+1 is selected assuming

knowledge of a-priori estimate of the target location. The latter is an extrapo-
lation of its location assuming that the average velocity during [tk, tk+1] is the
same as the average velocity during and [tk − 1, tk]. The new estimate of the
location of the target at time tk+1 is obtained thus:

– Step 1: Given the estimated location L̂k (based on measurements from σ1
k,

σ2
k, and σ3

k) and L̂k−1 at times tk and tk−1, respectively, compute an a-priori
estimate
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Fig. 1. Trajectory of the target ‘T’ in
2-D plane

Fig. 2. Estimated location of the target
on the basis of a-priori estimate

L̄k+1 = αk+1(L̂k − L̂k−1)

where, αk+1 = tk+1−tk

tk−tk−1
. (See Figure 2.)

– Step 2: Given its approximate location L̄k+1, identify an appropriate subset
of three sensors, viz. σ1

k+1, σ
2
k+1, and σ3

k+1 from a given subset of sensors
Σk+1 ⊂ Σ.

– Step 3: Sensors σ1
k+1, σ

2
k+1, and σ3

k+1 obtain distance measurements d1
k+1,

d2
k+1, and d3

k+1, respectively, and communicate the same to the central
“tracker”.

– Step 4: The “tracker” computes a least square error estimate, L̂k+1, such that∑i=3
i=1 e2

i is minimized. Here, ei = ‖L̂k+1 − λi
k+1‖

1
2 − di

k+1, where ‖L̂k+1 −
λi

k+1‖ is the Euclidean distance between L̂k+1 and λi
k+1 = [xi

k+1, y
i
k+1], the

location of sensor σi
k+1. This method is described in Section 4.

In Step 2, we stipulate that sensors σi
k+1 are selected as follows: σ1

k+1 =
σi

k, j = 1, 2, or 3; σ2
k+1 = σi

k, j = 1, 2, or 3; σ2
k+1 �= σ1

k+1, σ3
k+1 ∈ Σk+1; σ3

k+1 �=
σ1

k+1, σ
3
k+1 �= σ2

k+1. That is, one of the sensors used to estimate the location of
the target at time k is replaced by another more suitable sensor from amongst
the remaining set of sensors that are within the range of the target (see Sections
5 and 6).

Section 3 describes related work in the area of target tracking and sensor
selection. Location estimation has been described in Section 4, while Section
5 and Section 6 describe the method and the algorithm for sensor selection,
respectively. We present simulation results in Section 7. Section 8 concludes the
paper.

3 Related Work

Research on estimating the location of a fixed target, given measurements from
a subset of sensors has been reported in [1], [3], [5], [6], [7], [8], [9], [10], and
[11]. These differ from each other on the basis of (a) the number of sensors

y

θ
@ time t

s1 @ (x1 ,y1)

x

’T’ @ (x0 ,y0)

y

x

Estimated L̂k+1 at tk+1

Estimated L̂k−1 at tk−1

Estimated L̂k at tk

a− priori estimated L̄k+1 at tk+1

s2
k

s3
k

s1
k



Sensor Selection Heuristic in Sensor Networks 193

required, (b) the nature of measurements, and (c) the technique for estimating
the location.

– Priyantha et al [3] estimate target location using trilateration using distance
measurements based on TDOA from 3 different sensors.

– Bahl et al [1] estimate target location using trilateration, but using RSSI
measurements. Additionally, they build a radio map of the site and then
locate the target based on radio signal strength measurements.

– Triangulation is used in robotics [11] to estimate the location of a robot.
This requires 3 or more angle of arrival (AoA) measurements.

Tracking of mobile targets using sensor networks has been studied in [12],
[13], [14].

– In [12] and [13] the target location is approximated by the location of a
sensor when the target comes within its range. The resulting resolution is
the same as that of the sensors. This may be, however, improved using
multiple sensors.

– In [14] acoustic measurements from all sensors in the cluster around the
target are used by a cluster head to minimize the error in estimating the
location.

In this paper, and as described earlier in Section 2, a group of sensors in
and around an a-priori estimated location of the target is selected. This group
changes as and how the target moves within the 2-D plane.

Several papers (see [6], [7], [9], and [10]) have used different approaches to
study selection of sensors.

– Zhao et al have proposed in [6] and [7] that sensors should be selected such
that (a) communication overhead is minimized, and (b) the error in locating
the target is minimized using a Bayesian maximum likelihood estimator.
However, this assumes that an a-priori estimate of the location is available.

– Wang et al [9] also assume a-priori knowledge of the target location, ex-
pressed in the form of a Gaussian probability distribution function. The
error in TDOA or AoA measurements is assumed to be Gaussian. While
the estimate is based upon Bayesian filtering, the sensors selected are those
that maximize the entropy difference between the a-priori and posteriori
estimates of the target location.

– In Isler et al [10] the target location is estimated based on the region of
intersection of 2-D cones resulting from uncertainty in AoA measurements
from multiple sensors. Sensors which minimize the area of such intersection
are the one selected. This scheme also requires an a-priori knowledge of the
location of the target.

In this paper, we have proposed that a 3rd sensor be selected given two
sensors based on three measures viz. (a) collinearity, (b) deviation from the
ideal direction, and (c) proximity of the sensor from the target. We use least
square error estimation technique to estimate the target location.
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4 Target Location Estimation

Before discussing selection of the 3rd sensor, we discuss the method to obtain a
least square error estimate of the location at time tk. For convenience, we drop
the subscript k in tk and instead work with time t. The estimation problem can
be stated thus: given measurements d1, d2, . . . , dn from sensors s1, s2, . . . , sn,
respectively located at λ1 = [x1, y1], λ2 = [x2, y2], . . . , λn = [xn, yn], compute
an estimate L̂ = [x̂, ŷ] such that

i=n∑
i=1

{
√

(x̂ − xi)2 + (ŷ − yi)2 − di}2

is minimum. The measurements are possibly subject to errors.
In order to compute the optimal [x̂, ŷ], we have experimented with two algo-

rithms: (a) Steepest Descent algorithm [15], and with (b) Levenberg Marquardt
algorithm [15] to compute the optimal [x̂, ŷ]. In either case, the method requires
an initial “guess”. We have proposed that the initial estimate be obtained by
solving

(
n
2

)
linear equations1.

Our experience (see also [16]) shows that (a) the above method for computing
the initial guess is reasonably adequate in helping one to descend to the optimum
(see Figure 3), (b) the error in location estimation increases (almost) linearly
with error in measurement (see Figure 4), and (c) the number of iterations
required in Steepest Descent method is generally less than 20, while the same is
less than 6 in case of Levenberg Marquardt. In this paper, however, we use the
Steepest Descent algorithm in all our simulations. (See Figure 3.)

5 Sensor Selection

The position of the 3rd sensor relative to that of the other two sensors and the
target plays an important role in location estimation accuracy. In a simulation,
1 These are obtained by subtracting equations of the type

√
(x̂ − xi)2 + (ŷ − yi)2 −

di = 0 from one another, thereby resulting in
(

n
2

)
linear equations.
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the 3rd sensor, s3, was placed at various locations and the resulting error in
location estimation was computed. The sensing range, r0, was assumed to be
100m. The measurement error was assumed to be 30%, that is εmeas = 0.3.
The target was assumed to be at [0,0]. The two sensor, s1 and s2, are placed at
different positions such that (a) the visual angle made by them with the target,
α > π

2 or α < π
2 , and (b) d1 = d2 or d1 �= d2.

Part of the results2 are given in Figures 5 and 6. It can be seen that (a)
when sensors s1, s2, and s3 are almost collinear, the error in estimated location
is large, (b) there is a preferred region in which to locate the 3rd sensor. This is
the region where a dot, “.” is printed.

The sensor selection technique proposed in this paper is based on three fac-
tors, viz. (a) collinearity of sensors, (b) ideal direction in which 3rd sensor should
be selected (for the given position of two sensors), and (c) proximity of selected
sensor from the target. This selection is done before any new measurement is
made, and assuming that the target is indeed located near the a-priori estimate
of its location.

5.1 Collinearity

Consider the distribution of sensors s1, s2, and s3 in a 2-D plane shown in Figure
7. If, for the moment, we assume that the error in distance measurements in near
zero, then it can be concluded that the target is either located at position A,
or at position B. Further, measurement from a third sensor does not add value

2 A different symbol is printed for each range of estimation error. In particular, if µ is
the average estimated error and εloc is the estimation error when the third sensor is
placed in the specific position, then

– if εloc ≥ 3
2
µ, then print “*”, else

– if µ ≤ εloc < 3
2
µ, then print “�”, else

– if 1
2
µ ≤ εloc < µ, then print “+”, else

– if εloc ≤ 1
2
µ, then print “.”
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since s1, s2 and s3 are collinear. Distance measurement from a 3rd sensor which
is not collinear is necessary to resolve whether the target is at A or B.

We define the collinearity coefficient Φ for an sensor si as the residual error
resulting from a linear least square fit through the given two sensors and the
sensor si:

Φ(s1, s2, si) = min(m,c){(y1−mx1−c)2 +(y2−mx2−c)2 +(yi−mxi−c)2} (1)

Figure 8 shows a plot of estimation error vs. Φ, the residual. When Φ is
small, the sensors are almost collinear and the estimation error is high. But if
the collinearity coefficient is large, the location estimation error is likely to be
small.

5.2 Ideal Direction

Below we argue that, given the positions of two sensors, there is a preferred
direction in which to locate the 3rd sensor. Consider the region of intersection
of the error annuli corresponding to the computed distance between the a-priori
estimated location of the target and the two sensors (see Figure 9). Clearly,
the region formed around the a-priori estimate of its location is the one in
which the probability that the target is located is the maximum. For simplicity,
this latter region is approximated by the parallelogram obtained by intersecting

Fig. 9. Region of intersection of the error annuli
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bands formed by tangents to the error annuli. This is shown in Figures 10 and 11
for the two cases viz. (a) α > π

2 and (b) α < π
2 , respectively. Here α is the visual

angle made by the two sensors with the target. Irrespective of whether α > π
2

or α < π
2 , we propose that the 3rd sensor be placed along the larger diagonal of

the parallelogram, since the resulting maximum uncertainty in the location of
the target is minimized. This is discussed in detail below.

The ideal direction (see Figures 10 and 11), specified with respect to the axis
passing from sensor s1 to the target, is given by

θ = 3π
2 + tan−1 d2sin(α)

d1+d2cos(α) , if α > π
2 , and

θ = 3π
2 + α− tan−1 d1sin(α)

d2−d1cos(α) , if α < π
2 .

Selecting a sensor located approximately in the direction θ ensures that
the resulting polygon of intersection after inclusion of measurement will have
a smaller longest axis. A measure which captures the deviation from the ideal
direction, and which may be used to select the 3rd sensor, is defined thus:

Ψ =| θsi − θ | (2)

where θsi is the direction of sensor si with respect to the axis from s1 to the
target.

5.3 Proximity of Sensors to Target

We now argue that the 3rd sensor is preferably placed as close as possible to the
target. This is so only if measurement error is multiplicative.

From simulations (see Figure 13), it has been observed that the location
estimation error increases almost linearly with the distance of the three sensors
from the target. Since we have assumed a multiplicative error model, a measure
of proximity ∆ of sensor si from the target is defined as:

∆(si) = ‖si − L‖, (3)

where ‖si − L‖ is the Euclidean distance between si and L. Since the location
of the target L is unknown, we use L̄, the a-priori estimate of the location.

∆(si) = ‖si − L̄‖. (4)
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6 Multi-objective Sensor Selection Algorithm

In this paper, we propose that for given sensors s1 and s2, a 3rd sensor s3 is
selected, from those sensors that are within the range of the target, have adequate
battery power, and such that (a) the coefficient of collinearity is maximized, (b)
the deviation of the direction of the sensor from the ideal direction is minimized,
and (c) the distance of the sensor from the target is minimized. Since this is a
multi-objective optimization problem, we propose the following algorithm:

– Step 1: Eliminate all sensors for which the collinearity coefficient Φ ≤ φ0.
– Step 2: Of the remaining sensors, consider only those for which deviation

from the ideal direction Ψ ≤ ψ0.
– Step 3: Finally, of the remaining sensors, select the one for which the measure

of proximity ∆ is the minimum.

7 Simulation Results

Simulations were carried out with N sensors (N = 10, 20, or 30), each of which is
randomly placed within 100m of the “actual” location of the target. The sensing
range, r0, is 100m. The target was assumed to be at [0, 0], and the a-priori
location of the target was also assumed to be [0, 0]. The measurement error is
assumed to be 30%. Values of ψ0 and φ0 required in the above algorithm are
specified thus: ψ0 = 30o, φ0 = 625m2.

We have compared the results obtained using the proposed algorithm with
results obtained using other criteria for selecting the 3rd sensor, viz. (a) prox-
imity only, (b) collinearity only, and (c) deviation from ideal direction only (see
Table 1). The error in estimated location based on our algorithm is also com-
pared with the error resulting from selecting the “best” possible sensor. The
latter is obtained by exhaustively computing the least square error estimate for
each possible sensor.

It may be noted that using the proposed algorithm, we achieve near minimum
error in estimated location. Further, as N increases, there is improvement in the
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Table 1. Comparison of location estimation error with proposed algorithm and with
other algorithms

N Collinearity onlyProximity onlyIdeal direction onlyBest sensorProposed algorithm

10 11.7581 24.6160 15.2932 9.1745 9.4021
20 11.5150 19.4959 16.9380 8.2882 8.7331
30 10.2022 13.1000 17.4704 8.1151 8.5329

error in estimated location. However, the error in estimated location does not
improve when (a) the 3rd sensor is selected based only on the ideal direction
since the resulting three sensors may be collinear, in which case the estimation
error may be large.

8 Conclusion

In this paper, we have proposed that the sensors be selected based on three
measures viz. (a) collinearity, (b) ideal direction in which the sensor should be
selected so that the error is minimized, and (c) proximity of the sensor from the
target. We use measurements that are subject to multiplicative error. Further,
we use least square error estimation technique to estimate the target location.

The sensor selection is done by the central “tracker” and only the selected
sensors measure distance to the target and communicate to the central “tracker”
for estimating the target location.

We propose that a 3rd sensor be selected in the ideal direction calculated on
the basis of given two sensor positions. The knowledge of a-priori target position
is assumed to be available. The results obtained with proposed algorithm are very
very encouraging.
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Abstract. We consider the class of “left-looking” sequential matrix al-
gorithms: consumer-driven algorithms that are characterized by “lazy”
propagation of data. Left-looking algorithms are difficult to parallelize
using the message-passing or distributed shared memory models because
they only possess pipeline parallelism. We show that these algorithms can
be directly parallelized using mobile pipelines provided by the Naviga-
tional Programming methodology. We present performance data demon-
strating the effectiveness of our approach.

1 Introduction

In computational science, array-based algorithms (e.g., matrix factorization
algorithms) are sometimes classified as “right-looking” or “left-looking” algo-
rithms [1]. In both cases, the array is scanned from left to right. Right-looking
algorithms are producer-driven: at each stage, the algorithm performs compu-
tations on the current element, and then immediately performs updates to the
elements to the right of the current element. The fundamental data flow is eager
propagation to the right, or scattering, as illustrated in Fig. 1(a). Left-looking
algorithms, in contrast, are consumer-driven: at each stage, the algorithm up-
dates the current element using previously computed values of elements to its
left, after which the algorithm performs computations on the newly updated
current element. Here the fundamental data flow is gathering previously com-
puted data from the left, as illustrated in Fig. 1(b). Skeleton right-looking and
left-looking algorithms are shown in Fig. 2(a) and Fig. 2(b), respectively. In a
matrix application, each element x[i] would be a matrix column.

Right-looking algorithms are easy to parallelize directly. In each iteration of
the outer loop in Fig. 2(a), the iterations of the inner loop are independent of
one another and hence can be parallelized using data-parallel constructs such as
doall or forall . In contrast, the inner loop in Fig. 2(b) carries dependence and
hence admits only pipelined parallelism.
� The authors gratefully acknowledge the support of a U.S. Department of Education

GAANN Fellowship.
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Fig. 1. Data access patterns. (a)Right-looking (scattering); (b) Left-looking (gathering).

(1) for i = 1 to N

(2) x[i] = g1(x[i])
(3) for j = i + 1 to N

(4) x[j] = f(x[i], x[j])
(5) end for
(6) end for

(a)

(1) for j = 1 to N

(2) for i = 1 to j − 1

(3) x[j] = f(x[i], x[j])
(4) end for
(5) x[j] = g2(x[j])
(6) end for

(b)

Fig. 2. (a) Right-looking code; (b) Left-looking code

A simple contrived left-looking algorithm is shown in Fig. 3(a). The jth itera-
tion of the outer loop, which computes a[j], requires the values of a[i] computed
by all the previous iterations. In this particular case, the algorithm can be par-
allelized by first transforming it by switching the order of loop nesting, in effect
turning it to a right-looking algorithm. However, the general problem of con-
verting a left-looking algorithm to an equivalent right-looking algorithm is not
always completely straightforward. For example, even in the simple algorithm
from Fig. 3(a), correctly reversing the loop order requires another modification,
to the statement at line (5). A symbolic analysis technique for verifying the legal-
ity of program transformations is available, but there is no known transformation
sequence to convert one to another [2].

Even if it were possible to automatically transform left-looking algorithms to
their equivalent right-looking forms, this would not necessarily be a good ap-
proach to achieving parallelism. One reason is algorithmic integrity [3]: keeping
the parallel implementation closer in structure to the original algorithm makes
the parallel implementation easier to understand and hence to maintain or mod-
ify. Even a minor modification of a left-looking sequential algorithm may totally
invalidate the corresponding parallel implementation if it relies on conversion to
a right-looking algorithm [4]. A second reason is that it is sometimes useful to
update only a portion of an array—for example, when refactorizing a portion of
a matrix. In Fig. 2(a), this can be done simply by changing the bounds on the
outer loop. In Fig. 2(b), the change is more subtle.

A third, very important, reason for not transforming a left-looking algorithm
to a right-looking algorithm is performance: a sequential program may have been
carefully crafted to make effective use of the cache or a particular data layout.
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(1) for j = 2 to N

(2) for i = 1 to j − 1

(3) a[j] ← j ∗ (a[j] + a[i])/(j + i)
(4) end for

(5) a[j] ← a[j]/j
(6) end for

(a)

(1) for j = 2 to N

(1.1) hop(node map[j]); x ← a[l[j]]
(2) for i = 1 to j − 1

(2.1) hop(node map[i])
(3) x ← j ∗ (x + a[l[i]])/(j + i)
(4) end for
(4.1) hop(node map[j]); a[l[j]] ← x

(5) a[l[j]] ← a[l[j]]/j
(6) end for

(b)

Fig. 3. Pseudocode for a simple algorithm. (a) Sequential; (b) DSC using NavP.

The closer the parallel algorithm is to the sequential algorithm the more likely it
is to preserve such performance enhancements that were in the original sequential
code. Experimental evidence in [2] shows that converting between a left-looking
and a right-looking algorithm can have a significant effect on performance.

In this paper we examine an alternative approach to parallelizing left-looking
algorithms: rather than converting them to right-looking algorithms, we paral-
lelize the original code directly, thus preserving the integrity of the original se-
quential algorithm. As we show, this can be done quite easily using the paradigm
of Navigational Programming (NavP), in which multiple migrating threads carry
out the computation. In this model, computations are programmed to migrate
among the processors. They follow the locations of large-sized data, while car-
rying along small-sized data. The individual migrating computations generally
follow each other, thus forming a Mobile Pipeline. Figure 4 illustrates the prin-
ciple by comparing a conventional (stationary) pipeline with a mobile pipeline.
In the figure, C1, C2, and C3 are computations, and a, b, c, d, and e are the
data being computed. In a conventional pipeline, C1, C2, and C3 are stationary,
whereas in a mobile pipeline they migrate. The essence of our NavP approach
is to use Distributed Sequential Computing (DSC) [3] threads to construct mo-
bile pipelines to exploit pipeline parallelism in the left-looking algorithms. The
NavP view naturally describes efficient distributed algorithms, with regular or
irregular communication patterns, using code that is structurally the same as
the original sequential algorithm [5].

If we attempt to directly parallelize the code using either a Distributed Shared
Memory (DSM) or Message Passing (MP) paradigm, we find that we either
have to use considerably more memory—enough that the solution is no longer
scalable—or asymptotically increase the communication cost. The reason why
NavP is superior for this problem can be summarized as follows, in the context
of Fig. 3(a). We can think of the computation of a[j] as being a pipeline of j− 1
stages, with the ith stage being the incorporation of the value of a[i]. If each
pipeline is stationary and remains on one processor, then each needed value of a[i]
must, at some point during the execution of the pipeline, be on that processor.
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Fig. 4. The comparison of two pipelines. (a) Conventional; (b) Mobile.

If the values are stored there permanently, additional memory is required; if
they are stored there temporarily, additional communication is required. The
NavP solution, in contrast, avoids this problem by having a moving pipeline
visit the necessary data, so that no element of the array needs to be replicated
or re-communicated.

We describe our approach in more detail in Sect. 2. In Sect. 3, we discuss
the results of applying the same pipelining technique to a numerical kernel,
Crout factorization. We present performance data in Sect. 4, and we conclude
by discussing some related work and some final remarks.

2 A Simple Example

In this section, we discuss and analyze the parallelization of the sequential al-
gorithm introduced in Sect. 1. To make the discussion more concrete, assume
that the parallel computation is being performed on P processors, each of which
stores N/P array entries. In Sect. 2.1 we describe a NavP implementation that
requires a communication cost of O(N ·P ) communications and O(N/P ) mem-
ory on each processor. In our full length technical report [4], we show that any
direct parallel implementation of the sequential algorithm using either MP or
DSM either requires Ω(N2) communication cost or requires Ω(N) memory us-
age on at least one processor. The first case represents an asymptotic increase
in communication cost, whereas the second essentially requires that the entire
input array be stored on one processor, which is not a scalable solution if the
number of processors is large.

2.1 NavP Solution

In NavP, we use multiple self-migrating threads to carry out computations for
distributed parallel computing. We insert statements of the form hop(dest node)
into sequential codes to provide computation mobility. The threads carry data
to remote nodes using thread-private variables, and they communicate with
each other using shared node variables (stationary on a node, and shared by all
threads that currently reside on that node). Concurrent self-migrating threads
residing on the same node use events, with signalEvent() and waitEvent(),
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to synchronize with each other. This is necessary because the daemon on each
node uses multiple threads to handle communication and computation. NavP
is essentially distributed concurrent shared variable programming. It provides
a different view of parallel distributed computing [5] from the classical SPMD
(Single Program Multiple Data) view.

Our NavP approach uses the Messengers [6, 7, 8] migrating thread environ-
ment. This parallel execution environment is efficient because, as pointed out in
our technical report [4], we do not need to move code, we keep the cost of book
keeping small, and we use user level multithreading to efficiently schedule the
migrating threads.

In the NavP approach, the parallelization of a given sequential algorithm
proceeds in two steps. The first step is referred to as DSC (Distributed Sequential
Computing) [3]. In this step, we start with a data distribution pattern, and insert
hop() statements in the sequential code so that the computation follows the data
it accesses through the network. The resulting DSC program is a distributed
program, but with a single locus of computation.

Figure 3(b) lists the DSC code of the simple example. Three hop() and
load/unload compound statements are inserted (at lines (1.1), (2.1), and (4.1)).
Code structure is not changed. In the pseudocode, x is a thread-private variable
that is available to the thread wherever it hops, and a[.] is a distributed shared
variable that is logically one big array but physically a distributed collection
of sub-arrays. The auxiliary array node map[.] provides the node ID of a given
array entry, and l[.] contains the local array index of an entry with a given global
index. The DSC code works for arbitrary data distributions (e.g., block, cyclic,
or block cyclic).

(1) for j = 2 to N

(1.1) hop(node map[j]); x ← a[l[j]]
(2) for i = 1 to j − 1

(2.1) hop(node map[i])

(3) x ← j ∗ (x + a[l[i]])/(j + i)

(4) end for
(4.1) hop(node map[j]); a[l[j]] ← x

(5) a[l[j]] ← a[l[j]]/j
(6) end for

(a)

(0.1)signalEvent(evt, 1)
(1) for j = 2 to N

(1.2) inject(entry proc(j))
(6) end for

(1.0)Thread entry proc(j)
(1.1) hop(node map[j]); x ← a[l[j]]
(2) for i = 1 to j − 1

(2.1) hop(node map[i])
(2.2) if (i = 1) waitEvent(evt, j − 1)
(3) x ← j ∗ (x + a[l[i]])/(j + i)
(3.1) if (i = 1) signalEvent(evt, j)
(4) end for
(4.1) hop(node map[j]); a[l[j]] ← x

(5) a[l[j]] ← a[l[j]]/j
(5.1)end Thread

(b)

Fig. 5. The simple algorithm. (a) DSC using NavP; (b) Pipelining using NavP.
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(1) for J = 1 to num blocks
(1.1) hop(node map[J]); load blk J to x[]
(2) for I = 1 to J − 1
(2.1) hop(node map[I])
(3) Call F(I, J, a, x)
(4) end for
(4.1) hop(node map[J])
(5) Call F(J, J, x, x); unload x[] to blk J
(6) end for

(a)

(1)Procedure F(I, J, a, x)
(2) for j = start(J) to end(J)
(3) fori = start(I) to min(end(I), j − 1)
(4) x[l[j]] ← j ∗ (x[l[j]] + a[l[i]])/(j + i)
(5) end for
(6) if (I = J) a[l[j]] ← a[l[j]]/j
(7) end for
(8)end Procedure

(b)

Fig. 6. Block pseudocode for the simple algorithm. (a) DSC; (b) The function F().

The next step of NavP is called DPC (Distributed Parallel Computing). In
this step, transformations are used to cut the long DSC computation thread
into several shorter ones. Each of these threads are “pushed up” or scheduled to
run as early as possible, subject to the constraint that all dependences must be
respected. These threads spread out parallel computations as they hop out to
the remote nodes on the network. The DPC implementation of the example is
listed in Fig. 5(b). Each computation of j becomes a thread that is “injected” or
spawned by another thread running the outer loop of j (lines (1), (1.2), and (6)).
The code for each thread, lines (1.1) through (4.1), remains almost the same as
the DSC code listed in Fig. 5(a). The only difference is the insertion of two new
lines of event handling, to synchronize the accesses to the entry a[1]. Each thread
waits at line (2.2) until the previous thread is done accessing a[1], and at line (3.1)
it notifies all other threads on the node that it has finished accessing a[1]. In this
way, the threads organize themselves into a pipeline when they access a[1]: the
thread computing a[j] runs immediately after the thread computing a[j−1]. Be-
cause Messengers uses non-preemptive FIFO scheduling, and because threads
hopping from the same source node to the same destination node preserve their
ordering, the pipeline remains intact throughout the entire computation: mi-
grating threads do not pass each other in the mobile pipeline. Each computation
migrates through the pipeline, progressively visiting the successive stages (the
elements a[i] that it successively incorporates into its computation). Note that
the code works correctly irrespective of how the array a[.] is distributed.

There are three advantages to building a mobile pipeline: (1) In programming
a DSC, we follow the principle of pivot-computes. This principle says that com-
putation should occur on the node containing the largest amount of data to be
used by the computation (the pivot node), so that a small amount of data is
carried to meet with a large amount of data rather than the other way around.
In the present example, this principle says that the computation of a[j] should
happen on the nodes that host the a[i]’s. As the computation of a[j] proceeds,
the pivot node changes. Assigning the computation of a[j] statically to any single
node would cost more than our DSC does because it requires more data commu-
nication. (2) We use concurrent threads to explore parallelism. For algorithms
that exhibit pipelining opportunities, we simply insert multiple DSC threads to
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Fig. 7. Performance of the simple problem. (a) Elapsed time; (b) Speedup.

form a mobile pipeline, and synchronize them using events. Because threads are
not allowed to access data remotely, all synchronization events are local to a
node and hence efficient. (We note that when data parallelism is present, we can
use multiple concurrent DSC threads to exploit this data parallelism [8], but
this is not the focus of this paper.) (3) The NavP code as listed in Fig. 3(b) and
Fig. 5(b) work for arbitrary data distribution. All that changes is the contents
of the node map[.] and l[.] arrays. This provides considerable flexibility, because
the programmer can experiment with different data distribution patterns using
exactly the same code. For better performance, we can use a block algorithm
(listed in Fig. 6(a)) so the granularity is coarse. Figure 6(b) shows the details of
the block function F () (called in lines (3) and (5) of Fig. 6(a)). The functions
start(I) and end(I) return, respectively, the smallest and largest global indices
of array entries stored in block I. The block pipeline code is similar to the code
listed in Fig. 5(b) and therefore omitted. Transforming from the original sequen-
tial algorithm to the corresponding block algorithm can be automated using loop
tiling techniques [9].

Asymptotically, if this algorithm is run on P processors, each processor will
hold N/P array entries. The thread that starts on processor k (for k = 1, . . . , P )
will hop to processor 1, then processor 2, and so forth, ending up at processor
k, for a total of k hops. On each hop it will carry N/P array entries. Hence the
total communication costs of all the threads is N/P ·

∑P
k=1 k, which is O(N ·P )

as stated at the beginning of Sect. 2. Since on any particular processor, a thread
hops away as the next thread is executing, the additional storage required on
each processor is O(N/P ). We can further improve performance by using a block
cyclic data distribution. This allows all the processors in the pipeline to get
involved in the computation earlier and hence increases parallelism. As shown in
Fig. 7, the block algorithm and block cyclic data distribution both help improve
performance dramatically.
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3 Crout Factorization

Crout factorization is a convenient variant of Gauss elimination [10]. Figure 8(a)
lists the pseudocode for sequential Crout factorization of a symmetric matrix.
For simplicity, we assume that the matrix being factorized, K, is a dense matrix.

(1) for j = 1 to N

(2) for i = 1 to j − 1

(3) Kij ← Kij −
∑i−1

l=1
KliKlj

(4) end for

(5) for i = 1 to j − 1

(6) T ← Kij
(7) Kij ← T

Kii
(8) Kjj ← Kjj − TKij
(9) end for
(10) end for

(a)

(1) for j = 1 to N

(1.1) hop (node[j]); load (column j)
(2) for i = 1 to j − 1

(2.1) hop (node[i]); load ({Kii})
(3) Kij ← Kij −

∑i−1

l=1
KliKlj

(4) end for

(4.1) hop (node[j]); unload (column j, {Kii})

(5) for i = 1 to j − 1

(6) T ← Kij
(7) Kij ← T

Kii
(8) Kjj ← Kjj − TKij
(9) end for
(10) end for

(b)

(1) for j = 1 to N

(2) call col proc(j)
(3) end for

(4) Procedure col proc(int j)

(5) for i = 1 to j − 1

(6) Kij ← Kij −
∑i−1

l=1
KliKlj

(7) end for

(8) for i = 1 to j − 1

(9) T ← Kij
(10) Kij ← T

Kii

(11) Kjj ← Kjj − TKij
(12) end for
(13) end Procedure

(c)

(1) for j = 1 to N

(2) inject (col proc(j))
(3) end for

(4) Thread col proc(int j)
(4.1) hop (node[j]); load (column j)
(5) for i = 1 to j − 1

(5.1) hop (node[i]); load ({Kii})
(5.2) if (j > 1 and i = 1) waitEvent(evt, j − 1)
(6) Kij ← Kij −

∑i−1

l=1
KliKlj

(6.1) if (i = 1) signalEvent(evt, j)
(7) end for

(7.1) hop (node[j]); unload (column j, {Kii})

(8) for i = 1 to j − 1

(9) T ← Kij
(10) Kij ← T

Kii

(11) Kjj ← Kjj − TKij
(12) end for
(13) end Thread

(d)

Fig. 8. Pseudocode for Crout factorization. (a) Sequential; (b) DSC using NavP; (c) Se-
quential re-written (with procedure call); (d) Pipelining using NavP.
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This algorithm is left-looking because the updating of the jth column uses all
the columns to its left from 1 to j − 1.

Figure 8(b) lists the pseudocode of DSC Crout factorization. Three hop() and
load/unload compound statements are inserted at lines (1.1), (2.1) and (4.1).
The columns of matrix K are distributed to the nodes in a block fashion. Each
column is the basic unit of data distribution and is hence indivisible. In the
pseudocode, node[.] provides the node ID of a given column. In the real code,
the matrix K is implemented as a 1-D array, and the map l[., .] from a global
index pair [i, j] to a local 1-D index is needed. The detail is omitted in the
pseudocode.

Figure 8(d) lists the pseudocode for a pipelined DPC implementation. This is
compared side by side with the sequential code re-written with procedure calls,
where the inner loop becomes a procedure, listed in Fig. 8(c). Each loop j is now
assigned to a thread, and the outer loop becomes a “spawner” thread. In addition
to the hop() compound statements, two event handling statements are inserted
at lines (5.2) and (6.1). Similar to the simple example in Sect. 2, we utilize the
FIFO scheduling of Messengers so that the event handling only happens on
the node that hosts column 1 of K. This pipelined NavP code works correctly
no matter how the columns are distributed. Similar to the simple example, we
a use block cyclic column distribution to exploit parallelism.

4 Performance

Performance data for the simple example is presented in Fig. 7, and for Crout
factorization is in Fig. 9 and Table 1. The data was obtained using a network of
SUNW Ultra-60’s with 450 MHz UltraSPARC-II CPU, 256MB of main memory,
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Fig. 9. Performance of Crout factorization. (a) Elapsed time; (b) Speedup.
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Table 1. Performance of Crout factorization

Matrix Order 3120 5040 6960

Num Proc Time (s) Speedup Time (s) Speedup Time (s) Speedup

Sequential

1 145.22 1.00 637.69 1.00 1770.74 1.00

MESSENGERS

2 78.33 1.85 351.79 1.81 980.00 1.81
4 43.51 3.34 180.15 3.54 510.81 3.47
6 33.16 4.38 125.01 5.10 336.39 5.26
8 26.05 5.57 97.63 6.53 262.48 6.75
10 22.29 6.52 82.42 7.74 215.69 8.21
12 19.80 7.33 73.21 8.71 188.63 9.39

1GB of virtual memory, 100Mbps of Ethernet connection with a collision-free
switch, and using the NFS file-sharing system. To keep the presentation simple,
we used non-block implementations of Crout algorithm in both the sequential
and parallel versions of our algorithms. Thus, even though the sequential imple-
mentation is not the fastest possible, the speedup numbers relating our sequential
and parallel implementations are based on a fair comparison, and they represent
a good indication of the efficiency and scalability of our approach.

We were unable to find a parallel Crout implementation in literature, possi-
bly because of the difficulty of parallelizing left-looking algorithms using conven-
tional approaches. In [8], we compared our speedup numbers with those of the
Cholesky factorization implementation in ScaLAPACK [11]. Crout factorization
and Cholesky factorization are two variants of LU decomposition with the same
asymptotic time complexity. Crout factorization on symmetric matrices is left-
looking, and Cholesky factorization is right-looking. We found that the speedup
numbers were very similar [8]. This indicates that the techniques presented in
this paper for parallelizing left-looking algorithms are as effective as the classic
(message-passing) approach to parallelizing right-looking algorithms.

5 Related Work

Pipelining is a well-known technique for parallelizing sequential computations.
It is achieved by dividing a task into a sequence of smaller tasks, each of which is
executed on a piece of hardware that operates concurrently with the other stages
of the pipeline. Successive tasks are streamed into the pipe and get executed in
an overlapped fashion with the other subtasks [1]. A recent survey [12] describes
three situations in which sequential computations can benefit from pipelining.
The examples discussed in this paper fall into the situation when “a series of
data items must be processed, each requiring multiple operations.” However, the
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method discussed in [12] for achieving parallelism using pipelining in situations
of this type is not directly applicable to our examples. The reason is that this
method assumes a regular data distribution with all data items initially residing
on the first node initially. (Note that this second assumption is non-scalable.) In
our examples, these assumptions do not hold, and once they are removed MP
programming becomes significantly harder.

A classical pipeline is the segmentation of a functional unit into different
parts, each of which is responsible for partial execution of an operation. It is
similar to an assembly line process in a factory. In contrast, a mobile pipeline
operates like farm work. The tasks (e.g., weeding, watering, or harvesting)
are carried to the large data (the fields) by a mobile pipeline of equipment
(e.g., tractors or harvesters) following each other. A mobile pipeline also car-
ries small-sized data (e.g., seeds or fertilizer) that it needs when it carries out
its operations.

6 Final Remarks

We have shown that NavP can be used to parallelize a class of sequential pro-
grams, namely left-looking programs, that are difficult to parallelize using con-
ventional methods. Our approach can be used for a wide variety of data distri-
butions and adapts automatically to changes in data distribution as long as we
update the node map[.] and l[.] arrays which are byproducts of data distribu-
tion. This is useful for situations where the data distribution pattern is unknown
at compile time (e.g. in Grid computing). Our method can be easily extended
to algorithms that are neither left-looking nor right-looking (for example Crout
factorization on a non-symmetric matrix [1]). This is important, because most
algorithms are neither purely left-looking or purely right-looking.

The reason for the effectiveness of our approach can be summarized as follows:
supply-driven “pushing” is easier than demand-driven “pulling.” Right-looking
(producer-driven) algorithms are easy to parallelize using conventional message-
passing methods: when data is produced, it is propagated to the consumers, who
consume it immediately. In contrast, left-looking (consumer-driven) algorithms
based on movement of data require additional processing: once produced, any data
that is not consumed immediately must either be replicated to multiple PEs and
stored on each PE, or communicated multiple times. In our approach, even though
the algorithm is consumer driven, the consumer process does not “pull” the data.
Rather, it migrates (i.e., “pushes itself”) to the data. This additional flexibility is
a fundamental advantage of migrating computations and Navigational Program-
ming over more conventional methods of distributed programming.

The NavP approach is highly mechanical: it requires insertion of hop()s and
insertion of events. The former is based on data distribution, the latter on de-
pendency analysis. Code transformations are incremental and code structures
remain essentially the same throughout the process. These transformations could
potentially be semi-automated or perhaps fully automated by a compiler. Inves-
tigating this potential is part of our future research.
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Abstract. Traditionally graphics clusters have been employed in real-
time visualization of large geometric models (many millions of 3D
points). Data parallel approaches have been the obvious choices when
it comes to breaking up the computations over multiple processors. In
recent years, programmable graphics hardware has gained widespread
acceptance. Today, every processing node in a graphics cluster has two
powerful and fully programmable processors - a CPU (Central Process-
ing Unit) and a GPU (Graphics processing unit). It enables distribution
of graphics computations targeting an applications’s needs in more flex-
ible ways. In this paper we discuss and analyze our implementation of
functionality distributed point-based rendering pipeline with impressive
performance improvements. To the best of our knowledge, it is the first
attempt to devise a functionality distribution scheme for a large data
and compute-intensive application. We discuss the merits and limita-
tions of such a distribution scheme by comparing it against traditional
data parallel and single node schemes.

1 Introduction

With the advent of 3D scanners and other data capture devices, it has become
relatively easy to capture large geometric models. The size of these models, typ-
ically many millions of points, poses a serious challenge for real-time rendering.
A single node is normally not capable of delivering real-time frame rates when
rendering such large models.

Computer graphics applications for visualizing large data-sets have employed
many data parallel solutions in the past to achieve divide and conquer. But not
much attention has been given to handling data and distribution with regards to
functionality of the application as a whole. Traditional data parallel approaches
perform data distribution without taking into account any knowledge of the
functional complexity of the graphics processing. For example, a highly special-
ized point based graphics application and a simple polygon renderer of similar
geometric complexity would both be distributed exactly the same way over a
sort-first configuration (like Chromium [1], a stream processing framework that
has popularly been used to implement graphics applications using the data paral-
lel approach). Also most systems which employ data parallel schemes in graphics
suffer from a scalability problem on modern day clusters [2]. Such systems could
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scale better if they break up their functional complexity and suitably distribute
functionality as well. Also it is important to exploit the application characteris-
tics to overcome the memory, internal and external bandwidth limitations.

Yet another major development in computer graphics has been the advent
of the specialized processors that accelerate 3D graphics computations through
hardware implementation of a number of operations in the 3D graphics render-
ing pipeline. The more recent trend is a programmable graphics processing unit
(GPU), which as the name indicates provides programmability and increases
the flexibility to control the operations in the 3D graphics pipeline. The pro-
grammable GPU has made its mark in the mainstream processing and different
non-graphics applications can now take advantage of its raw processing power
(about 7 times a CPU in FLOPS) [3]).

We claim that modern day clusters with CPU and GPU processors can
be programmed to provide efficient functionality driven distribution strategies.
The graphics applications we are targeting are data intensive, demanding real-
time rendering performance. Understanding the application domain is crucial
to achieve a better distribution. We have chosen to demonstrate functionality
distribution with a point based rendering application. The performance improve-
ments are impressive when compared to implementations with only data parallel
distribution.

The rest of the paper is organized as follows: Section 2 addresses previous
work involving graphics clusters and functionality distribution. It also gives a
brief background of point based rendering. Section 3 discusses the important
aspects of a point based rendering pipeline. Section 4 discusses how we achieve
a distributed point rendering pipeline. Section 5 gives the performance results
and compares our configuration against a similar data parallel (sort-first) con-
figuration. Section 6 concludes with a discussion of our plans for future work.

2 Previous Works

The 3D graphics pipeline consists of two principal parts - Object Space opera-
tions (transformations and lighting) and Image space operations (e.g. per frag-
ment operations like texture mapping, visibility computations, blending, etc.).
Geometric primitives (polygons, lines and points) are sent down this pipeline.
The essence of the rendering pipeline is to calculate the effect of each primitive
on each display pixel. Due to the arbitrary nature of the modelling and viewing
transformations, a primitive can fall anywhere on (or off) the screen. Thus ren-
dering can be also viewed as a problem of sorting primitives to the screen, as
noted by Sutherland et al in [4].

2.1 Functionality Distribution in Graphics

In distributed graphics, any strategy involving distribution of graphics primitives
over a cluster of nodes has to eventually address sorting them in depth order
on the screen. Molnar et al. [5] classified the various possible schemes into three
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categories: sort-first, sort-middle and sort-last, depending on whether the sorting
process takes place before the object space operations, between the object space
operations and image space operations (just before rasterization), or after the
image space operations respectively. Most of the traditional graphics cluster
applications have been built around one of the previous categories.

These sort-based approaches can easily exploit hardware parallelism when
the computation can be split into smaller equal weight sub-computations, with
good data locality. Such a distribution is also called regular. Simple mapping
and scheduling algorithms can be used to satisfactorily exploit the hardware
parallelism. The same does not happen if the sub-computations do not have
similar complexities or do not have good data locality properties. Parallel com-
putations in this category are called irregular (e.g. numerical treatment of large
sparse matrices). 3D graphics rendering pipeline computations could be viewed
as a collection of varied complexity algorithms operating on different data struc-
tures. Functionality distribution could be used to create smaller regular sets of
computations that best exploit the hardware and data locality.

For example, Govindaraju et al [6] demonstrate solutions to the classic vis-
ibility culling problem on a cluster of three GPUs. They generate an occlusion
representation on one node, cull away occluded objects on another and render
the geometry on a third different node. They further extend their distributed
visibility culling technique to perform interactive shadow generation over a clus-
ter [7]. The significant point to note is that in every frame, each of the three
nodes above implement different algorithms (e.g. level of detail selection and
occluder rendering, frustum culling and hierarchical Z-buffering, and rendering
of visible nodes) which operate on specialized data structures (Z-buffer, scene
graph and queue of visible nodes). Hence they manage to break the irregularity
of the computations into smaller manageable regular sets of computations on
three nodes.

Isard et al [8] perform distributed soft shadow rendering by programming
every GPU on a cluster to calculate the contributions of a disjoint set of light
sources for every object and finally compose the result over a Sepia 2a com-
positing network [9] for display. Heirich et al [10] demonstrate the need for par-
allelizing the iterative multi-grid solver routines of a CFD in order to visualize
the pressure field of a developing steady-state solution. Zara et al [11] simulate
cloth animation over a cluster of 100 nodes by exploiting data as well as task
parallelism. Zhe et al [12] use a cluster of 30 GPU nodes to perform parallel
flow simulation using the lattice Boltzmann model (LBM). Their application
virtualizes the cluster as a 2D grid which facilitates communication sideways
and diagonally. Kipfer et al [13] demonstrate a distributed lighting network by
distributing radiosity, ray tracing and photon mapping.

All the above mentioned schemes exploit application characteristics like data
locality and functional complexity to break the irregular computations into
smaller regular sets of computations. They cannot be categorized purely on the
basis of sorting classification.
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While the approach in each of the above cases is largely that of providing
a specific distributed architecture suited to the needs of the computations in a
single application, in our research we have investigated distribution of compu-
tations and data in the more general setting of a graphics cluster to take into
account the differential capabilities of CPUs and GPUs. It is accepted that opti-
mal functionality distribution cannot take place without adequate knowledge of
the graphics application under consideration. To that extent, we have been able
to identify various architectures that can augment data parallel approaches with
functionality distribution to provide distribution scalability [14]. We have also
specified a set of system and application parameters to model the performance
of a system which can help in making the appropriate choice for distribution in
a given application [15].

2.2 Background of Point-Based Graphics

The use of points as a display primitive for continuous surfaces was introduced
by Levoy and Whitted [16]. In 1989, Westover [17] introduced splatting for in-
teractive volume rendering. In splatting, each projected voxel (a unit of volume
data) is represented as a radially symmetric interpolation kernel (e.g. Gaussian)
giving the appearance of a fuzzy ball. Grossman [18] investigated the use of
point sampled representations as an alternative to triangles for rendering. One
of the first point based rendering systems was QSplat [19], where in a multi-
resolution hierarchy, based on bounding spheres, is employed for the represen-
tation and progressive visualization of large models. QSplat used an efficient
quantized representation for each hierarchical node using a mere 48 bits. In the
same year, Pfister and Zwicker introduced surfels [20] (a short form of surface
element), a zero dimensional n-tuple that captures shape and color attributes
locally approximating the object’s surface at any given point. Zwicker et al. [21]
introduce surface splatting wherein they render opaque and transparent surfaces
from sampled point representations. Their approach is based on a screen space
formulation of the Elliptical Weighted Average (EWA) filter [22]; Disc-shaped
splats in object-space project to elliptical splats (stored as textures) with Gaus-
sian intensity distribution in image-space. It results in high-quality anti-aliased
rendering but the number of point samples rendered is less.

Of late, there has been a growing interest in using programmable graphics
hardware to accelerate point rendering. Dachsbacher et al. [23] present a hierar-
chical LOD structure that is suitable for GPU implementation. They can process
50M low quality points per second.

Although extremely fast, a GPU’s on-board memory is currently rather lim-
ited in terms of data storage. It is inevitable to employ a PC cluster for larger
data models since a PC cluster provides a scalable memory model. Also for
larger complex scenes a single GPU can not handle all the processing, so distri-
bution is inevitable. In [24] Hubo and Bekaer have described a sort-first point
rendering configuration and noted that in the absence of topological informa-
tion, point-rendering is ideally suited for sort-first rendering. They demonstrate
a peak performance of splatting 1.5 million points per second per node. In com-
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parison, our functionality distributed pipeline splats over 3.5 million points per
second per node (see Table 2).

3 Point Based Rendering

In this section we discuss the stages involved in point data processing with the
help of a standard point rendering pipeline. Just as a good understanding of
the computations involved in an application is essential for achieving optimal
functionality distribution, the choices for representation, access mechanism, or-
ganization, and storage of graphics application data are important factors that
can considerably affect the overall performance of a distribution scheme. A sub-
stantial part of our experimental investigation efforts have been devoted to the
analysis of these factors in our point data processing application. We discuss
these in brief below.

We broadly categorize the stages (Figure 1) involved in point based rendering
into two major phases - selection and rendering. The selection phase consists of
a set of view dependent algorithms which decide on the candidate points to be
rendered to obtain a hole-free image (Figure 2). The rendering phase feeds the
candidate points through the GPU for generating an image on the display. Each
phase has multiple sub-stages, discussed in detail below.

3.1 Point Representation and Organization

A point may possess several attributes depending upon the application. For
a simple watertight rendering we need coordinates, surface normal, neighbour

Fig. 1. Two major phases of a point processing pipeline

Fig. 2. Illustration of hole filling in Stanford Buddha model. Holes in the rendering of
a point sampled model are filled with increasing spat size (from left to right).
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points, color, texture and splat size. Some of these properties could be repre-
sented as a dedicated structure, also referred to as a surfel [20], and others could
be calculated at runtime: the decision as to which attributes are put in the sur-
fel structure and which ones are to be calculated at runtime is an application
dependent issue. An attribute, expensive to compute may be precomputed. How-
ever, with the growing relative memory latency, computing some of the desired
point attributes at runtime may be beneficial as compared to storing them in
memory and incurring an access cost at runtime [25]. We henceforth refer to the
collection of surfels representing surface of a point sampled model as point-set.

We employ octrees to organize our point data-set, a well established data
structure based on regular subdivision of the cube in 3D space. The simplic-
ity and uniformity of the octree naturally lends itself to efficient queries and
traversal. Also the construction time is minimal as compared to other space par-
titioning schemes. Figure 3 illustrates visually the recursive construction of an
octree for a point-set.

Fig. 3. Octree construction of a point sampled model (Stanford Bunny)

Traversing the octree hierarchically adds overheads of the recursive function
calls and pointer dereferencing. Further, to achieve better cache hit, we would
like to cluster the octree cells in their traversal order. Data clustering attempts
to pack data structure elements likely to be accessed contemporaneously into
a cache block. It increases cache block utilization and reduces the cache block
working set. While storing the points inside the octree cells result in poor data
clustering, better clustering is achieved by serializing the octree cells to a flat
array in the breadth order traversal. This also helps in achieving an implicit LoD
(Level of Detail) in the traversal order [19], [23]. This sequential data structure
is extremely efficient at runtime when we restrict ourselves to a certain level of
the octree depending upon the results of the selection algorithms. Also as the
different octree cells at the same level of detail are located contiguously it helps
in data clustering. We call the sequential structure a Sequential Octree [15].

The performance gains achieved with a sequential octree can be seen by com-
paring rows 2 and 3 of Table 1 (30% over the hierarchical structure). However,
we still end up with only one-third of the performance by rendering out of a flat
unorganized point-array. (Compare rows 1 and 2 of Table 1.) This is largely due
to the unavoidable cache thrashing when we toggle between the octree (for selec-
tion) and the point-set (for rendering) at runtime. We shall present an innovative
scheme to alleviate this problem when we discuss functionality distribution in
the section 4.
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Table 1. Rendering performance readings for different point organization schemes

Stanford Bunny model rendered from: Frames/Second
Flat unorganized point-set array 724.3
Seq. traversal of Seq. Octree (with point data clustering) 246.5
Hier. traversal of Seq. Octree (with point data clustering) 192.4
Hier. traversal of Hier. Octree (no point data clustering) 64.3

Fig. 4. Left Side: Distributed Point Rendering Pipeline. The legend outlines the as-
signment of the respective computations and data structures of the point rendering
pipeline to the different nodes of the cluster. Right Side: Scaling the functionality dis-
tribution of point rendering for larger models by employing data parallelism in the
individual stages of the pipeline.

3.2 Point Selection and Rendering

Selection algorithms (Figure 4) decide on the points which are splatted in a
given rendering pass. This decision depends on a number of factors like features
present in a region, screen space projection of an octree cell and visibility. Details
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of these algorithms [15] are not presented here as they do not form part of the
core theme of this paper.

The final step in any graphics data processing is rendering. In our case it
corresponds to pushing the selected points through the GPU to obtain an image.
The selection algorithm picks a smaller subset of points for rendering. Figure 4
(Left side) captures the rendering tasks involved. Again for details the reader is
referred to [15].

4 Distributed Point Rendering

In section 3.1 we noted that both the selection and rendering stages work with the
spatial subdivision data structure. The rendering stage needs the point data as
well. The majority of time is spent in the selection stage of the pipeline [19]. For
large models the computational effort is enormous. We also note the performance
degradation resulting from cache thrashing (rows 1 and 2 of Table 1) when we tog-
gle between the Sequential Octree and the point-set array during rendering. We
alleviate these bottlenecks by distributing the computations into multiple nodes.

4.1 Separating Selection from Rendering

The strongest reason for separating selection and rendering into separate nodes
is the different data structures they operate on. Comparing rows 1 and 2 of
Table 1 immediately tells us that the hierarchical organization of data costs us
nearly 3 times in performance over traversal of a flat point-set array. This is
in spite of the fact that we have decoupled the octree from the point-set and
serialized the hierarchical octree into a Sequential Octree. Further performance
optimizations are not quite fruitful as the problem lies in the inherent runtime
coupling between the usage of the octree and the point-set. Unavoidably, there
is going to be cache thrashing again when we toggle back and forth between the
point-set array and the Sequential Octree array. We notice that for rendering we
just need the following pair:
{Offset into the point-set array, # points to render from the offset}
We utilize this knowledge to decouple the rendering process completely from

the octree. Hence we perform rendering from the point-array on a separate node.
In fact the renderer node works just with the point-array. After constructing the
point-array during the preprocessing phase, it destroys the octree hierarchy as it
no longer needs it. For every frame, the selection nodes send across the aforemen-
tioned pair in a network optimized packet. We notice a performance improvement
of more than 2 times employing this clever strategy of separating the selection and
rendering phases on separate nodes. Further, the selection nodes destroy the point-
array after the construction of the octree, thus releasing memory.

4.2 Distributing the Computations

Figure 4 (Left side) illustrates how the computations are split among different
nodes of a cluster. The nodes are connected in a pipelined fashion. Each node
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operates concurrently on an incremental frame. This means when node 3 is
rendering frame f, node 2 is computing f + 1 and node 3 is working on f + 2.
Although this causes a 2-frame delay in the rendering node, we observe that the
benefit we achieve in overall frame rate significantly offsets this delay. The point-
set data is replicated on each node to avoid expensive geometry data distribution
at runtime.

4.3 Incorporating Data Parallelism

As the size of the 3D models grow, incorporation of data parallel approaches
become necessary. Each of the selection stages operating on the octree is split
into multiple nodes as shown in Figure 4 (Right side). The first node of our
distribution performs visibility culling. It traverses the octree hierarchically and
generates visibility culling information for each Octree cell (whether the Octree
cell and its contents are visible from the given viewpoint). To distribute the
task of this node different sub-trees of the octree are assigned to multiple nodes.
Depending upon the data size we distribute the first level of the octree cells or
the second (the latter case is rare). In Figure 4 (Right side) the visibility culling
calculations on the first level sub-trees are distributed.

To achieve a fair distribution, on application instancing the first level octree
subdivision is created such that each octree cell receives equal number of points.
As visibility calculations are view dependent runtime load balancing will give
better results.

The results from each visibility node are fed into a point sampling node. The
point sampling node works with a sequential version of the same sub-tree as the
previous visibility culling node. It calculates the point subsets that need to be
rendered for the given sub-tree. The point subsets are represented as an offset
into the point-set array and a count of the number of points to be rendered from
therein. This information is fed to the next stage for rendering. It should be
noted that the same data structures are available on each node as the point-set
data is replicated on each node at load time. This replication is done to avoid
expensive geometry data transmission at run-time.

The rendering stage can be arranged in a sort-first configuration [1], [2] (refer
to section 2.1). The images generated by the render nodes are fed to a display
wall or can be composed into a single node.

5 Implementation and Results

In this section we compare the performance of our functionality distribution with
a sort-first only implementation. We also outline the minimal model sizes needed
to achieve performance benefits from the distribution by comparing the results
with a single node implementation. We use a cluster of 3 nodes; each node is a
Pentium-4 2.8 GHz, 512 K L2 Cache, 1 GB RAM with ATI Raedon 9800 128
MB graphics card, Catalyst 4.2 driver running Windows 2000. The backbone is
supported by 100Mbps Ethernet connectivity. We have employed MPI over the
cluster for communication among the nodes.
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Table 2. Rendering performance in frames per second for different data models over
a single node renderer, functionality distributed renderer and sort-first renderer

Model Size Octree Single Functionality Sort-First
(#Points) (#Cells) Node FPS Distr. FPS Distr. FPS

G Tech Blade 882,954 65,209 8.0 12.5 3.5
Stanford Dragon 437,645 32,347 5.03 11.60 4
Stanford Buddha 543,652 38,351 9.8 20.0 NA
Stanford Bunny 35,947 12,626 83 70 NA

Table 2 shows the frame rates achieved from rendering models of different
complexities. It compares the performance of a point rendering pipeline for a
single node, functionality distributed and a sort-first rendering respectively. For
the sort-first rendering we use the recently reported results from a similar con-
figuration [24]. We note (from rows 1 and 2 of Table 2) that our optimized
functionality aware distribution gives over three times the performance benefit
over a traditional sort-first configuration [24].

We obtain twice the performance over a single node with functionality dis-
tribution. As the model size reduces the benefit of a performance distribution is
offset by the overhead in communication. As we haven’t employed out of core
strategies so our models are relatively small (less than a million points as re-
ported in Table 2).

Another interesting point to note is the maximum number of points allowed
in the leaf node of an Octree. The smaller this number is the greater the height
of the octree, which might be needed to get a better sampling of a region on the
surface. But it results in larger data packets getting transmitted over the network
from the point sampling node to the renderer node per frame. We chose 10-20
points as an optimal tradeoff for our experiments. We find that it gives us good
image quality as well adequate rendering speed. The single node performance
drops too as the height of the hierarchical octree increases. It must be recalled
that we have to perform a hierarchical traversal on the single node because the
visibility calculation makes it mandatory.

6 Conclusion

Today’s GPU can outperform the CPU in most workstations by a factor of seven
or more. The programmability that has been introduced in GPUs, a recent trend
in graphics hardware, now makes it possible to offload application specific com-
putational functionality to the GPU, thus enabling functionality distribution
among the CPUs and GPUs available in a graphics cluster. The focus of our re-
search has been to study this type of functionality distribution for large graphics
applications. While there have been quite a few attempts to program GPUs with
special algorithms, ours is the first research investigation that has tried to ad-
dress the problem of functionality distribution in a more general setting of a
graphics cluster. It is this investigation that has led us to formulate our con-
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clusion that functionality distribution achieved by programming multiple GPUs
combined in effective ways with traditional sort based data parallel approaches
provide high scalability to an existing data parallel scheme.

Functionality distribution becomes advantageous primarily due to the flexi-
bility provided by programming the GPUs of a cluster and by organizing data for
better cache hit. In section 4.2 we analyze these issues for our point based render-
ing application and present a simple sequential organization, which demonstrates
very well the advantages of a cache-conscious organization.

The effectiveness of functionality distribution is aptly demonstrated in Sec-
tions 4 and 5, wherein we show that with just 3 nodes we clearly outperform a
sort-first configuration by a factor greater than 3. In future we intend to extend
our implementation to incorporate the data parallelism discussed in section 4.3
and develop out of core strategies.
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Abstract. In this paper, we present a novel intra-task Dynamic Voltage
Scheduling (DVS) algorithm based on the knowledge of frequently exe-
cuted paths in the control flow graph for real-time embedded systems.
The basic idea is to construct a common path composing all the fre-
quently executed paths (hot-paths) and perform DVS scheduling based
on this common path, rather than the most probable path. We compare
the performance (energy consumption) of our algorithm with a recently
proposed algorithm. Our simulation results show that the proposed al-
gorithm performs better than the existing algorithm for most of the
simulated conditions. We also identify interesting research problems in
this context.

1 Introduction

Portable embedded devices, such as personal digital assistants, mobile phones
and palmtops have become extremely popular in the recent past. These devices
rely on batteries for power supply and their operation is limited by the available
battery life. Therefore, efficient utilization of energy is one of the key challenges in
the design and operation of embedded devices. Most of the embedded processors
are based on CMOS technology, where the energy dissipated per cycle is directly
proportional to the square of the supply voltage,Vdd [1]. A widely used technique
that exploits this characteristic is the DVS, whose goal is to minimize the energy
consumption by choosing the supply voltage and operating frequency as per the
performance level required by the tasks. Several energy aware DVS algorithms
have been proposed for real-time systems [1, 2, 3, 4, 5].

The existing real-time DVS (RT-DVS) algorithms can be broadly classified
into intra-task and inter-task DVS algorithms based on the granularity at which
the voltage scaling is performed. The intra-task voltage scaling algorithms [2, 3,
4, 5] adjust the supply voltage within a task boundary. The inter-task voltage
scaling algorithms [1] perform voltage scaling on a task by task basis.

Intra-task DVS algorithms typically work with the control flow graph
(CFG) of the real-time programs. CFG represents the block level control flow
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structure of the program. Each node in the CFG denotes a basic block of
computation. The edges in the CFG indicate the control dependency between
the blocks.

The objective of an intra-task voltage scheduling algorithm for real-time pro-
grams is to assign proper clock frequency to each of the basic blocks so as to
minimize the total energy consumption while meeting the task deadline. Ideally,
each basic block can be operated at any voltage point which lies in the opera-
tional range of the processor. However, current commercial processors supply a
fixed number of discrete voltage (and corresponding frequency) levels [6]. There-
fore, each basic block needs to be operated in one of the discrete supply voltage
levels. In this paper, we assume the processor supports a fixed number of supply
voltage and corresponding frequency levels.

2 Related Work and Motivation

Lee et. al. [2] introduced the basic idea of intra-task voltage scheduling. Shin
et.al. [4] extended this work with a worst case execution path based scheme
which does not consider the likelihood of different possible execution paths.
However, programs typically display a high degree of path locality, that is, only
a small fraction of total possible paths execute most of the time [7].

Seo et al.[5] take the path locality into account by considering the branch
probabilities of the CFG. Based on the branch probabilities, the proposed al-
gorithm achieves optimal average energy savings. However, obtaining all the
branch probabilities for a large program (with varying degree of path locality)
is impractical. On the other hand, the less detailed information like the most
frequently executed paths (hot-path information) is much easier to obtain as it
incurs less profiling.

Shin et. al. [3] proposed a hot-path information based intra-task DVS scheme
(RAEP), which chooses one of the hot-paths (where a hot-path is a path that
exhibits high execution locality) and perform voltage scaling at each basic block
that gives the best possible energy savings when the chosen path is executed.
However, this heuristic scheme does not always achieve the minimum energy
consumption, because there could be more than one hot path.

2.1 Motivation

The optimal frequency with respect to a particular execution path in the CFG
depends on its length, where path length is defined as the execution time of
the path when operated at the maximum frequency. Therefore, operating at a
frequency based on the lengths of the hot-paths results in best energy savings.

The RAEP algorithm takes the above approach by considering one of the
hot-paths (the most probable hot path). It operates at a frequency closest
to the optimal frequency of the chosen path. However, there could be several
hot paths of varying lengths. For example, commercial programs like MPEG-
4 video decoder & encoder, compress and gcc typically have more than 15
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hot-paths [7]. In such programs, the non-chosen hot-paths may together con-
tribute a higher probability of execution and therefore RAEP which chooses
just the most probable path cannot be very effective in minimizing the en-
ergy consumption.

Consider the following example with three hot-paths (CFG shown in fig-
ure 1.(a), the thick edges represent hot-paths): p1(B1, B2, B8), p2(B1, B3, B8),
p4(B1, B5, B8). Let the respective execution probabilities be 0.35, 0.30 and 0.30.
The probabilities for the other paths are unknown. For this example, the RAEP
considers path p1 only though it contributes less to the total energy savings
as compared to executing paths p2 and p4 together. Therefore, considering
just the most probable hot-path may not be effective in maximizing energy
savings.

In this paper, we present an intra-task DVS algorithm which considers all
the hot-paths together. The proposed algorithm constructs a common hot-path
composing all the hot-paths and performs DVS scheduling based on this common
hot-path. We have presented the preliminary idea of this paper in [8].

The proposed intra-task DVS algorithm can handle all possible CFG struc-
tures. To demonstrate its wide applicability, we follow the branch graph CFG
model introduced in [9] which is typical in expressing structured programming
constructs. In this model, a CFG is modeled as a branch graph consisting of a
collection of components in series and/or parallel combinations. Each compo-
nent is a basic fan graph with n + 2 (n > 1) nodes defined as follows: A basic
fan graph is a directed acyclic graph consisting of n independent nodes with one
common parent and one common child. An example of the basic fan graph with
8 nodes is shown in figure 1(a).

The rest of the paper is organized as follows. In section 3, we present the
algorithm for the basic fan graph with an illustrative example. In section 4,
we extend the basic fan graph algorithm and demonstrate its working on more
complex CFGs. In section 5, we present our simulation results. Finally, in section
6, we make several concluding remarks.

(a) A basic fan graph with its hpc (b) A Series Fan graph with its hpc

Fig. 1. Working of the CHP algorithm
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3 Common Hot Path (CHP)Based Intra-task Algorithm

The proposed CHP algorithm considers all the hot paths together. The basic
idea is to combine all the hot-paths into a single common path which represents
a (virtual) hot-path that is common in length to majority of the hot-paths.

The common hot path is formed by first composing all the paths into a single
path of computation, called the common-total-path, tpc, which represents the
longest path that the program can ever take. Each computation unit in the tpc

is contributed by one or more paths in the CFG. In figure 1.(a), the first 15 units
of the tpc are contributed by all the paths, while the last 10 units of the middle
110 units in the tpc are contributed by the path p5(B1, B6, B8) alone.

The computational units contributed by majority of the hot paths constitute
the common-hot-path, hpc. In figure 1.(a), the number of contributing hot-paths
(known as the hot-path count) is shown adjacent to the corresponding compu-
tation units. For example, the first 15 units are contributed by all the three
hot-paths and therefore, the corresponding hot-path count is three; where as
the last 10 units are not contributed by any of the hot-paths and therefore, the
corresponding hot-path count is zero. The computational units with hot-path
count greater than or equal to two (majority in this case) are marked to consti-
tute the hpc. In figure 1.(a), the highlighted 130 units of computation, forms the
hpc. The hpc represents the path that is common to majority of the hot paths.
Therefore, performing DVS scheduling based on this common hot path length
would be beneficial to all the hot paths rather than based on a single hot-path.

We use the following notations in the rest of the paper:
– D: deadline of the task.
– tc: current time.
– tl: time remaining until the deadline, (D − tc).
– l(pi): length of a particular path pi.
– fi: frequency at which the basic block bi is operated.
– wcet(bi): remaining WCET of the task starting from block (bi).

Following is the detailed description of the CHP algorithm. The algorithm tra-
verses the CFG in a breadth first search fashion and assigns the operating fre-
quency for each basic block.

The CHP based Algorithm
Input: CFG graph, List of hot-paths, processor frequency levels
Output: Frequency assignment to each basic block.
Algorithm:
For each basic block bi, perform the following four steps:
1. Find the wcet(bi) and construct a single path of length equal to wcet(bi).

This forms the tpc of block bi.
2. The computation units of the tpc which are common to at least nh/2 hot-

paths are recognized (and marked) as the common-hot-path, hpc. The sum
of all the marked computational units forms the path length of the hpc.

3. The operating frequency for bi is chosen so as to operate the common-hot-
path at its minimum possible frequency(normalized), which is given by:



An Intra-task DVS Algorithm Exploiting Program Path Locality 229

fi =
l(hpc)

tl − (l(tpc)− l(hpc))
(1)

4. The smallest discrete frequency level which is greater than (or equal to) fi

is chosen as the bi’s operating frequency.

The time complexity of this algorithm is O(v + e), where v and e represent the
number of basic blocks and number of edges in the CFG respectively.

3.1 Illustrative Example

Consider the CFG shown in figure 1.(a) with three hot paths. Paths p1(B1, B2,
B8), p2(B1, B3, B8), and p4(B1, B5, B8) are the hot paths with p2 being the
most probable hot path. The execution probability of the paths p1, p2 and p4

are 0.35, 0.30 and 0.30 respectively. The probabilities of the other paths are
unknown. In this example, we assume the processor can operate at any of the
ten equally spaced discrete frequency levels (normalized with respect to the
maximum frequency) in the range [0.1, 1.0]. The numbers in each basic block
represent the computation time of the block when operated at the maximum
frequency.

The RAEP calculates the frequency of each basic block based on the most
probable path [3]. The operating frequency of block B1 is calculated as follows:

l(p1)
tl

=
40
200

= 0.20 (2)

Operating B1 at this frequency results in operating at the maximum frequency
on the execution of longer paths (say p2 or p4) as shown in figure 2. Since paths p2

and p4 together constitute a higher probability of execution, the RAEP executes
at the maximum frequency for most of the program runs. This results in a high
average energy consumption.

The proposed CHP scheme calculates the operating frequency of each basic
block by considering all the hot paths. The following is the step by step execution
of the CHP algorithm for basic block B1:
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Fig. 2. Frequency settings of the two algorithms for the basic fan graph
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1. The worst case path of the CFG rooted at B1 is (B1, B6, B7) with a path
length of 140 computation units. Therefore a single path with l(tpc) = 140
is constructed as shown in figure 1.(a).

2. In step 2, the computation units that are common to majority (two in this
case) of the hot-paths are marked. This is done in a breadth first search
fashion considering just the hot-paths. The block B1 is common to all the
hot-paths, so the first 15 units (equal to the size of B1) get marked in the
tpc. In the next level, two of the hot paths (p2 and p4) will execute 100
computational units. Therefore, 100 units are marked as the common (in
length) computation units. The block B8 is again common to all the hot-
paths and hence 15 more units get marked in tpc. Therefore, l(hpc) = 130.
The hpc is shown shaded in figure 1.(a).

3. The operating frequency for block B1 is 0.68 calculated using equation (1).
4. The smallest operational frequency level which is greater than 0.68 is 0.7,

hence B1 is operated at 0.7.

The program continues to execute at the same frequency if it executes one of
the two hot-paths p2 and p4. On the other hand, it reduces the frequency when
it executes path p1. Since, both paths p2 and p4 together execute with a higher
probability, CHP consumes lesser energy for most of the times the program is
run. This results in a lower average energy consumption compared to the RAEP
scheme. For this example, CHP shows an improvement of 40% over RAEP.

4 CHP on Complex CFG Structures

CFGs of typical application programs will have more complex structure than the
basic fan graph. A complex CFG with two or more fan graphs may be viewed
as either series or parallel arrangement (or a combination of both) of the basic
fan graphs. A CFG can also have loops in addition to the above combinations.
The common hot-path formation technique is non-trivial for such complex CFGs
and therefore, we demonstrate CHP formation techniques for the complex CFGs.
In particular, we present the technique for the following complex CFGs: Series
Fan Graph (SFG), Parallel Fan Graph (PFG), Basic Loop Fan Graph (BLFG),
Any Combination Fan Graph (ACFG). Once the CHP is composed for a given
complex CFG, the operating voltage is determined as in step 3 of the CHP based
algorithm (section 3).

The following generalized CHP procedure is applied to the complex CFGs:

1. Firstly, recognize all the basic fan graphs in the complex CFG. The basic fan
graphs in a CFG can be recognized by determining all the branching nodes
which have a unique grandchild. Each such branching node forms the head
of a basic fan graph and the grandchild will be the exit node.

2. Secondly, for each basic fan graph recognized, construct the total common
path along with the hot-path counts as discussed in the previous section.

3. Thirdly, combine all the tpcs by taking hot-path counts into consideration
to form the final hpc. The working of this step depends on structure of the
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CFG, that is, whether the basic fan graphs are in series or parallel. This step
is elaborated in detail for each of the above four complex CFGs.

4.1 CHP Formation for an SFG

An SFG has two or more basic fan graphs one followed by the other. Figure 1.(b)
shows an SFG with two basic fan graphs. Each hot-path in an SFG can be visu-
alized as a concatenation of k partial paths, where the ith (i ≤ k) partial path
is a part of the ith basic fan graph. In the 2-SFG (k = 2) shown in figure 1.(b),
the hot-path p1(B1, B2, B8, B9, B10, B16) has two partial paths: p11(B1, B2, B8)
and p12(B9, B10, B16). Similar to every hot-path, the CHP (yet to be formed)
will have k concatenated partial CHPs each formed independently from each of
the k basic fan graphs. Therefore the final hpc of the SFG can be obtained by
concatenating the tpcs obtained as a result of the first two steps of the gener-
alized chp algorithm and marking the computational units which have hot-path
counts greater than nh/2.

In the following three subsections, we present the basic ideas for handling
PFG, BLFG and ACFG. We skip the working details for each of them due to
space constraints.

4.2 CHP Formation for a PFG

A PFG has two or more basic fan graphs as alternatives following a branching
basic-block. The procedure to find the final hpc of a PFG is little more involved.
The basic idea is to find the final tpc (the longest of all tpcs) and update its hot-
path counts by considering every other tpc. Once the final hot-path counts are
available the algorithm marks the computational units contributed by majority
of the hot-paths to obtain final hpc.

4.3 CHP Formation for a BLFG

A BLFG has one basic fan graph within a loop. The general procedure to handle
a loop is to find the tpc of the CFG ignoring the loop. Once the tpc for the
basic fan graph is found, the loop has to be unrolled. Since a straightforward
loop unrolling can be very expensive, the loop is unrolled twice in a fashion that
captures the effect of iterations.

4.4 CHP Formation for an ACFG

An ACFG consists of several basic fan graphs arranged in a complicated fashion.
Typical application programs fall into this category. Interestingly, any compli-
cated CFG can be viewed as a series-parallel combination of basic fan graphs.
Therefore, the hpc of an ACFG can be obtained by recognizing all the basic fan
graphs and applying the series-parallel CHP formation techniques appropriately.
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5 Simulation Studies

We have compared the performance of the proposed CHP scheme with the exist-
ing RAEP scheme and the clairvoyant algorithm. The performance metric is the
normalized average energy consumption (normalized with respect to the DVS
unaware scheduler). The clairvoyant algorithm by definition knows the exact
path the program will execute and hence operates at the corresponding opti-
mal frequency. Therefore, clairvoyant algorithm represents the theoretical lower
bound of the energy consumption. We have simulated the average energy con-
sumption of the above schemes on randomly generated ACFGs. Each ACFG
was generated with nh hot paths and nl non hot-paths. All the nh hot paths
together execute with a probability of 0.95. The most probable path executes
with a probability pm and has a path length equal to (l1) while the remaining
hot paths execute with equal probabilities and each has a length of (1 + α)l2.
Each of the non hot-paths have a path length equal to (1+β)l3. Where α and β
are uniformly chosen from [0, 1]. We assumed l1 = 1000 for all our performance
studies and varied the following parameters:

• Hot-path length ratio: lr1 = l1
l2

; • Non hot-path length ratio: lr2 = l1
l3

• Slack factor: sf = D−wcet(B1)
D ; • pm: probability of the most probable path

5.1 Results and Discussions

Effect of the Path Length Ratio: Figure 3(a) shows the relative performance
of the CHP and RAEP schemes varying the hot-path length ratio (lr1). This
graph shows the effect of path length variations and has three disjoint regions
of interest defined by the value of lr1. The region with the value of lr1 very
close to one (unity region) corresponds to the case where all the hot-paths have
approximately the same path length. In this region, performing DVS scheduling
based on the most probable path (or any single path) will be very effective.
Consequently, RAEP performs slightly better than CHP in the unity region.

The region which is left to the unity region (left region) corresponds to the
case where most of the hot-paths are much longer than the most probable path.
In this region, RAEP which considers the (shorter) most probable path alone
performs aggressive voltage down scaling in the beginning and ends up increasing
the voltage when the other (longer) hot-paths execute. On the other hand, CHP
which considers all the hot-paths together performs conservative voltage scaling
considering the fact that majority of the hot-paths are long in length.

Similarly, the region which is right to the unity region (right region) corre-
sponds to the case where most of the hot-paths are much shorter than the most
probable path. In this region, RAEP which considers the (longer) most probable
path alone performs conservative voltage up scaling in the beginning and ends
up decreasing the voltage or even leaving the slack unutilized when the other
(shorter) hot-paths execute. On the other hand, CHP which considers all the
hot-paths together performs aggressive voltage scaling considering the fact that
majority of the hot-paths are short in length.
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Fig. 4. (a) & (b) Effect of the path probability (Pm) on energy consumption

Effect of the Slack Factor: Figures 3(b) shows the relative performance of the
two schemes varying the slack factor (sf ) for different values of lr1 corresponding
to the left and right regions discussed above. We have chosen pm = 0.3 for
this set of experiments. In general, with the increasing slack factor both the
schemes operate at relatively lower frequencies and hence consume less energy.
CHP performs consistently better than RAEP throughout the range. It shows
an improvement of 21% at sf = 0 and an improvement of 67% at sf = 1.0 for
lr1 = 0.3 case (left region). Similarly, CHP shows an improvement of 27% at
sf = 0 and an improvement of 50% at sf = 1.0 for lr1 = 1.0 case (right region).

Effect of the Probability of the Most Probable Path: Figures 4(a) &
4(b) show the relative performance of the above two schemes varying the prob-
ability of the most probable path (pm) for different values of lr1 corresponding
to the left and right regions discussed in the previous result. We have chosen
sf = 0.5 for this set of experiments. CHP performs better than RAEP at lower
values of pm, while RAEP performs better at higher values of pm. This is due
to the following reason: as the probability (pm) increases, the most probable
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path becomes increasingly important as it contributes more to the average en-
ergy savings; therefore, scheduling based on the most probable path at higher
values of pm will be effective. On the other hand, at lower values of pm, all the
hot-paths are roughly of equal probability; therefore, scheduling based on all the
hot-paths would be helpful. Consequently, CHP performs better than RAEP at
lower values of pm and at higher values of pm RAEP performs better than the
CHP. The exact point of crossover is dictated by the path length ratio lr1. The
crossover point for the lr1 = 0.3 case (left region) is at pm = 0.60 whereas the
crossover for the lr1 = 4.0 case (right region) is at pm = 0.75.

6 Conclusion and Future Work

In this paper, we proposed a novel energy aware intra-task DVS algorithm which
exploits the knowledge of frequently executed paths. We have evaluated the pro-
posed CHP scheme with an existing scheme (RAEP) and the clairvoyant algo-
rithm through simulation studies on randomly generated ACFGs. We observed
that CHP performs better than the RAEP scheme in the following two cases:
First, when all the hot-paths are almost equally likely. Second, when the most
probable hot-path has considerably different path length than other hot-paths.

We plan to evaluate the proposed scheme on commercial programs like
MPEG video decoders to demonstrate its applicability to real world programs.
The current scheme results in significant energy gains assuming offline informa-
tion like the number of loop iterations, etc. In our future work, we plan to relax
this assumption.
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Abstract. JavaSymphony is a high-level programming model for per-
formance oriented distributed and parallel Java applications, which al-
lows the programmer to control parallelism, load balancing, and locality
at a high level of abstraction. In this paper, we describe an extension
of JavaSymphony that deals with distributed workflow applications as
graphs of software components, which can be executed on a distributed
set computers. Workflows are not limited to DAGs, but also cover com-
plex control flow including loops. Furthermore, we introduce a novel
approach for workflow scheduling based on the HEFT algorithm and
resource brokerage for a heterogeneous set of computers. We demon-
strate the effectiveness of our approach with two real-world applications
and compare our techniques against the widely known DAGMan Condor
scheduler.

1 Introduction

The workflow model has emerged as a very promising paradigm for programming
distributed applications. Workflow-based applications have become a fashion
topic in the Grid research community. Commonly, a static scheduling strategy
is used to build a schedule for a DAG (Directed Acyclic Graph) based work-
flow, which is known as a NP-complete optimisation problem. However, static
scheduling is not appropriate for dynamic distributed environments such as the
Grid, in which resources may randomly become unavailable or unsuitable or may
change their runtime behaviour during the execution of distributed applications.
At the same time, repetition of parts of the application until convergence criteria
are met, cannot be modelled by DAG-based models, and existing DAG-based
schedulers commonly do not address the non-deterministic behaviour due to data
available only at runtime.

In previous work [4], we have introduced a workflow model with conditional
branches and loops. The execution plan associated with these workflows can be

� The work described in this paper is partially supported by the Austrian Grid Project,
funded by the Austrian BMBWK (Federal Ministry for Education, Science and Cul-
ture) under contract GZ 4003/2-VI/4c/2004.
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adjusted to dynamic changes of the underlying execution environment or non-
deterministic application behaviour (e.g. convergence criteria for until-loops).

In order to deal with such dynamism of the execution environment and work-
flow applications, we have implemented a novel scheduling strategy, which is
applied as part of the JavaSymphony Workflow Management System. In ad-
dition, the JavaSymphony Workflow Management System provides a graphical
user interface to design and control the execution of workflow applications. The
activities and the resources may be associated with performance parameters and
a build-in specification language is used to describe the workflow.

This paper presents important extensions to our scheduling approach. We
introduce a new algorithm that manages loops and conditional branches of a
workflow by combining a classical list scheduling algorithm [12] with our dy-
namic scheduling technique [5]. Furthermore, we describe a new theoretical
framework, which models the resource broker functionality for controlling com-
puter resources as part of a heterogeneous computing environment. We evaluate
our approach with one real-world application, and we compare our scheduler
performance against the widely known Condor DAGMan scheduler.

The rest of this paper is organised as follows: Section 2 presents prelimi-
naries notions, which include a short description of the workflow model and the
dynamic scheduling technique. Sections 3, 4 introduce the new dynamic schedul-
ing algorithm, respectively the theoretical framework for the resource brokerage,
whilst Section 5 demonstrates our scheduling technique in an experiment. Sec-
tion 6 discusses related work. Finally, some concluding remarks are made and
future work is outlined in Section 7.

2 Background

JavaSymphony is a high-level programming model for performance-oriented dis-
tributed and parallel Java applications, which allows the programmer to con-
trol parallelism, load balancing, and locality at a high level of abstraction. The
JavaSymphony programming paradigm [3] offers high-level constructs to manage
distributed resources and to access their static/dynamic system parameters. It
offers constructs to create, map or migrate distributed objects. The communi-
cation between the objects of a distributed application is based on several types
of remote method invocation. Mechanisms for distributed synchronization and
distributed events are provided. The JavaSymphony programming paradigm al-
lows flexible implementation of a large range of distributed applications, such as
meta-task applications or workflow applications. However, the developer usually
has to manage the resources, build Java objects, and control the mapping of
the objects onto resources. In order to improve the performance, the developer
has to use a scheduling strategy adapted to his particular application. All these
issues require a significant programming effort. In order to alleviate the program-
ming effort for distributed workflow applications, the JavaSymphony Workflow
Management System, built on top of JavaSymphony runtime system, has been
introduced to support automatic resource allocation and scheduling.
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2.1 The Workflow Model

A workflow application can be seen as a collection of computing activities (com-
putational tasks) that are processed in a certain order. Between two computing
activities there may be: (1) a control flow dependency, which means that one
activity cannot start before its predecessors finished or (2) a data dependency,
which means that one activity needs input data that is produced by the other.
In previous work [4], we have presented a new workflow model which extends
the classical workflow that is limited to DAGs of tasks, with loops and condi-
tional branches. Each workflow has an associated workflow graph, which has ver-
tices for the workflow basic elements: activities, dummy activities, conditional
branches, initial and final states. Between the vertices of the workflow graph,
there are edges associated with the control-/data-dependencies between the ele-
ments of the workflow, with the sequential loops and with the parallel loops of the
workflow.

2.2 Scheduling Workflows with Loops and Conditional Branches

Commonly, for DAG-based workflows, the activities of the workflow are sched-
uled before the execution begins. Static scheduling, however, is mostly unsuitable
for graph-based workflows that are being executed on a dynamically changing
execution environment. We have introduced a scheduling strategy [5] to trans-
form the workflow associated with the application into one with no conditional
branches or loops, and recursively find a schedule, by using one of the many
existence algorithm for static scheduling of DAG-based workflows. According
to this strategy, several transformations are recursively applied to the workflow
graph, which include eliminations of parallel loops, conditional branches, initial
and final states, and sequential loop transformations.

2.3 The JavaSymphony Workflow Management System

To build a JavaSymphony workflow application, one has to first design the work-
flow graph, by using the specialized graphical user interface. The developer puts
together the activities, dummy activities, initial and final states of the work-
flow and connects them using control links, data links, loops and parallel loops,
according to the model presented in [4]. The result is an easy-to-understand
graphical representation of the workflow (Figure 2), based on the UML Activity
Diagram, which can be stored in a file by using the specific XML-based specifi-
cation language. Behind the graphical representation, each element (vertices and
edges of the graph) is associated with relevant workflow information. Some of this
data is mandatory (e.g. class names for activities, activity ids, input parameters,
files to be transferred, termination conditions or the number of iterations for the
loops, the number of iterations for parallel loops, branch conditions, etc.). Other
information is optional (e.g. performance characteristics of the computational
activities or communication, resource constraints for mapping the activities or
for communication network, performance contracts). However, the latest may
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be needed by the build-in scheduler to improve the performance of the whole
application or to match the user preferences.

Within the same scheduling process, the workflow specification is analyzed,
a resource broker determines which resources are suitable for each activity of
the workflow, a scheduler computes the execution plan of the workflow, and
an enactment engine manages the execution of the activities according to the
execution plan.

3 A List-Scheduling Algorithm for Workflows

In this section, we present a new scheduling algorithm that manage dynamic
workflows with loops and conditional branches. The new algorithm (Figure 1)
combines the dynamic scheduling strategy introduced in Section 2.2 with a clas-
sical list-scheduling algorithm for DAGs of tasks.

3.1 List-Scheduling for DAG-Based Workflows

The general DAG scheduling problem was extensively studied and many research
efforts proposed heuristics to solve this problem, both for homogeneous and for
heterogeneous domains [7,10]. A significant number of the proposed heuristics are
based on the list scheduling technique. The algorithms of this type are known
to perform well, at relatively low cost. However, all of them propose a static
approach, in which the schedule is computed at compile time, and do not address
the problem of scheduling conditional branches and loops.

We have chosen HEFT (Heterogeneous Earliest Finish Time) [12], which
is a DAG scheduling algorithm that supports a bounded number of heteroge-
neous processing elements and is considered an important representative of the
list-scheduling algorithms for heterogeneous systems [2]. The HEFT algorithm
associates activities with priorities, based on the so-called activity upward rank:

ranku(t) = exec(t) + max
s∈succ(t)

(comm(t, s) + ranku(s))

1. Apply all possible transformations to produce WFt.
2. Perform steps 3-8, whenever a new scheduling event occurs
3. begin
4. (Re)Compute U(WFt), S(WFt) and DAG(WFt)
5. Eliminate finished tasks from DAG(WFt)
6. Apply HEFT strategy

- Determine exit nodes of the reduced DAG(WFt)
- Recursively compute ranku(t), starting from the exit nodes.
- Build a list of activities, sorted by descending order of ranku values.
- while the list is not empty
- begin
- Remove t, the first element from the list
- Compute ct(t/m) for each m and assign t to mt that minimizes it.
- end

7. Start the activities on the assigned machines, ordered by the st(t/m) values
8. end

Fig. 1. HEFT-based algorithm for scheduling workflows
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where succ(t) is the set of immediate successors of task t and exec(t) and
comm(t, s) are the average execution cost of task t, respectively the average
communication cost of edge (t, s), defined as:

exec(t) = 1/|M |
∑

m∈M exec(t/m) and comm(t1, t2) = data(t1, t2)/rate

with M - the set of available machines, exec(t/m) - the execution time of t
running onto m, data(t1, t2) being the size of data sent from t1 to t2, and rate
the average transfer rate between the machines in the domain. The upward rank
is computed recursively, starting from the exit node(s). It is clear that each
task is ranked higher than its successors. Therefore, the tasks are processed in
descending order of their ranks. For each task, the machine which gives the
best completion time ct(t/m) is chosen, and the start time st(t/m) is calculated
accordingly.

3.2 Managing Workflow Conditional Branches and Loops

We use the technique introduced in Section 2.2, the HEFT strategy and the
notations described above to create a new algorithm for scheduling workflows. We
iteratively build a transformed workflow as follows: Initially (pre-scheduling), all
possible transformations, except branch elimination, are applied. The workflow
application is scheduled/executed until a conditional branch is reached. Upon
this event, the branch elimination and the subsequent possible transformations
are applied to obtained a new workflow graph.

We use the notation WF �−→ WFt to express that WFt is obtained from WF
by applying the above-mentioned transformations. At each scheduling iteration,
the activities are separated into two sets: U(WFt) - the set of unsettled activi-
ties comprises activities for which the scheduling/execution decision depends on
data that is not yet available (e.g. activities subsequent to a conditional branch,
for which the associated condition cannot be evaluated); S(WFt) - the set of
settled activities comprise the rest of the workflow activities. The activities in
S(WFt) build up a DAG of activities, denoted by DAG(WFt).

The new scheduling algorithm is summarized in Figure 1. Note that the
algorithm recursively computes a partial DAG and a partial schedule. The ac-
tivities in U(WFt) are not scheduled. The schedule is dynamically updated,
if necessary, at runtime, on scheduling events (e.g. termination of activities -
successful or with error, performance contract violation, or user intervention).
The termination of activities and evaluation of Boolean expression associated
with conditional branch or loops are mainly responsible for the recalculation
of DAG(WFt) in step 4. Step 6 of the algorithm determines a static schedule
by applying the classical HEFT algorithm. The algorithm finishes when all the
activities in DAG(WFt) have finished and no other scheduling event occurs.

4 The Resource Broker

A resource broker is essential for scheduling distributed applications in heteroge-
neous environment. A resource broker determines which resources are available
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and suitable for a workflow activity, and may support more advanced features
like reservations. In the previous sections, we have assumed that the scheduling
algorithms use a static set of resources and determine a near-optimal mapping of
the activities onto these resources. However, in real life, this is hardly true, since
resources may crash, or become available at random times. Moreover, resource
performance may largely vary in time, such as suitable resources become unsuit-
able and vice versa, thus affecting the scheduling performance. In this section,
we introduce a new theoretical framework to describe the functionality of the
resource broker.

4.1 Modelling the Resources

We consider M = {m1, m2...mnM } the set of all resources that may be used. The
resources are associated with a set of attributes Att = {att1, att2, ...attn}. Each
attribute atti associates to each resource an attribute value (numeric or string)
in the values set. If the attribute is a dynamic attribute (e.g. system load, idle
times, available memory), this value varies in time and the attribute is defined as
a function of the machine and the time: atti : M×T → V alues, atti(m, t) = v. If
the attribute is static (e.g. machine name, operating system, peak performance
parameters), the attribute is defined as a function over M only: atti : M →
V alues, atti(m) = v

4.2 Modelling the QoS for Workflow Activities

The workflow activities are associated with a set of constraints, as defined in
the workflow specifications. We denote the set of constraints by C = {c1, c2, ...}.
Each constraint ci is uniquely associated with a resource attribute, which we
denote by att(ci). A constraint is a Boolean function ci : M × T ime → {true,
false}, which determines if a property of the attribute att(ci) holds or not.
Practically, the Boolean value of ci(t) is determined by comparing att(ci) with
a threshold value. For example, we may have a constraints c(m, t), which takes
the value of the predicate ”att(c)(m, t) ≥ v0”, if the associated attribute att(c)
takes numeric values. For a workflow WF , each task T ∈ Act is associated with
a (finite) set of constraints denoted by C(T ) = {c(T,1), c(T,2)...}. Using these
notations, we say that a resource m ∈ M is suitable for the activity T ∈ Act
at time t ∈ T ime, if cT,i(m, t) = true for any cT,i ∈ C(T ). For m ∈M , T ∈ Act
and t ∈ T ime, the predicate S(m, T, t) = ∧cT,i∈C(T )(cT,i(m, t)) is called the
suitability-predicate of the resource m for the activity T (at t).

One of the functions of the resource brokerage process is to find all the
suitable resources, for all the activities of the workflow, at any moment in time.
In other words, a resource broker provides a function:

B(T, t) = {m|cT,i(m, t) = true, ∀cT,i ∈ C(T )}

that determines at each moment t which resources are suitable for a workflow
activity T . It is not feasible to determine the suitability of the resources at each
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moment: On the one hand, it does not make sense to measure the system pa-
rameters continuously, since this may lead to performance problems. Instead,
the dynamic system parameters could be updated at regular intervals (as done
by the JavaSymphony middleware), and consequently the resource suitabil-
ity predicate would be updated at discrete times, too. On the other hand, a
relaxed scheduling policy may not require last updated information on resource
suitability. Therefore, we analyze three scheduling scenarios regarding the usage
of resource suitability information:

(1) The resource suitability is used only at the start of the scheduling, for
the initial mapping. The advantage of this policy is obvious - a set of suitable
resources is assigned only once to each tasks, and there is no need for complex
monitoring of the resources. However, significant changes of the system dynamic
parameters could dramatically deteriorate the performance.

(2) The resource suitability is continuously updated, and the scheduler is
notified in case of changes. The scheduling complexity grows, however, adaptive
decisions, which prevent the performance deterioration, are possible.

(3) We have adopted a hybrid scheduling policy for JavaSymphony workflow
applications. The idea is to use two sets of constraints for each activity: The
first set is used to determine the initial suitability of the resource. Optionally, a
second set of constraints, which we call performance contract is used during
the execution of the workflow activities onto resources. If the suitability-predicate
for the performance contract of an activity does no longer hold, the scheduler
may stop the execution of the activity and migrate it onto another suitable
resource.

4.3 The Availability of the Resources

In a dynamic computing system such as computational grids, the computing
resources may become unavailable or available randomly. It is important for a
distributed application to determine when a resource crashes and to be able to
recover and continue the execution after such an incident. Another function of
the resource broker would be to monitor the resources in order to determine if
they are still available or not. The availability of a resource can be expressed as
a function of the resource and the time Avail(m, t), which is true if m is alive at
t, and false otherwise. In combination with the suitability-predicate, we obtain
a function, which tells us if a resource m may be used by one activity T , at
time t: S(m, T, t) ∧Avail(m, t) iif m may be use by T at t. The function of the
resource broker is modified to include the availability of the resources as well:

B(T, t) = {m|S(m, T, t) ∧Avail(m, t) = true}
In practice, the resource broker does not calculate such a function, but pro-

vides an ordered series of time intervals: I(T, m) = {I1, I2 ..., Ij ..} such as:
Ij = [tsj , tfj ] with tsj < tfj , Avail(m, t) = true, and S(m, T, t) = true for
any t ∈ Ij . Moreover, the resource broker is not able to forecast future inter-
vals, but updates the I(T, M) sets on scheduling events (e.g. resource becomes
(un)available, or resource does no longer fulfil the suitability-condition).
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5 Experiments

In order to demonstrate the usefulness of JavaSymphony workflow scheduling
technique, we have implemented one JavaSymphony workflow application and
used the JavaSymphony Workflow Management System to build the application
workflow, and to schedule and execute the application onto a set of distributed
resources.

The workflow application is built on top of WIEN2k [8] package, which is
a program package for performing structure calculations of solids using density
functional theory, based on the full-potential (linearised) augmented plane-wave
((L)APW) and local orbitals (lo) method. The components of the WIEN2k pack-
age can be organized as a workflow (Figure 2): The lapw1 and lapw2 TOT tasks
can be solved in parallel by a fixed number of so-called k-points. This is mod-
elled by two parallel loops in the workflow graph. Various files are sent from one
workflow activity to another (supported by the JavaSymphony runtime system),
which determine complex data dependencies between the activities (Figure 2(b)).
At the end of the main sequence of the activities, a testconv activity performs

(a) Control flow (b) Data dependencies

Fig. 2. Wien2k workflow
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a convergence test to determine if the calculation needs to be repeated. This is
modelled by the main sequential loop.

We have used the HEFT-based dynamic scheduling algorithm presented in
Section 3, to schedule and run this application onto a set of workstations. More-
over, we have enhanced the JavaSymphony enactment engine to export the work-
flow application as an input file for Condor DAGMan [11]. For each workflow
activity that is executed by the JavaSymphony enactment engine, a Condor job
submit file is created as well. Condor DAGMan does not offer support for sequen-
tial/parallel loops and conditional branches. Therefore, these workflow elements
are not present in the output DAG, which comprises only the activities that
have finished their execution and their control dependencies.

We compare the scheduling performance of the two schedulers: JavaSym-
phony dynamically builds a schedule for the workflow application, based on
the algorithm presented in Section 3, whilst Condor DAGMan uses the static
DAG as built by JavaSymphony workflow enactment engine. Consequently, the
two schedulers execute the same sets of activities, restricted by the same con-
trol dependencies. Furthermore, the activities are executed on the same set of
computing resources, in a Condor pool of workstations (see Figure 3). The work-
stations are heterogeneous, ranked according to JavaMFlops attribute of Condor
machine ClassAd, which determines the speed of the machine by using a specific
benchmark at the time Condor is started on the machine.

We used artificially controlled execution times for the workflow activities:
Each activity act is associated with a computing cost cost(act) expressed in
FLOPs. Consequently, the execution time of one activity act on a machine m is

Fig. 3. Gannt Chart for Wien2k workflow execution. JavaSymphony vs. Condor.
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determined as cost(act)/power(m), where power(m) is the value of JavaMFlops
attribute associated with the machine. Therefore, one activity finishes in shorter
time if it is mapped onto the machines that are higher ranked. On the other
hand, the execution of a specific workflow activity takes the same amount of
time, if mapped on the same machine, no matter if the activity is executed by
using the Condor or the JavaSymphony scheduler.

The JavaSymphony determines the schedule of the workflow application
based on the activity execution times onto the resources. The activities are
mapped as Java objects onto the workstations. The Condor DAGMan sched-
uler uses the DAG file to schedule the DAG of the workflow application. Each
activity is associated with a Java Condor universe job submission file, which
executes the very same Java class onto the remote resources. The JavaMFlops is
used as a priority associated with the resources, such that the stronger machines
are preferred over the weaker. However, Condor cannot use the estimated execu-
tion times to make scheduling decisions. JavaSymphony scheduler, on the other
hand, uses the JavaMFlops parameters, which are provided by JavaSymphony
Runtime System, and the computing costs of the activities, provided in the work-
flow specification, to estimate execution times for the workflow activities, which
are used by the HEFT-based scheduling algorithm (Figure 1).

Figure 3 presents the schedules for the two executions of the Wien2k work-
flow: by using the JavaSymphony scheduler, respectively the Condor DAGMan
scheduler. The experimental run uses 8 k-points and the calculation within the
main loop is repeated 3 times. This gives us a number of 67 activities in the
execution plan, both for JavaSymphony and Condor DAGMan.

Figure 3 shows the timelines for each computing resource, which comprises
idle times, respectively intervals in which the resource is used by one of the
workflow activities. As we can see, both schedulers prefer to use the better ma-
chines (i.e. petzeck- JavaMFlops=70.885361, ochsner- JavaMFlops=58.082180),
as ranked by JavaMFlops attribute. Since the width of the graph (the max-
imum number of activities that may run in parallel) is 8, the slowest ma-
chines (i.e. ganot-JavaMFlops=27.678907, pleisen-JavaMFlops=33.361057 and
mulle -JavaMFlops=34.130119) are not evenly used. Moreover, JavaSymphony
scheduler decides not to use two other slow machines (i.e. quirl-JavaMFlops=
37.276459 and ankogel-JavaMFlops=34.866943), based on the estimations of the
execution times for each activity. In contrast, Condor DAGMan uses the next
best available resource whenever a new activity is ready to run. In this case,
the use of more resources to run the workflow application does not necessarily
improve the performance for DAGMan scheduler, and JavaSymphony scheduler
outperforms DAGMan scheduler by a factor of 1.64.

6 Related Work

Workflow applications have become very popular in Grid community and many
research and industry groups have proposed new languages to model and de-
velop workflow applications. We do not intend to compete with highly complex
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workflow definition languages [6,1]. Instead, the JavaSymphony specific XML-
based specification language for workflow applications is simple, in order to allow
an easy manipulation of the workflow structure by a scheduler. However, complex
workflow specification languages are not commonly associated with advanced
scheduling techniques for distributed workflow applications. We prefer to use a
simpler definition language and a simplified workflow graphical representation,
in order to be able to better investigate such advanced scheduling techniques.

On the other hand, most systems for allocating tasks on grids, (e.g. DAGMan
[11]), currently allocate each task individually at the time it is ready to run,
without aiming to globally optimise the workflow schedule. In addition, they
assume that workflow applications have a static DAG-based graph, which may
be seen as a too restrictive constraint.

The DAG scheduling problem has been intensively studied in the past, mostly
in connection with parallel application compiling techniques. A parallel applica-
tion is represented by a DAG in which nodes represent application tasks (com-
putation) and edges represent inter-task data dependencies (communication).
Numerous scheduling techniques and scheduling heuristics have been developed
for both homogeneous and heterogeneous systems [12,7]. However, these heuris-
tics expect a static application graph and statically compute the schedule before
the execution is started. Static scheduling of static DAG structures is, however,
too restrictive for the new generation of Grid workflow applications. Therefore,
we propose a new approach which includes a workflow model with loops and con-
ditional branches, and an extension of the static scheduling with novel dynamic
scheduling techniques to accommodate these new constructs.

7 Conclusions and Future Work

JavaSymphony is a system designed to simplify the development of parallel and
distributed Java applications on heterogeneous computing resources, ranging
from small-scale clusters to large-scale Grid systems. Recently, we have extended
the JavaSymphony programming paradigm to support workflow applications.
For this purpose, the runtime system has been augmented with an automatic
scheduler and an enactment engine for workflow applications, and a simple, yet
expressive, workflow specification language has been introduced. This language
allows the association of the activities and the resources with performance pa-
rameters that can be used by the scheduler/resource broker.

In this paper, we have presented new features of the JavaSymphony Workflow
Management System. We have introduced a new scheduling algorithm, which
combines dynamic scheduling techniques for workflows with loops and condi-
tional branches, and HEFT, a classical list scheduling algorithm (limited to
DAGs in its original form). Moreover, we have described a novel framework for
resource brokerage, which analyzes the suitability and availability of resources.
These parameters can be derived from the information provided by the JavaSym-
phony runtime system or from the workflow specification. We have extensively
tested our HEFT-based dynamic scheduling algorithm by using two real-world
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workflow applications. The experiments have demonstrated that the JavaSym-
phony scheduler significantly outperforms the widely known Condor DAGMan
scheduler for DAG-based workflows.

As future work, we plan to evaluate the dynamic scheduling technique with
several other DAG-scheduling heuristics, and compare their performance on sev-
eral workflow applications.
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Abstract. The dynamism and space-time heterogeneity exhibited by structured
adaptive mesh refinement (SAMR) applications makes their scalable parallel im-
plementation a significant challenge. This paper investigates an adaptive hier-
archical multi-partitioner (AHMP) framework that dynamically applies multiple
partitioners to different regions of the domain, in a hierarchical manner, to match
the local requirements of these regions. Key components of the AHMP frame-
work include a segmentation-based clustering algorithm (SBC) for identifying
regions in the domain with relatively homogeneous partitioning requirements,
mechanisms for characterizing the partitioning requirements, and a runtime sys-
tem for selecting, configuring and applying the most appropriate partitioner to
each region. The AHMP framework has been implemented and experimentally
evaluated on up to 1280 processors of the IBM SP4 cluster at San Diego Super-
computer Center.
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ancing, Hierarchical Multi-Partitioner.

1 Introduction

Simulations of complex physical phenomena, modeled by systems of partial differential
equations (PDE), are playing an increasingly important role in science and engineer-
ing. Dynamic structured adaptive mesh refinement (SAMR) techniques [1] are emerg-
ing as attractive formulations of these simulations. Compared to numerical techniques
based on static uniform discretization, SAMR can yield highly advantageous ratios for
cost/accuracy by adaptively concentrating computational effort to appropriate regions
at runtime.

Parallel implementations of SAMR-based applications have the potential to accu-
rately model complex physical phenomena and provide dramatic insights. However,
while there have been some large-scale implementations [4] [6] [7] [8] [11], these im-
plementations are typically based on application-specific customizations and general
scalable implementations of SAMR applications continue to present significant chal-
lenges. This is primarily due to the dynamism and space-time heterogeneity exhibited
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by these applications. SAMR dynamism/heterogeneity has been traditionally addressed
using dynamic partitioning and load-balancing algorithms, such as the mechanisms pre-
sented in [6] [11], that partition and load-balance the domain when it changes. The
meta-partitioner approach proposed in [14] selects and configures partitioners at run-
time to match the application’s current requirements. However, due to the spatial hetero-
geneity of the SAMR domain, the computation/communication requirements can vary
significantly across the domain, and as a result, using single partitioner for the entire
domain can lead to decompositions that are locally inefficient. This is especially true
for large-scale simulations that run on over 1000 processors.

The objective of the research presented in this paper is to address this issue. Specif-
ically, we investigate an adaptive multi-partitioner framework that dynamically applies
multiple partitioners to different regions of the domain, in a hierarchical manner, to
match the local requirements of the regions. This research builds on our earlier research
on meta-partitioning [14] and adaptive hierarchical partitioning [10] to define an adap-
tive hierarchical multi-partitioner framework (AHMP). The experimental evaluation of
AHMP demonstrates the performance gains using AHMP on up to 1280 processors of
the IBM SP4 cluster at San Diego Supercomputer Center.

The rest of the paper is organized as follows. Section 2 presents the problem de-
scription. Section 3 presents the AHMP framework and the SBC clustering algorithm.
The experimental evaluation is presented in Section 4 . Section 5 reviews related work.
Section 6 presents a conclusion.

2 Problem Description

SAMR formulations for adaptive solutions to PDE systems track regions in the com-
putational domain with high solution errors that require additional resolution. SAMR
methods start with a base coarse grid with minimum acceptable resolution. As the so-
lution progresses, regions in the domain requiring additional resolution are tagged and
finer grids are overlaid on these tagged regions of the coarse grid. Refinement pro-
ceeds recursively so that regions on the finer grid requiring more resolution are similarly
tagged and refined. It results in a dynamic adaptive grid hierarchy [11].

Parallel implementations of SAMR typically partition the adaptive grid hierarchy
across available processors, and each processor operates on its local portions of this
domain in parallel. The overall performance of parallel SAMR applications is thus lim-
ited by the ability to partition the underlying grid hierarchies at runtime to expose all
inherent parallelism, minimize communication and synchronization overheads, and bal-
ance load. Communication overheads of parallel SAMR applications primarily consist
of four components: (1) Inter-level communications, defined between component grids
at different levels of the grid hierarchy; (2) Intra-level communications, required to up-
date the grid-elements along the boundaries of local portions of a distributed grid; (3)
Synchronization cost, which occurs when the load is not balanced; (4) Data migration
cost, which occurs between successive regridding and re-mapping steps.

The space-time heterogeneity of SAMR applications is illustrated in Figure 1 us-
ing the 3-D compressible turbulence simulation kernel solving the Richtmyer-Meshkov
(RM3D) instability [3]. The figure shows a selection of snapshots of the RM3D
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Fig. 1. Spatial and Temporal Heterogeneity and Workload Dynamics for RM3D Simulation

adaptive grid hierarchy as well as a plot of its load dynamics at different regrid steps.
Since the grid hierarchy remains unchanged between two regrid steps, the workload
dynamics and other features are measured in terms of regrid steps. The workload in
this figure represents the computational/storage requirement, which is computed based
on the number of grid points in the grid hierarchy. Application variables are typically
defined at these grid points and are updated at each iteration of the simulation, and con-
sequently, the computational/storage requirements are proportional to the number of
grid points. The snapshots in this figure clearly demonstrate the dynamics and spatial
and temporal heterogeneity of SAMR applications - different subregions in the com-
putational domain have different computational and communication requirements and
regions of refinement are created, deleted, relocated, and grow/shrink at runtime.

3 Adaptive Hierarchical Multi-partitioner (AHMP) Framework

The operation of the AHMP framework is illustrated in Figure 2. The input of AHMP
is the structure of the current grid hierarchy, which is represented as a list of regions
and defines the runtime state of the SAMR application. AHMP operation consists of
the following steps. First, a clustering algorithm is used to identify clique hierarchies.
Second, each clique is characterized and its partitioning requirements identified. Avail-
able resources are also partitioned into corresponding resource groups based on the
relative requirements of the cliques. Third, these requirements are used to select and
configure an appropriate partitioner for each clique. The partitioner is selected from
a partitioner repository using selection policies. Finally, each clique is partitioned and
mapped to processors in its corresponding resource group. The strategy is triggered lo-
cally when the application state changes. State changes are determined using a load-
imbalance metric defined below. Partitioning proceeds hierarchically and incremen-
tally. The identification and isolation of cliques uses a segmentation-based cluster-
ing (SBC) scheme. Partitioning schemes in the partitioner repository include Greedy
Partitioning Algorithm (GPA), Level-based Partitioning Algorithm (LPA), bin-packing
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partitioning algorithm (BPA), geometric multilevel + sequence partitioning
(G-MISP+SP), and p-way binary dissection algorithm (pBD-ISP) [10] [14]. AHMP
extends our previous work on Hierarchical Partitioning Algorithm (HPA) [10], which
applies single partitioner hierarchically, reducing global communication overheads and
enabling incremental repartitioning and rescheduling.

The load imbalance factor (LIF) metric is used as the criterion for triggering repar-
titioning and rescheduling within a local resource group, and is defined as follows:

LIFA =
maxAn

i=1 Ti −minAn

i=1 Ti∑An

i=1 Ti/An

where An is the total number of processors in resource group A, and Ti is the estimated
relative execution time between two consecutive regrid steps for processor i, which is
proportional to its load. The local load imbalance threshold is γA. When LIFA > γA,
the repartitioning is triggered inside the local group. Note that the imbalance factor can
be recursively calculated for larger groups as well.

3.1 Clustering Algorithm for Clique Identification

The objective of clustering is to identify well-structured subregions in the SAMR grid
hierarchy, called cliques. A clique is a quasi-homogeneous computational sub-domain
with relatively homogeneous partitioning requirements.

This section presents the segmentation-based clustering (SBC) algorithm, which is
based on space-filling curves (SFC) [12]. The algorithm is motivated by the locality-
preserving property of SFCs and the localized nature of physical features in SAMR
applications. Typical SAMR applications exhibit localized features and result in local-
ized refinements. Moveover, refinement levels and the resulting adaptive grid hierarchy
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reflect the application runtime state. SBC hence attempts to cluster subregions with
similar refinement levels. SBC defines the load density factor (LDF) as follows:

LDF (rlev) =
associated load on the subdomain
volume of the subdomain at rlev

where rlev denotes the refinement level and the volume is for the subregion of interest.
The SBC algorithm first smooths out subregions that are smaller than a predefined

threshold, which is referred to as the template size (TS). TS is determined by the stencil
size of the finite difference method and the granularity constraint that defines a certain
computation communication ratio. SBC then follows the SFC index to extract subre-
gions (defined by rectangular bounding boxes) from the subregion list until the size of
the accumulated subregion set is over the template size. It calculates the load density
for this set of subregions and computes a histogram of its load density. SBC contin-
ues to scan through the entire subregion list, and repeats the above process, calculating
the load density and computing histograms. Based on the histogram of the load den-
sity obtained, it then finds a clustering threshold θ. A simple intermeans thresholding
algorithm [5] is used. Using the threshold obtained, subregions are further partitioned
into several clique regions. A hierarchical structure of clique regions is created by re-
cursively calling the SBC algorithm for finer refinements.

Note that this algorithm has similarities to the point clustering algorithms proposed
by Berger and Regoutsos in [2]. However, the SBC scheme differs from this scheme in
two aspects. Unlike the Berger-Regoutsos scheme, which creates fine grained cluster,
the SBC scheme targets coarser granularity cliques. In addition, SBC also takes advan-
tage of the locality-preserving properties of SFCs to potentially reduce data movement
costs between consecutive repartitioning phases.

Figure 3 shows the load density distribution and histogram for an SFC-indexed sub-
domain list. For this example, the SBC algorithm creates three cliques defined by the
regions separated by the vertical lines in the figure on the left. The template size in
this example is two boxes on the base level. The right figure shows a histogram of
the load density. For this example, the threshold is identified in between 1 and 9 using
the intermeans thresholding algorithm. While there are many more sophisticated ap-
proaches for identifying good thresholds for segmentation and edge detection in image
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processing [5], this approach is sufficient for our purpose. Note that we assume a prede-
fined minimum size for a clique region. In this example, the subregion indexed 14 does
not form a clique as its size is less then the template size. It is clustered with another
subregion in its proximity.

3.2 Clique Characterization and Partitioner Selection

The characterization of a clique is based on its computation and communication require-
ments, and its refinement homogeneity is defined in Section 4.1. Using the characteriza-
tion of applications and partitioners presented in [14], partitioner-selection policies are
defined to select the partitioners. The overall goal of these policies is to obtain better
load balance for less refined cliques, and to reduce communication and synchroniza-
tion costs for highly refined cliques. For example, the policy dictates that the GPA and
G-MISP+SP partitioning algorithms be used for cliques with refinement homogeneity
below some threshold and partitioning algorithms LPA and pBD-ISP be used for cliques
with refinement homogeneity greater than the threshold.

4 Experimental Evaluation

4.1 Evaluating the Effectiveness of the SBC Clustering Algorithm

To aid the evaluation of the effectiveness of the SBC clustering scheme, a clustering
quality metric is defined below. The static quality of a clique is measured in terms of
its refinement homogeneity and the efficiency of the clustering algorithm. The dynamic
quality of the clique hierarchy is measured in terms of its communication costs (intra-
level, inter-level, and data migration).

(1) Refinement Homogeneity: This measures the quality of the structure of a clique.
Let |Rtotal

i (l)| denote the total size of a subregion or a clique at refinement level l,
which is composed of Rref

i (l), the size of refined regions, and Runref
i (l), the size

of un-refined regions at refinement level l. Refinement homogeneity is recursively
defined between two refinement levels as follows:

Hi(l) =
|Rref

i (l)|
|Rtotal

i (l)|
, and Hall(l) =

1
n

n∑
i=1

Hi(l), if |Rref
i (l)| �= 0

where n is the total number of subregions that have refinement level l+1. The goal
of AHMP is to maximize the refinement homogeneity of a clique as partitioners
work well on relatively homogeneous regions.

(2) Communication Cost: This measures the communication overheads of a clique
and includes inter-level communication, intra-level communication, synchroniza-
tion cost, and data migration cost as described in Section 2. The goal of AHMP is
to minimize the communication overheads of a clique.

(3) Clustering Cost: This measures the efficiency of the clustering algorithm itself.
As mentioned above, SAMR applications require regular re-partitioning and re-
balancing, and as a result clustering cost become important. The goal of AHMP is
to minimize the clustering cost.
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Partitioning algorithms typically work well on highly homogeneous grid structures.
Hence, it is important to have a quantitative measure to specify homogeneity. Intu-
itively, the refinement homogeneity metric attempts to isolate refined cliques that are
potentially heterogeneous. In contrast, unrefined cliques are homogeneous at their finest
refinement level.

The effectiveness of SBC-based clustering is evaluated using the metrics defined
above. The evaluation compares the refinement homogeneity of 6 SAMR application
kernels with and without clustering. These application kernels span multiple domains,
including computational fluid dynamics (compressible turbulence: RM2D and RM3D,
supersonic flows: ENO2D), oil reservoir simulations (oil-water flow: BL2D and BL3D),
and the transport equation (TP2D). The detailed descriptions and characterizations of
these applications are presented in [14].

The average refinement homogeneity of 6 SAMR applications without clustering is
presented in Table 1. The table shows that the refinement homogeneity H(l) increases
as the refinement level l increases. Typical ranges of H(l) are: H(0) ∈ [0.02, 0.22],
H(1) ∈ [0.26, 0.68], H(2) ∈ [0.59, 0.83] and H(3) ∈ [0.66, 0.9]. Several outliers
require some explanation. In case of the BL2D application, average H(2) = 0.4. How-
ever, the individual values of H(2) are in the range [0.6, 0.9] with many scattered zeros.
Since the refinement homogeneity on level 3 and above is typically over 0.6 and re-
fined subregions on deeper refinement levels tend to be more scattered, the clustering
schemes will focus efforts on clustering level 0, 1 and 2. Furthermore, based on these
statistics, we set the threshold θ for switching between different lower-level partition-
ers as follows: θ0 = 0.4, θ1 = 0.6, and θ2 = 0.8, where the subscripts denote the
refinement level.

Table 1. Average Refinement Homogeneity H(l) for 6 SAMR Applications

Application Level0 Level1 Level2 Level3

TP2D 0.067 0.498 0.598 0.6680
RM2D 0.220 0.680 0.830 0.901
RM3D 0.427 0.618
ENO2D 0.137 0.597 0.649 0.761
BL3D 0.044 0.267
BL2D 0.020 0.438 0.406 0.316

Table 2. Homogeneity Improvements using SBC

Application Level0 Level1 Gain on Level0 Gain on Level1

TP2D 0.565 0.989 8.433 1.986
RM2D 0.671 0.996 3.050 1.465
RM3D 0.802 0.980 1.878 1.586
ENO2D 0.851 0.995 6.212 1.667
BL3D 0.450 0.583 10.227 2.184
BL2D 0.563 0.794 28.150 1.813
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The effects of clustering using SBC for the 6 SAMR applications are presented in
Table 2. In the table, the gain is defined as the ratio of the improved homogeneity over
the original homogeneity at each level. The gains for RM3D and RM2D applications
are smaller because these applications already exhibit high refinement homogeneity.
These results demonstrate the effectiveness of the clustering scheme.

4.2 Performance Evaluation

This section presents an evaluation of the AHMP scheme using the clustering quality
metrics defined above.

Clustering Costs: The cost of the SBC clustering algorithm is experimentally eval-
uated using the 6 different SAMR application kernels on a Beowulf cluster (Frea) at
Rutgers University. The cluster consists of 64 processors and each processor has a 1.7
GHz Pentium IV CPU. The costs are plotted in Figure 4. As seen in this figure, the
overall clustering time on average is less than 0.01 second. Note that the computational
time between successive repartitioning phases is typically in the order of 10’s of sec-
onds, and as a result, the clustering costs are not significant.

Overall Performance: The overall performance benefit of the AHMP scheme is eval-
uated on DataStar, the IBM SP4 cluster at San Diego Supercomputer Center. DataStar
has 176 (8-way) P655+ nodes (SP4). Each node has 8 (1.5 GHz) processors, 16 GB
memory, and CPU peak performance is 6.0 GFlops. The evaluation uses the RM3D ap-
plication kernel with a base grid of size 256x64x64, up to 3 refinement levels, and 1000
base level time steps. The number of processors used was between 64 and 1280.

The overall execution time is plotted in Figure 5. The figure plots execution times for
GPA, LPA and AHMP. The plot shows that SBC+AHMP delivers the best performance.
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Compared to GPA, the performance improvement is between 30% to 42%. These im-
provements can be attributed to the following factors: (1) AHMP takes advantage of the
strength of different partitioning schemes matching them to the requirements of each
clique; (2) the SBC scheme creates well-structured cliques, which reduces the commu-
nication between cliques; (3) AHMP enables incremental repartitioning/redistribution
and concurrent communication between resource groups, which extends the advantages
of HPA [10].

5 Related Work

Traditional parallel SAMR implementations presented in [6] [11] use dynamic parti-
tioning and load-balancing algorithms. These approaches view the system as a flat pool
of processors. They are based on global knowledge of the state of the adaptive grid
hierarchy, and partition the grid hierarchy across the set of processors. Global syn-
chronization and communication is required to maintain this global knowledge and can
lead to significant overheads on large systems. Furthermore, these approaches do not
exploit the hierarchical nature of the grid structure and the distribution of communica-
tions and synchronization in this structure. Dynamic load balancing schemes for dis-
tributed SAMR applications are proposed in [9], which consist of two phases: global
load balancing and local load balancing. However, simplistic partitioning schemes are
used without explicitly addressing the spatial and temporal heterogeneity exhibited
by SAMR applications. The characterization of SAMR applications presented in [14]
was based on the entire physical domain. The research in this paper goes one step
further by considering the characteristics of individual subregions. The concept of nat-
ural regions was proposed in [13]. Two kinds of natural regions were defined: unre-
fined/homogeneous and refined/complex. The framework proposed in the paper then
used a bi-level domain-based (BLED) partitioning scheme to partition the refined subre-
gions. This approach is one of the first attempts to apply multiple partitioners
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concurrently to the SAMR domain. However, this approach restricts itself to applying
only two partitioning schemes, one to the refined region and the other to the unrefined
region.

6 Conclusion

This paper presented the adaptive hierarchical multi-partitioner (AHMP) scheme to ad-
dress space-time heterogeneity in dynamic SAMR applications. The AHMP scheme ap-
plies multiple partitioners to different regions of the domain, in a hierarchical manner,
to match the local requirements of the regions. A segmentation-based clustering algo-
rithm (SBC) was used to identify clique regions with relatively homogeneous partition-
ing requirements in the adaptive computational domain. The partitioning requirements
of these clique regions are then characterized, and the most appropriate partitioner for
each clique is selected. The AHMP framework and its components have been imple-
mented and experimentally evaluated using 6 SAMR application kernels. The evalua-
tions demonstrated both, the effectiveness of the clustering as well as the performance
improvements using AHMP.
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Abstract. Effective data distribution and parallelization of computations involv-
ing irregular data structures is a challenging task. We address the twin-problems
in the context of computations involving block-sparse matrices. The program-
ming model provides a global view of a distributed block-sparse matrix. Abstrac-
tions are provided for the user to express the parallel tasks in the computation.
The tasks are mapped onto processors to ensure load balance and locality. The
abstractions are based on the Aggregate Remote Memory Copy Interface, and are
interoperable with the Global Arrays programming suite and MPI. Results are
presented that demonstrate the utility of the approach.

1 Introduction

The development of scalable application codes is a challenging task. The parallelism in
the underlying problem needs to be identified and exposed; the data and computation
then must be partitioned and mapped onto processors. Computation partitioning ex-
poses the parallelism in the computation. Data distribution and mapping, together with
appropriate mapping of the computation to the processors, can potentially eliminate
communication costs, resulting in good scalability. When communication costs can-
not be completely eliminated, alternative approaches are taken to minimize the adverse
effects of communication on scalability. Data distribution is used to avoid communi-
cation hot-spots, minimizing node contention. Non-blocking communication primitives
are used to overlap communication with computation. In message passing architectures,
mechanisms to minimize communication and synchronization have been studied [1].

Effective data distribution and computation mapping of computation involving ir-
regular data structures is a challenging task. The communication patterns of such com-
putations are known only at runtime. This hinders attempts at compile-time analysis
and automatic parallelization.

In this paper, we address the twin problems of data distribution and computation
mapping in the context of block-sparse matrices. The user is presented with a global
view of a distributed block-sparse matrix. The programmer identifies the parallelism
in the computation, in the form of independent tasks. He/she also specifies the locality
information for each task, in terms of the needed data from the global space. The data
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is distributed amongst the processors such that node contention is minimized. The tasks
are mapped onto processors so as to maximize locality and minimize communication,
while ensuring load-balance. The mechanisms for computation mapping, though pre-
sented in the context of computations involving block-sparse matrices, are applicable
to other computations that incur non-trivial communication costs.

These abstractions are based on the Aggregate Remote Memory Copy Interface
(ARMCI) [2], a distributed-memory one-sided communication mechanism, available
as part of the Global Arrays programming suite [3]. The Global Arrays suite provides a
variety of programming models, each at a different level of abstraction. The abstraction
provided for block-sparse matrices is equivalent to the Global Arrays (GA) abstraction
that provides a global view of a distributed dense multi-dimensional array. The primi-
tives provided are inter-operable with the Global Arrays suite, and hence with MPI.

The principal contributions of this paper are as follows:

1. Definition of a high-level model for block-sparse matrices, that facilitates a global
view of a distributed block-sparse array.

2. A computation abstraction that allows the user to express the parallelism in the
computation. The information presented by the user is used to perform the compu-
tation in a locality-aware load-balanced fashion.

3. Performance studies that the demonstrate improved scalability and performance
achieved by the proposed mechanisms.

The paper is organized as follows. In Section 2, we discuss the applications that
motivated our work. The Global Arrays suite is described in Section 3. The global
abstraction for block-sparse arrays is introduced in Section 4. Mechanisms provided
for locality-aware load-balancing are presented in Section 5. The proposed model is
evaluated by comparing with alternative mechanisms and the results are discussed in
Section 6. Related work is detailed in Section 7. Section 8 concludes the paper.

2 Target Applications

2.1 Tensor Contraction Expressions

The development of these primitives is primarily motivated by our work on the The Ten-
sor Contraction Engine (TCE) [4] synthesis system. TCE is a domain-specific compiler
for expressing ab initio quantum chemistry models. The TCE takes as input a high-level
specification of a computation, expressed as a set of tensor contraction expressions, and
transforms it into efficient parallel code. Each tensor contraction expression is com-
prised of a collection of multi-dimensional summations of products of several block-
sparse input arrays. An operation on the indices of the segments that form a block of
an array determines if it is non-zero. The wide-ranging sizes of the blocks leads to sig-
nificant variation in the computation and communication times involved in processing
a block. The large sizes of the arrays can significantly increase communication costs, if
locality is not taken into account.
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2.2 Lennard Jones Energy Minimization Using Force Decomposition

Load balancing is important for force decomposition molecular dynamics algorithms.
The array of forces of dimension N×N is divided into multiple blocks of size m×m,
where m is the block size and N is the total number of atoms. Each process owns N/P
atoms, where P is the total number of processors, and each processor computes a fixed
subset of inter-atomic forces [5]. The forces between atoms farther from each other
than the cut-off distance need not be evaluated, resulting in unequal processing times
for each subset of the force-matrix. This, together with the block decomposition of the
force matrix, leads to load imbalance.

2.3 Parallel Dense Matrix Multiplication

Dense matrix multiplication can also benefit from our abstraction for computation map-
ping. In many scientific applications, the matrix distribution is based on the underlying
physical problem and might involve variable block sizes on individual processors, lead-
ing to load imbalance. The computation involving these matrices can be partitioned
into equal-sized blocks, independent of the underlying distribution. The assignment of
the logical blocks to individual processors is determined at run-time to achieve load
balancing. Taking locality into account can improve performance.

In general, the abstraction presented for computation mapping can benefit applica-
tions that:

– Can be partitioned into independent tasks,
– Involve many more tasks than the number of processors,
– Have wide variation in task execution times, and
– Operate on coarse-grain data, and incur communication costs if the task and the

data it operates on are not co-located.

Note that computations with data dependences can also benefit from this mecha-
nism, provided there is enough parallelism at any point in the computation. For exam-
ple, while performing a sequence of block-sparse matrix multiplies, each matrix multi-
ply can be treated as a set of independent tasks and processed using this mechanism.

3 Global Arrays Programming Suite

The Global Arrays programming suite [3] provides a set of inter-operable program-
ming models, each at a different level of abstraction. At the lowest level is MPI, a
distributed-memory programming model with message passing for two-sided commu-
nication. Though MPI is not part of the suite, it is fully inter-operable with the ab-
stractions provided in the suite, and is an integral part of the hierarchy of abstractions
presented to the user.

The Aggregate Remote Memory Copy Interface (ARMCI) library [2] provides a
distributed-memory view with one-sided access to remote data. It has a rich set of
primitives for non-blocking operations, and contiguous and non-contiguous data trans-
fers optimized to hide latency. ARMCI forms the underlying communication layer for a
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number of compile/runtime systems, including Co-Array Fortran [6], GPSHMEM [7],
and Global Arrays.

The next higher level is the Global Arrays (GA) library. GA exposes a global view of
a dense multi-dimensional array distributed amongst the local memories of processors.
It provides a shared-memory programming model in which data locality is explicitly
managed by the programmer. Explicit function calls are used to transfer data between
global address space and local storage. It is similar to distributed shared-memory mod-
els in providing an explicit acquire-release protocol, but differs with respect to the level
of explicit control in moving blocks of data in multidimensional arrays between remote
global storage and local storage. The functionality provided by GA has proved useful
in the development of large scale parallel quantum chemistry suites such as NWChem
[8] (which contains over a million lines of code), adaptive mesh refinement codes such
as NWPhys/NWGrid (www.emsl.pnl.gov/nwphys) and applications in other areas [3].

The Disk Resident Arrays (DRA) model [9] extends the GA programming model to
secondary storage. It provides a disk-based representation for multi-dimensional arrays
and operations to transfer blocks of data between global arrays and disk resident arrays.

ARMCI, GA, and DRA provide a unified programming model for handling different
levels of the memory hierarchy in which the user controls the location of data in the
memory hierarchy. This has been shown to achieve high performance, while being a
simpler programming model than message passing.

4 Abstraction for Block-Sparse Matrices

The abstraction provided for multi-dimensional block-sparse arrays provides collective
functions for creating and destroying arrays and non-collective functions to get/put ar-
bitrary multi-dimensional non-zero regions of the global memory.

The creation and destruction of the arrays is divided into two steps. For each array,
an index is first created. The index stores information on the location of the different
portions of the data in the distributed memory system. The array is then created, using
this index. The decoupling of the creation of the index from the actual creation of the
array simplifies creation of multiple aligned arrays. In computations in which memory
is dynamically allocated and freed, the index can be computed once, while the actual
memory for the array is dynamically allocated and freed.

The abstraction is constructed using the ARMCI library. The one-sided mechanisms
provided by the ARMCI library, together with the index, enables the non-collective
access functionality.

The arrays can be created by specifying the number of dimensions, the number
of blocks, and the actual block sizes. In addition, a bitmap can be provided to spec-
ify whether a block is zero. Alternatively, a function that takes as argument the block
indices and returns whether it is zero, can be provided.

The non-zero blocks of the array are divided into bricks, which are then distributed
amongst the processors in a round-robin fashion. This ensures a uniform distribution
of the data among all the processors. The user can specify the typical access pattern, to
provide hints on the choice of appropriate bricking. A small brick size allows for a more
uniform distribution of the data amongst the processors. On the other hand, a large brick
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size allows for coarse-grained, and possibly more efficient, computation and potential
reduction in the communication cost, due to amortization of the communication latency.

The index stores the offsets of all non-zero bricks together with the processor to
which it is assigned. The creation of the array allocates a contiguous chunk of memory
in each processor. The brick offsets in the index determine the offset of each brick in
this contiguous chunk. The index is replicated on all the processors.

The index is constructed using a two-level scheme. Each non-zero block contains a
pointer to a dense multi-dimensional array. Each element in this array corresponds to
a brick in that block and contains information on the processor to which that brick is
assigned, and the offset.

5 Abstraction for Locality-Aware Load-Balancing

5.1 Computation Specification

The abstraction provided to the user enables the specification of a set of independent
tasks to be executed in parallel. For each such set, all processes collectively create a
task pool object using the create task pool method.

Each task in the task pool is identified by the routine to be invoked to process that
task, identified by a function handle, and the set of locality elements it operates upon.
In addition, any private data specific to that task can also be specified. Each locality
element corresponds to a global data region, identified by its global address, size, and
its access mode. Three access modes are supported. Read, write, and access modes
allow for put, get, and accumulate of global data.

For dense and block-sparse arrays, the global address is replaced by the array handle
and the specification of the data region being accessed.

Tasks are added to a task pool using the add task method. The creation and addition
of tasks to the task pool is done by all the processes, in a replicated fashion. Once all the
tasks have been added to the task pool, seal task pool method is used to seal the work
pool. This method is invoked once for a task pool and is used to perform start-time
optimizations.

Subsequently, all the processes collectively invoke the process task pool method to
process the tasks in the task pool. A task pool, once created, can be processed multiple
times. The cost of start-time optimizations, performed once, are thus be amortized.

5.2 Implementation

In this section, we discuss the implementation of the locality-aware load-balancing ab-
straction. Computation mapping is modeled as a hypergraph partitioning problem and
a hypergraph partitioning solver, PaToH [10], is used to determine the mapping of the
tasks to processors.

Problem Definition. A computation is to be performed on globally addressable data.
The data is partitioned into non-overlapping regions and is distributed across the mem-
ories of the processors, such that each region is assigned to one and only one processor.
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TILE_MATMUL(loc_list, private_data) ::
integer Ni, Nj, Nk, i, j, k
double *A, *B, *C

!Actual communication handled outside this routine
A = get_ptr(loc_list[1]) !Fetch pointer to data
B = get_ptr(loc_list[2])
C = get_ptr(loc_list[3])

Ni = private_data[0] !Tile sizes
Nj = private_data[1]
Nk = private_data[3]

!Matrix multiply for this task
for i = 0 to Ni-1
for j = 0 to Nj-1

for k = 0 to Nk-1
C[i,j] += A[i,k] * B[k,j]

!Freeing of buffers and writing/accumulating output data
!handled outside this routine

Fig. 1. Routine to process a single task in block-sparse matrix multiply

The computation is expressible as a set of independent tasks. Each task takes as
input a set of data regions and reads, writes and/or updates (accumulates), one or more
data regions. The computation cost of each task is also provided.

Note that each task can be executed on any processor. The input data regions associ-
ated with the task are brought into local memory and the task is executed. The output data
are then written/accumulated into the global regions. If a task is executed on a processor
that contains the data regions required by it, no communication is required. In addition,
if a set of tasks that require the same data regions are co-located in a processor, commu-
nication cost can be significantly reduced by reusing the read-only data across tasks.

We assume that we have enough memory to store all the data required by all the
tasks. Thus, given a set of tasks assigned to a processor, the amount of communication
performed by that processor is equal to the total size of all the distinct data regions
accessed by all the tasks assigned to it.

The objective is to partition the set of tasks among the available processors, such that
the amount of communication required is minimized, while maintaining the balance of
computational load amongst the processors.

Hypergraph Partitioning. A hypergraph H = (V,N) is defined as a set of vertices V
and a set of nets (hyper-edges) N among those vertices. For every net n j, s j is equal
to the number of vertices it has, i.e., s j = |n j|. Weights (wi) and costs (c j) can be as-
signed to the vertices (vi ∈ V ) and edges (n j ∈ N) of the hypergraph, respectively.
P = {V1,V2, ...,VP} is a P-way partition of H if 1) each part is a nonempty subset of V ,
2) the parts are pairwise disjoint, and 3) union of the P parts is equal to V . A partition is
said to be balanced if Wp≤Wavg(1+ε) for 1≤ p≤P , where W p = ∑vi∈Vp wi is the sum
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of the vertex weights of part Vp , Wavg = (∑vi∈V wi)/P denotes the weight of each part
under the perfect load balance condition, and ε represents the predetermined maximum
imbalance ratio allowed. In a partition P of H, a net that has at least one vertex in a
part is said to connect that part. Connectivity λ j of a net n j denotes the number of parts
connected by n j . A net n j is said to be cut if it connects more than one part (i.e. λ j > 1).
The cut nets are also referred to as external nets and is denoted as NE . There are various
cut-size definitions for representing χ(P) of a partition P. The relevant, connectivity-1 ,
definition is:

χ(P) = ∑
n j∈NE

c j(λ j−1) (1)

In equation 1, each cut net n j contributes c j(λ j−1) to the cut-size. The hypergraph
partitioning problem can be defined as the task of dividing a hypergraph into two or
more parts such that the cut-size is minimized, while a given balance criterion among
the part weights is maintained. Algorithms based on the multi-level paradigm, such as
hMETIS [11] and PaToH [12], have been shown to compute good partitions quickly for
this NP-hard problem.

Modeling Locality-Aware Load-Balancing. We model the problem of locality-aware
load-balancing as a hypergraph partitioning problem. Each data region and task in the
computation has a corresponding vertex in the hypergraph. A net is introduced in the
hypergraph for every data region in the computation. For each data region, the corre-
sponding net connects the vertices corresponding to it and the tasks that access it. The
weight associated with each net is the communication cost associated with the data
region. We model it to be the size of the data region. The cost of a vertex is zero if
it corresponds to a data region, and is the number of operations to be executed if it
corresponds to a task.

We can evaluate the hypergraph thus constructed in two ways. It can be used to
determine the assignment of both the tasks and data regions to processors. If the data
regions are pre-distributed and cannot be remapped, the distribution of the data regions
amongst the processors can be pre-specified by constraining each data region to be on
a specific processor. The hypergraph is then partitioned to determine the mapping of
the tasks to the processors. Given a partition, the cost incurred by a net is the size of
the corresponding data region, times the number of remote processors that have been
assigned at least one task that accesses this region. The total cost of all the nets is given
by the connectivity metric, shown in equation 1.

5.3 Illustration

The work-sharing construct is illustrated using an implementation of block-sparse ma-
trix multiply, shown in Fig. 2. The multiplication is of the form

C[i, j]+ = A[i,k]∗B[k, j]

All dimensions are assumed to be divided into nblocks segments. The binary op-
erator op is applied to the segment indices to determine whether a block is non-zero.
Parameters g a, g b, and g c correspond to A, B, and C arrays, respectively. Methods
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MATMUL(g_c, g_a, g_b, nblocks) ::
task_pool_t tp
locality_info_list_t loc_list

tp = create_task_pool() !Create task pool
for i=0 to nblocks - 1
for j=0 to nblocks - 1

if op(i,j) <> 0 !Non-zero C block
for k=0 to nblocks - 1
if op(i,k) <> 0 and op(k,j) <> 0 !Non-zero A/B blocks
private_data[3] = {bi, bj, bk} !Tile sizes
loc_list.add(g_c, get_range(g_c,i,j), ACCESS_UPDATE)
loc_list.add(g_a, get_range(g_a,i,k), ACCESS_READ)
loc_list.add(g_b, get_range(g_a,k,j), ACCESS_READ)

!add task to task pool
add_task(tp, tile_matmul, loc_list, private_data)

seal_task_pool(tp) !Any start-time optimizations
for i = 0 to maxiter !An iterative computation
process_task_pool(tp) !Process all tasks, every iteration

destroy_task_pool(tp) !Destroy task pool

Fig. 2. Block-sparse matrix multiply using the load-balancing abstraction. Each task is processed
by the routine in Fig. 1. The task pool is processed maxiter times, but is created and sealed once.

get ranges and get size are used to compute the ranges and sizes of the non-zero block,
respectively.

Fig. 1 shows the routine used to process an individual task, matrix-multiply involv-
ing a tile from each of the arrays. Note that no explicit communication is involved. The
routine assumes that all input data are read into local memory and all output data are
written/accumulated into global memory. Fig. 2 shows the implementation of parallel
matrix multiply using this routine.

6 Experimental Results

We evaluated the primitives on the Colony2a system in the Pacific Northwest National
Laboratory, a twenty-four node cluster with each node being a dual 1GHz Itanium-2
with 6GB memory. We used the Infiniband network available on the cluster for our
experiments.

Three alternative load-balancing schemes were implemented for comparison. In the
first scheme, henceforth referred to as the Random scheme, each processor traverses
the entire list of tasks in the same order. For each task in the traversal, each processor
generates a pseudo-random number between 0 and P−1, where P is the number of pro-
cessors. If the random number generated is the processor’s rank, the processor executes
that task. Since all the processors start with the same random seed, they all generate the
same sequence of pseudo-random numbers. This ensures that each task is executed by
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exactly one process. The randomization results in a uniform distribution of the number
and sizes tasks to processors. Note that this scheme balances the number of tasks and
not task execution times. In addition, locality is not taken into account.

In the second scheme, one of the locality elements in each task is marked. Each
task is executed by the process that “owns” the marked locality element in that task.
This scheme is referred to as the Owner scheme. This scheme ensures locality for the
array used to determine the ownership. Though the round-robin distribution ensures a
reasonably balanced distribution of the data and hence the ownership, computational
load is not guaranteed to be balanced.

The third scheme is based on dynamic load balancing. In this scheme, referred to
as NextTask, all the processes enumerates the tasks to be executed in the same order. A
global shared counter is used to determine the next task to be executed. Each process,
when idle, performs an atomic fetch-and-add of the global shared counter. The value
obtained by the process specifies the next task to be executed by it. All processes con-
tinue this procedure until the counter exceeds the number of tasks to be processed. The
strictly increasing counter ensures that no task is executed more than once. It also keeps
all the processes busy, till there are no more tasks to be executed. This ensures load
balancing. But locality is not taken into account.

Note that this scheme is similar to self-scheduling in OpenMP . This is also the
typical model of parallelization used in many applications, including some quantum
chemistry codes [13].

Execution times of the following tensor contraction expression, typical of those
encountered in quantum chemistry, were measured:

a,b,c,d : O
i : V
C[a,b,c,d] = A[a,b, i]∗B[i,c,d]

where O and V correspond to the number of occupied and virtual orbitals, respectively.
They are divided into a number of symmetry segments, in turn dividing the matrix into
a set of blocks. For example, if O is divided into four symmetry segments, array C
would consist of 64 blocks. A block of a matrix is non-zero if a function of its block
segment indices is equal to the symmetry value associated with the matrix. Typically,
the function is an exclusive OR operator and the symmetry of a matrix is zero. The
tensor contraction is, in effect, a block-sparse matrix multiply. The indices were divided
into four symmetry segments. The O index was set at 160 with four symmetry segments
of length 80, 40, 20, and 20, respectively. The value of V was varied to be a multiple k
of O, with k varying from 1 to 16. The number of processors was varied from 2 to 32.

The execution times for four and thirty two processors, which are representative of
the trend, are shown in Fig. 3. Other results are not shown due to space restrictions. The
three alternative schemes, labeled Random, Owner, and NextTask, and our approach,
labeled Our, are shown. For our approach the cost is shown including and excluding
the overhead of hypergraph partitioning.

For smaller numbers of processors, the communication cost and the hypergraph par-
titioning overhead are not significant. Hence, the difference in the performance of the
various schemes is minimal. Increase in the number of processors increases the com-
munication cost. Our scheme, being locality-aware, performs increasingly better than
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Fig. 3. Execution time, in seconds, of block-sparse matrix multiply for various schemes. Time is
shown in y-axis. k=(V/O) is shown along x-axis. Each graph corresponds to a different number
of processors.

the other schemes. The NextTask scheme, which completely ignores locality, performs
progressively worse. The Owner scheme ensures locality for at least one of the arrays,
thus performing better. The Random scheme, performs better than the NextTask and
Owner schemes, due to the benefits of randomization.

The cost of hypergraph partitioning increases the cost of our load-balancing mech-
anism. Though the overhead increases with increase in the number of processors, our
mechanism still performs better, even when partitioning overhead is taken into account.
Note that in typical applications, the partitioning overhead is amortized over multiple
processings of the same task pool.

The speedups obtained by the different schemes, for number of processors varying
from 2 to 32, and for k value being 8 and 16, are shown in Fig. 4. The sequential execution
times were determined for these problem sizes, and are shown in the figure. Our approach
achieves a speed-up of up to 20 on 32 processors, excluding partitioning cost.
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Fig. 4. Scalability of the schemes for block-sparse matrix multiply for (a) k=8 and (b) k=16.
The number of processors is shown in x-axis. Speedup is shown in y-axis. The corresponding
sequential execution times are also shown.
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7 Related Work

Abstractions for block-sparse matrices exist in the context of linear algebra and itera-
tive solvers [14] . Aztec [15] is a parallel iterative solver package that provides a global
view of a distributed matrix. Advanced partitioning techniques [16] are used to deter-
mine the computation distribution and mapping. We provide a general-purpose abstrac-
tion for block-sparse matrices. The partitioning of the matrices is performed to balance
computation load-balance and communication costs. In addition, the mechanisms for
locality-aware load-balancing are not tightly coupled with block-sparse matrices, and
can be utilized in a wide range of contexts.

Dynamic load-balancing based on work-stealing has been studied, particularly for
state-space search [17] . Charm++ [18] supports dynamic load-balancing by object mi-
gration. Cilk [19] supports load-balancing of computations based on work-stealing.
OpenMP exploits parallelism at the loop level by distributing different iterations to
different processors. Locality is not taken into consideration in any of these schemes.
The self-scheduling strategy in OpenMP is similar to the NextTask scheme that was
evaluated earlier.

Çatalyürek and Aykanat [12] have used hypergraph-partitioning to parallelize sparse
matrix-vector multiplications. Chang et al. [20] performed parallel data aggregation
based on hypergraphs.

8 Conclusions

We designed and implemented high-level abstractions for manipulating block-sparse
matrices. Computation primitives to improve load balancing, by exploiting locality,
were presented. The programmer exposes the parallelism in the computation, and the
system determines the computation mapping. Our approach consistently performs bet-
ter than the alternative schemes considered for load-balancing.

Acknowledgments

We thank the National Science Foundation for the support of this research through
grants 0121676 and 0403342, and the U.S. Department of Energy through award DE-
AC05-00OR22725. We thank the Molecular Sciences Computing Facility (MSCF) at
the Pacific Northwest National Laboratory (PNNL) for the use of their computing fa-
cilities.

References

1. Lim, A.W., Lam, M.S.: Maximizing parallelism and minimizing synchronization with affine
partitions. Parallel Computing 24 (1998) 445–475

2. Nieplocha, J., Carpenter, B.: ARMCI: A Portable Remote Memory Copy Library for Dis-
tributed Array Libraries and Compiler Run-time Systems. In: Proc. 3rd Workshop on Run-
time Systems for Parallel Programming (RTSPP). (1999)



Data and Computation Abstractions for Dynamic and Irregular Computations 269

3. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Apra, E.: Advances,
Applications and Performance of the Global Arrays Shared Memory Programming Toolkit.
Intern. J. High Perf. Comp. Applications to appear (2005)

4. Baumgartner, G., Bernholdt, D., Cociorva, D., Harrison, R., Hirata, S., Lam, C., Nooijen, M.,
Pitzer, R., Ramanujam, J., Sadayappan, P.: A High-Level Approach to Synthesis of High-
Performance Codes for Quantum Chemistry. In: Proc. of Supercomputing 2002. (2002)

5. Plimpton, S.J., Hendrickson, B.A.: Parallel molecular dynamics with the embedded atom
method. In: Proc. of Materials Theory and Modelling, MRS Proceedings (1993) 37

6. Coarfa, C., Dotsenko, Y., Mellor-Crummey, J.: A Multi-Platform Co-Array Fortran Com-
piler. In: Proc. of PACT. (2004)

7. Parzyszek, K., Nieplocha, J., Kendall, R.A.: A Generalized Portable SHMEM Library for
High Performance Computing. In: Proc. of the IASTED Parallel and Distributed Computing
and Systems. (2000) 401–406

8. High Performance Computational Chemistry Group: NWChem, A Computational Chemistry
Package for Parallel Computers, Version 4.6. Pacific Northwest National Laboratory. (2004)

9. Nieplocha, J., Foster, I.: Disk Resident Arrays: An Array-Oriented I/O Library for Out-
Of-Core Computations. In: Proc. 6th Symposium on the Frontiers of Massively Parallel
Computation. (1996) 196–204
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Abstract. In this paper we describe the design and implementation of a C++
based Common Component Architecture (CCA) framework, XCAT-C++. It can
efficiently marshal and unmarshal large data sets, and provides the necessary
modules and hooks in the framework to meet the requirements of distributed sci-
entific applications. XCAT-C++ uses a high-performance multi-protocol library
so that the appropriate communication protocol is employed for each pair of inter-
acting components. Scientific applications can dynamically switch to a suitable
communication protocol to maximize effective throughput. XCAT-C++ compo-
nent layering imposes minimal overhead and application components can achieve
highly efficient throughput for large data sets commonly used in scientific com-
puting. It has a suite of tools to aid application developers including a flexible
code generation toolkit and a python scripting interface. XCAT-C++ provides the
means for application developers to leverage the efficacy of the CCA component
model to manage the complexity of their distributed scientific simulations.

Keywords: CCA, XCAT-C++, component, performance, multi-protocol.

1 Introduction

The software engineering benefits of component based software have been widely de-
scribed in the literature: components foster code re-usability and provide high level
abstractions to shield users from low level details. They provide a manageable unit
for software testing, distribution and management, and reduce the complexity of build-
ing large scale scientific applications, which often require the integration of multiple
numerical libraries into a single application. The plug-and-play characteristic of com-
ponent architectures provides the ability to reuse components in multiple applications,
and serve performance needs by allowing components to be swapped at run-time with
others that meet the required Quality of Service (QoS) metrics.

A consortium of university and national laboratory researchers launched the “CCA
Forum” [1] in 1998, to develop a Common Component Architecture (CCA) specifica-
tion for large scale scientific computation. The CCA specification defines the roles and
functionality of entities necessary for high performance component-based application
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development. The specification is designed from the perspective of the required be-
havior of software components. However, the design and implementation of the frame-
work, choice of communication protocol, and component discovery mechanisms have
not been formally specified. This has facilitated different research groups to design, de-
velop and evaluate the use of the same CCA specification to support a wide variety of
applications [2].

XCAT-C++ is tailored for distributed scientific applications and is designed to meet
the following goals: (1) the framework should have a modular design so that specialized
modules can be easily loaded to extend the capabilities of the system; (2) applications
should have the capability of seamlessly and dynamically switching to a suitable com-
munication protocol to maximize effective throughput; (3) the overhead due to com-
ponent layering should be minimal and not impact the overall performance of the dis-
tributed system; (4) each XCAT-C++ component should be capable of interacting with
endpoints that are compliant with Grid Web services standards; (5) and a flexible, ex-
tensible and powerful code generation toolkit should be provided that can generate the
transport protocol specific code and shield away the complexity of the run-time specific
details in stubs and skeletons.

The remainder of this paper is organized as follows. In Section 2 we provide a
brief introduction of the CCA specification and highlight its key concepts. In Section 3
we discuss in detail the design and implementation of the key features in XCAT-C++.
Section 4 describes some utility modules in XCAT-C++. We present performance of
XCAT-C++ in Section 5. Section 6 discusses related work, and we conclude with a
summary and pointers to future work in Section 7.

2 The Common Component Architecture

The Common Component Architecture (CCA) [2] specification is an initiative to de-
velop a common architecture for building large-scale scientific applications. CCA
places minimal requirements on components to facilitate the integration of existing sci-
entific libraries into a CCA framework and also to minimize the impact of the compo-
nent layer on performance. The specification does not mandate the use of any specific
form of distributed or parallel technology as the underlying communication architec-
ture, thereby ensuring that it does not preclude applicability to serial, parallel, dis-
tributed or grid systems. CCA promotes interoperability by requiring all components
to define their interfaces via a Scientific Interface Definition Language (SIDL) [3]. The
Babel toolkit [4] can be used to generate glue code from SIDL to many programming
languages including C, C++, Java, Fortran and Python. SIDL has been specifically
designed for high performance scientific applications. It explicitly supports complex
numbers, dynamic multi-dimensional arrays, parallel attributes, and communication
directives.

Communication between CCA components takes place via their ports, which follow
a uses/provides design pattern. A provides port is the public interface implemented by a
component. It can be referenced and used by other components. It can also be viewed as
the set of services that are exported by the component. A uses port is a connection end-
point that represents the set of functions that it needs to call. Port descriptions for CCA
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components are provided using the SIDL specification. CCA applications are composed
by connecting the uses port of one component to the provides port of one another. The
mechanism by which calls are transferred from the uses port to the provides port of the
connected component is handled differently by each underlying framework.

3 Design and Implementation Features of XCAT-C++

3.1 Mapping CCA Concepts in XCAT-C++

Components in a distributed application often span multiple address spaces and are
seldom co-located. Applications are developed by wiring components together into a
component assembly. To facilitate this approach, distributed CCA frameworks need to
provide support for remote invocation, wherein calls between components seamlessly
cross machine boundaries. Components also need the capability to instantiate other
components on remote machines. We list a few important CCA concepts and describe
how they are designed and implemented in XCAT-C++.

– Services Object: Each CCA component contains a Services object that is respon-
sible for managing the component’s ports, including the ones that are dynamically
added during the execution of the distributed application. Application developers
can retrieve handles to a component’s ports or just inspect its current state via the
standard API of the Services object. In XCAT-C++, the Services object is designed
to encapsulate the framework specific bindings for the provides and uses ports.
Whenever a uses port is requested, a pointer to a local object is returned, while for
a provides port a global (serializable) reference is returned that can be sent to com-
ponents in remote address spaces. The serializable form of the reference contains
information necessary to communicate with the provides port from any component.
This information includes details such as host name, port number, communication
protocol and a globally unique ID for the provides port.

– ComponentID: The CCA specification states that each component should design
the ComponentID as an opaque handle, but does not require any standard for-
mat. The motivation for this approach is to allow each framework to design the
handle according to its application requirements. In XCAT-C++, the handle has
been designed as an object that is serialized to a string format whenever it is trans-
ported to another component. The idea is for the remote handle to be compatible
with emerging standards in Grid Web services, which have adopted the Web Ser-
vices Description Language (WSDL) document to represent distributed services. A
WSDL document is an XML document that is commonly stored in a string format.
This design also allows an XCAT-C++ ComponentID to be used for component
assembly via work-flow engines [5].

– Builder Service: The CCA Builder Service presents a standard API for all compo-
nents to instantiate, connect and disconnect other components. Once a component
has been instantiated, the service returns a ComponentID to the new component.
This ComponentID can then be used to directly communicate with the component.
In XCAT-C++, the builder service instantiates new components from a set of name-
value pairs that encapsulate the remote environment details such as command line
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arguments, executable location, target machine name, and creation protocol. Cur-
rently, XCAT-C++ supports the use of SSH and we are testing the incorporation of
the Grid Resource Allocation and Management (GRAM) service for authenticated
launch of components on Grid resources.

– Component Communication: In distributed scientific computing, components are
instantiated on remote machines and wired together dynamically with running com-
ponents. As a result the choice of protocol depends on dynamically changing fac-
tors including the data type and size that needs to be transferred, security policies,
and the list of common protocols supported by a pair of interacting components.
Also, a component is typically connected to several components at any given time,
each connection probably optimized for a different protocol. We discuss the com-
munication system of XCAT-C++ in detail in Section 3.2.

3.2 XCAT-C++ and Grid Web Services

Web services have emerged as the architecture of choice for grid systems. Standards
such as Open Grid Services Architecture (OGSA) [6] and Web Services Resource
Framework [7] define a set of Web services based specifications for accessing Grid
resources. These standards share many design features with the CCA specification [8].
We briefly discuss how XCAT-C++ components can be used with Grid Web services.

– Two choices for mapping XCAT-C++ components to Web services are (1) every
XCAT-C++ component can be a Web service, with the endpoint in the WSDL doc-
ument for the service pointing to the ComponentID of the component; or (2) every
provides port of a component can itself be a Web service, as it has a well defined
interface and endpoint. Unlike in Web services, two ports of the same type belong-
ing to the same CCA component can exhibit semantically different behavior. To
keep this flexibility we have chosen to map each provides port to a different Web
service (and hence a different WSDL document) that can be uniquely identified and
separately accessed by Web service clients.

– The Open Grid Services Infrastructure (OGSI) specification (precursor to the
WSRF specification) required each Grid service to have a standard Grid Service
Port. This requirement can be trivially met in CCA by defining a standard provides
port with all the operations of the Grid Service Port. We are currently working
on mapping the collection of five specifications (WS-Resource Properties, WS-
Resource Lifetime, WS-RenewableReferences, WS-ServiceGroup, WS-
BaseFaults) of the WSRF framework to standard CCA provides ports. The idea
is to make these services available by default to all XCAT-C++ components. In the
current implementation, each component has access to a Builder Service by default.

– Resource Lifetime Management: the life cycle of each component is managed via
the Builder Service and a standard go port. The Builder Service design is based
on the factory model. The go port of each component can be used to stop or kill
the current execution of a component. As the go port of a component is a provides
port, it is described in a WSDL document that can be used by clients to manage the
component’s lifetime.

– Service Handles: Each CCA component has a unique (opaque) handle represented
as a ComponentID object within the component address space and some native
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representation for the on-the-wire format. This concept maps directly to that of a
Grid Service Handle (GSH) used by grid services. However, to enable interoperable
communication between different CCA frameworks, we have proposed [9] that a
standard CCA registry service be defined to convert the GSH of each framework to
a WSDL format, which can serve as a service reference pointing to the endpoint of
the provides port. This idea directly corresponds to the two level naming scheme
adopted by grid Web services.

Multi-protocol Approach for Component Interactions. The imperative for multi-
protocol design is clear when we consider the diverse communication characteristics of
various distributed applications. There is no single best protocol that can meet the require-
ments for all data types and communication patterns. We have successfully incorporated
the Proteus [10] multi-protocol library as the communication substrate for XCAT-C++.
Proteus currently has support for two protocols: (1) XBS [11], an efficient streaming bi-
nary protocol; and (2) XSOAP, a C++-based implementation of the SOAP specification.
We list some features of the multi-protocol approach employed in XCAT-C++:

– For communication between two XCAT-C++ components, both enabled by Proteus,
communication can switch to an optimized communication protocol on a per-call
basis. Proteus provides an API, which the XCAT-C++ framework can call, to select
the communication library to be used for subsequent calls. Also, communication
modules can be dynamically loaded for each component. An example scenario is
shown in Figure 1, in which three entities (A, B and C) are connected to form
a distributed application. For communication between components A and B, the
efficient XBS protocol is used. When interaction with the Web Service (entity C) is
required, the components can automatically switch to XSOAP, as SOAP is the only
protocol supported by the Web service.

– The use of Proteus can serve as the basis for interoperability with components run-
ning in a different CCA framework. For example, to communicate with a compo-
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Application Code
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Fig. 1. The Figure shows a simple architecture of XCAT-C++ components using the Proteus
Multi-protocol communication library. For communication between two XCAT-C++ compo-
nents, the XBS (a streaming binary serializer) protocol is used, while for interaction with Web
services, the XSOAP protocol is used.
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nent running on the Legion framework [9], a common-denominator protocol can
be used to negotiate the use of the most optimized protocol available with both the
frameworks. The negotiation and switch to the appropriate protocol can be handled
by the framework and remain transparent to the application.

– The use of a multi-protocol approach provides a fail-safe mechanism for data trans-
fer in XCAT-C++. If a particular protocol results in errors or has an unexpected loss
in performance, the framework can dynamically switch to another communication
protocol. Moreover, it allows error reporting to take place via a protocol that is
different from the one that generated it.

A central issue in any system that relies on multiple protocols is finding break-even
points – to know when one method is preferable to another. In numerical computing,
such approaches are called polyalgorithms, and the break-even points can often be spec-
ified in terms of a few parameters giving problem characteristics independent of the
computing environment. In communication systems, however, the issue is significantly
more complex because of dependence on hardware, networks, and software implemen-
tations. For scientific applications, with widely varying communication characteristics,
an extensive testing framework is required for each application.

3.3 Wormhole Routing

In wormhole routing, a message is divided into a sequence of (fixed size) data units,
called flits. As the header flit moves, the remaining flits follow in a pipeline fashion. As
opposed to the store-and-forward policy, worm-hole routing allows parts of a message
to be forwarded to the next node even before the entire message has been received. All
parts of a single message follow the same route. The overlapping of transmission with
reception of data sets, when done for fixed sized chunks tuned for each system, can also
maximize the benefits of cache hits. The wormhole routing feature is included as part
of the Proteus communication library [10]. The use of wormhole routing in XCAT-C++
components will allow them to efficiently function as gateways for some distributed
applications that just require efficient streaming of large data sets via network storage
depots [12]. The XCAT-C++ gateway components do not have to store the entire data in
memory at any given time and can start forwarding data chunks even before the entire
data set has been received.

4 Utility Modules for Application Development

In this section we briefly describe a few tools that facilitate in providing ease-of-use
for application scientists. While these don’t directly address performance requirements
they contribute to the rich experience of using component based technology, wherein
each component is a binary unit of composition, and just the interfaces are needed for
plug-and-play application development.

4.1 A Flexible Code Generation Toolkit

The use of the Proteus multi-protocol library with XCAT-C++ allows applications to be
built by composing components living in disparate heterogeneous environments using
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Fig. 2. The Figure shows the architecture of a flexible code generation toolkit that can gener-
ate the required glue code for many different communication libraries. The toolkit needs to be
provided with the interface description and a template for the required communication library.
Additionally, mappings can be provided to steer the code generation process.

various communication protocols. Each communication substrate has low level details
that are shielded from the user by isolating them in a library that is generated by a
specialized code-generator. However, the use of several code generators to compose a
distributed application is tedious and inconvenient. It imposes a burden on the user. It is
desirable to have a single code generation toolkit that can be used for all communication
protocols available to the framework.

Figure 2 shows a simplified design of our code generation toolkit that can be used to
generate stubs and skeletons for a wide-variety of communication protocols. The same
code generator can also be used to generate framework specific code. The common pat-
terns in the generated code for distributed object systems are captured in a grammar, that
can be used to specify templates for each communication protocol. Apart from these de-
sign patterns, the template can specify control structures and mappings for variables in
code-templates. These templates need to be written only once by the designer of the
communication library. A user needs to specify a CCA port type interface in XML (we
will add support for SIDL in the near future) and pick a template from the available
protocol-templates with the toolkit. The code generation toolkit understands the gram-
mar used to define the templates, and can generate the required code accordingly.

4.2 Composition Model

In scientific computing, one often needs to run a distributed computation multiple times
with minor variations. This makes a scripting language interface for building such ap-
plications invaluable. To accomplish this, we have developed a simple Python interface
to XCAT-C++ by using the Simple Wrapper Interface Generator (SWIG) [13] to trans-
late calls between Python and the XCAT-C++ library. Scientists can use the CCA API
directly from the python script and do not have to be concerned about the details of
the XCAT-C++ implementation. The design of XCAT-C++ does not preclude the use
of other composition models such as Matlab or Graphical Uses Interfaces (GUIs). We
plan to add a convenient GUI interface so that users can visually drag and drop com-
ponents from a repository to compose an application. This will also allow end-users to
save configurations of successful runs as python scripts.
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5 Performance

Our test environment consisted of two dual processor machines, each configured with
2.0 GHz Pentium 4 Xeon with 1GB DDR RAM and a 15K RPM 18GB Ultra-160 SCSI
drive running Debian Linux 3.1 (“sarge”) with the 2.4.26 kernel. The machines were
connected by Gigabit Ethernet. Two XCAT-C++ components with compatible ports
were launched on different nodes of the cluster. The port communication involved send-
ing and receiving one and two dimensional arrays of various sizes. The code was com-
piled with gcc version 3.3.5. Our results reflect the average of multiple measurements
for each reported data point.

The primary aim of our tests was to measure the overhead imposed by the XCAT-
C++ component layering on data types commonly used by scientific applications.
XCAT-C++ was run by selecting the high performance streaming XBS parser [11]
from the Proteus library. Figure 3 shows the performance comparison of raw TCP, Pro-
teus/XBS and XCAT-C++ on top of Proteus/XBS. The performance of raw TCP is
better than that of Proteus/XBS. This is expected as Proteus/XBS has additional over-
head above pure transmission. The performance of XCAT-C++ closely matches that of
XBS for all data sizes. The design of XCAT-C++ ensures that all application calls are
transferred to the Proteus communication module without buffer copying and the com-
ponent layering cost is restricted to just a few virtual method calls. The second plot of
Figure 3 compares the performance of XCAT-C++ and Proteus/XBS for two dimen-
sional arrays, and once again for large data sizes both XCAT-C++ and Proteus/XBS
achieve an average of 900Mbps on a Gigabit switched network.
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Fig. 3. The figures compare the performance of raw TCP, Proteus/XBS and XCAT-C++ for one-
and two- dimensional arrays. XCAT-C++ is layered on top of Proteus and XBS is one of the
communication protocols of Proteus. The plot for raw TCP serves as a standard with which
we can judge the overhead of the other protocols. For very large arrays of floating point data
(doubles), the performance of Proteus/XBS approaches that of TCP. The plot for XCAT-C++
shows that the overhead due to component layering is minimal. For large data sizes, XCAT-C++
achieves 900 Mbps on a Gigabit switched network.
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6 Related Work

The most widely used component models developed by the industry include CORBA
Component Model (CCM), Distributed Component Object Model (DCOM) and Enter-
prise Java Beans (EJB). These component models have not been explicitly designed to
meet the challenges of scientific computing. In particular, scientific applications require
the component models to encapsulate parallel and distributed programs sending large,
complex, and rapidly changing data objects.

Many CCA systems have been developed for different application domains.
SCIRun2 [14] is specialized for parallel-to-parallel remote method invocation in a dis-
tributed memory environment. SCIRun2 has mainly been used for visualization applica-
tions. XCAT-Java [8], [15] is a Java framework that uses the Web services model as its
basic architecture and supports the SOAP communication protocol. LegionCCA [16]
uses the Legion object model and run-time system to launch applications on Legion-
based grids. The CCAFFEINE [17] framework is specialized for parallel computing
and supports both single program/multiple data (SPMD) and multiple program/multiple
data (MPMD) models.

7 Summary and Future Work

We presented performance results to show that overhead of component layering on
applications is minimal and for large arrays of floating point data XCAT-C++ delivers
very high throughput. The features provided by the framework can shield users from
the details of managing the scale and complexity of their scientific applications. These
include a generalized code generation toolkit, a Python scripting composition model,
and the use of a dynamic and efficient multi-protocol library with XCAT-C++ so that
inter-component data exchanges can take place via the most optimized communication
library for each pair of interacting components.

In future work, we plan to incorporate the use of the Babel toolkit for specialized ap-
plications that use multiple components in a single process, each potentially developed
in a different language. We also plan to add support for new communication protocols
for use with XCAT-C++.
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Abstract. The performance of parallel applications running on large
clusters is known to degrade due to the interference of kernel and dae-
mon activities on individual nodes, often referred to as noise. In this
paper, we focus on an important class of parallel applications, which re-
peatedly perform computation, followed by a collective operation such
as a barrier. We model this theoretically and demonstrate, in a rigor-
ous way, the effect of noise on the scalability of such applications. We
study three natural and important classes of noise distributions: The ex-
ponential distribution, the heavy-tailed distribution, and the Bernoulli
distribution. We show that the systems scale well in the presence of expo-
nential noise, but the performance goes down drastically in the presence
of heavy-tailed or Bernoulli noise.

1 Introduction

Motivation. It is well known that many parallel applications do not scale well
on large high-performance computing systems [1,2,3]. The per-node performance
degradation is more pronounced in systems with more than 1K nodes, running a
multi-tasking operating system such as Unix. In order to build high-performance
computing systems that are capable of very high and sustained performance, it
is important to understand the reasons for such performance degradation.

It is increasingly becoming evident that one of the main causes of performance
degradation is the noise in the system; in the form of daemons and interrupts,
see [1,2].

A detailed study of the noise and its impact on performance was done by
Petrini et al. [3] on the 8192 processor ASCI Q machine. It was observed that
the overheads due to noise were mostly in the range 0.5% to 2.5% (see Figure 9
in [3]). However, this noise had a large impact on the system performance. By
reducing the intensity of noise in the system it was possible to get a factor
of 13 improvement in the performance of a micro-benchmark that repeatedly
calls barrier with no intervening computation. Similarly, Kramer and Ryan [4]
concluded that the performance variability in EP (of NAS parallel benchmarks)
was due to the noise in systems.

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 280–289, 2005.
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Our Contribution. The main contribution of this paper is to initiate the study
of the impact of noise on the scaling of parallel applications in a formal man-
ner. We focus on a particularly important class of parallel applications which
often arise in scientific computations. Here, typically, each node in the cluster is
repetitively involved in a computation stage, followed by a collective operation;
such as a barrier computation. We model this theoretically and demonstrate the
effect of noise on the performance of such parallel applications. We study three
natural and important classes of noise distributions: The exponential distribu-
tion, the heavy-tailed distribution, and the Bernoulli distribution. We show that
the systems scale well in the presence of an exponential noise, but their per-
formance goes down drastically in the presence of a heavy-tailed or a Bernoulli
noise. Though our model is very simple, it is powerful enough to predict the ef-
fect of noise on scaling. We believe that this study will also be extremely useful
in identifying and improving bottlenecks in the scalability of systems in a more
systematic way, for instance, by designing scheduling policies, which take into
account the nature of the noise, to improve the overall system performance. To
the best of our knowledge, this is the first attempt to explain the impact of noise
with a mathematical model.

Related Work. One way to reduce the impact of noise on scalability is to
reduce the intensity of noise itself. This can be done by removing several system
daemons, dedicating a spare processor to absorb the noise, and decreasing the
frequency of daemons [3].

Another approach is to synchronize the noise across the nodes of the system.
This may be done by either periodically adjusting the scheduling priorities of
the processes, or by changing the scheduler in the kernel, see [5,6,7,8,9].

Though these methods have resulted in a reduced impact of noise on the
performance of the respective systems, a general solution is more desirable both
with regards to scalability and applicability. Our work provides a structured
approach to understand the impact of noise on the overall system performance.
Using the insights from our results, it might be possible to further enhance all of
the above approaches, thereby advancing the frontier of scalability and yielding
better resource utilization in the present high-performance computing systems.

Organization. Section 2 presents the theoretical model of a typical scientific
parallel application with noise. Therein, we also justify the assumptions about
the model. In Section 3, we analyze the proposed model and present the results
obtained when the noise is distributed according to the exponential, heavy-tailed
or Bernoulli distribution. In Section 4 we briefly discuss the implications of our
results. Due to space limitations, the proofs of the theorems in Section 3 and a
detailed discussion will appear in the full version of this paper [10].

2 The Model

In this section we describe a general model that captures the case of a compute in-
tensive program with periodic synchronization. We assume that the program has
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perfectly balanced load and it carries out minimal I/O and message exchanges.
However, it carries out periodic synchronization using a collective operation. A
footprint of such a program is typically present in many parallel applications, in
particular in those which involve scientific computations.

2.1 Modeling the Computation

Consider a parallel program with N threads running on a system which has N
processors. We assume, for simplicity of analysis, that N = 2k − 1 for some
positive integer k.

The Communication and the Three Stages. We assume that the barrier
is implemented using message passing along a complete binary tree. A thread
is associated to each node of the binary tree. There is a special node called the
root which initiates the post-barrier stage and the pre-barrier stage ends at it.
In the post-barrier stage, the root thread starts by sending a message to both
its children to start with the compute stage. Whenever this message reaches
a thread, it forwards the message to both its children in the tree (unless the
node is a leaf) and starts the computation assigned to it. After finishing its
computation, a leaf node sends a message to its parent indicating the end of its
computation stage. This starts the pre-barrier stage. The parent, after finishing
its computation and receiving the message from both its children, sends the
message to its parent indicating the end of computation at every node in its
subtree. This stage ends when the root finishes its computation and receives a
message from both its children indicating the same. An iteration of the loop
would, thus, consist of a compute stage, followed by a pre-barrier and a post
barrier stage. For simplicity, we assume that each message transmission between
a parent and a child node takes time τ. Again, for simplicity of analysis, we
consider a phase which consists of a sequence of a post-barrier, a compute and
a pre-barrier stage. The program consists of M such phases. Now, we model
various aspects of one such phase.

A Phase. Let tsij represent the time instant when the i-th thread begins the
computation stage in the j-th phase. Let tfij represent the time instant when the
i-th process ends the computation stage in the j-th phase. Let Wij represent
the amount of work (say the number of operations) carried out by thread i
in the compute stage of the j-th phase. If the system is noiseless, the time
required by processor i to finish work Wij in its j-th phase will be a constant,
say wij , which typically depends on the characteristics of the processor, such
as clock frequency, architectural parameters, and the state of the node (such as
cache contents) just before the j-th phase is entered. Therefore, tfij − tsij = wij .
Due to the presence of system level daemons that get scheduled arbitrarily, the
wall-clock time taken by processor i to finish the work Wij is typically not a
constant. There will be a variable component that represents the time consumed
to service the daemons and other asynchronous events. We capture this by a
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random variable δij . More precisely, tfij − tsij = wij + δij , where δij is a random
variable that captures the overheads incurred by processor i in servicing the
daemons and other asynchronous events during the j-th phase. Note that δij also
includes the context switching overheads, as well as, the time required to handle
additional cache or TLB misses that arise due to cache pollution by background
processes. The mean value of δij depends on the time taken to do work Wij

and the system load on processor i during the j-th phase. Let fij ∈ [0, 1] be the
fraction representing the system overhead for the processor. We may write the
wall-clock time taken by processor i for the compute stage of the j-th phase as
tfij − tsij = wij

(
1 + fij

1−fij
ηij

)
, where ηij is the normalization of δij such that

E[ηij ] = 1.

2.2 The Assumptions and Justifications

In this section we state and justify the assumptions we make about the model.
The underlying principle in making the assumptions is to present an ideal model
which captures the impact of the noise on typical parallel programs for scientific
applications, and which is at the same time, susceptible to a rigorous theoretical
analysis. We show, in a formal manner, that even in this ideal setting, the nature
of noise may impact the system performance considerably.

Balanced Load: Wij = W for all i, j. Application programs try to divide
the load equally among its threads. Best performance is obtained when the load
across every thread in a compute phase is equal (i.e. Wij = Wj for all i).

Identical Processors: wij = w for all i, j. If the processors are heterogeneous,
the performance of the parallel application will be dictated by the performance of
the slowest processor in the system. Best performance is obtained (with perfectly
balanced load) when the processors are identical1. In addition to this, we make
two more assumptions: (1) The application starts with all its threads in identical
states. (2) The time taken by a computation does not depend on the input data.
Together, these assumptions imply that the time taken by a compute phase is
same across all the processors. The second assumption will not be true in general,
because, due to cache effects, the time taken to carry out a set of operations also
depends on the order in which the operations are carried out. However, it can
be verified that this is the most optimistic assumption that will give the best
program performance.

Stationary and Balanced Overheads: fij = f for all i, j. In typical HPC
systems, the processors are allocated to an application for the lifetime of the
application. Running any other application on the node is avoided. Thus, all
the interference is due to the background processes or daemons. The amount
of daemon activity is not expected to change over time. Thus we may assume
1 We do not consider programs running on heterogeneous clusters that distribute the

load across multiple nodes depending on the relative speed of the nodes.
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fij = fij′ , for all i, j and j′. The daemons and overheads may be classified
into intrinsic and extrinsic processes. The intrinsic processes run on every node
and carry out book-keeping activities for the node. The system overhead due to
intrinsic processes is expected to remain the same across all the nodes. However,
the overheads of extrinsic processes are expected to vary across nodes. A detailed
analysis may be carried out along the same lines while taking into account the
activities of the extrinsic processes as well. Therefore, we assume fij = fi′j , for
all i, i′ and j.

Identical Noise: ηij ∼ η for all i, j. Due to homogeneity of nodes and the
fact that we choose to ignore the effect of extrinsic processes, we may assume
that the nature of noise associated to the intrinsic processes is the same across
the nodes and phases.

Spatial Independence: {ηij : i ∈ [1 . . .N ]} are independent for each j.
This assumption is the key to all of our results. In a typical cluster environ-
ment, there is no co-ordinated scheduling policy to synchronize processes across
different nodes. Some HPC systems may deploy different scheduling policies to
alleviate the daemon problems [7,8,9], as discussed earlier in Section 1. However,
our analysis is restricted to systems that do not employ a co-ordinated schedul-
ing policy. Note that we do not assume the random variables {ηij : j ∈ [1 . . . M ]}
to be independent. In fact, many of the daemons are periodic, and we do expect
complex correlation pattern between these random variables. In general, the na-
ture of noise ηij may depend on the quantum of work wij carried out in the
phase. To analyze this, the compute phases may be grouped into quanta of work
wj and the same analysis may be independently carried for each quantum (with
its associated noise). Due to linearity of expectation, the expected run time for
each quantum of work can be added up to give the expected running time of the
application.

3 Analysis

The Ideal Noiseless Case. Figure 1 illustrates the sequence of events in the
ideal noiseless case. It is clear that in this case the time taken by each thread
in a phase is w + 2τ(k − 1), where N = 2k − 1. (The figure is for the case when
k = 3.) In terms of N, this is w+2τ(log(N +1)−1). This will be the benchmark
performance we will use for comparison with the noisy case.

The Ideal Noisy Case. Now, we no longer assume that fij are 0. We refer to
this as the ideal noisy case. In this case, tfij − tsij is randomly distributed. An
example of this scenario is presented in Figure 1. The post-barrier phase of the
communication is still the same as in the case of the ideal noiseless case.

Let ai denote the time it takes the message to reach thread i from the root
in the post-barrier stage. Further, let bi denote the time it takes the message
from thread i to reach the root in the pre-barrier stage. The time taken to
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Fig. 1. An ideal noiseless (left) and noisy (right) barrier computation cycle

complete the j-th phase then is at-least maxN
i=1(ai + tfij − tsij + bi). Notice that

since the pre and post-barrier stages are done via communicating through a
binary tree, for the leaves of this binary tree, which are 2k−1 = N+1

2 in number,
ai = bi = τ(k−1) = τ(log(N +1)−2). Let us just restrict our attention to these
leave threads. Since the noise is independent across the threads, the maximum of
ai + bi + wij , for i restricted to these threads is a lower bound to the time taken
to complete the j-th phase. Let Y r

η denote the maximum of r random variables
which are independent and identically distributed according to η. Hence, the

expectation of tfij − tsij is at-least 2τ(log(N + 1)− 2) + w
(
1 + f

1−f E
[
Y

N+1
2

η

])
.

Therefore, we have the following theorem.

Theorem 1. The expected time taken per phase is bounded by

LowerBound : w

(
1 + f

1−f E
[
Y

(N+1)/2
η

])
+ 2τ(log(N + 1)− 2)

UpperBound : w

(
1 + f

1−f E
[
Y N

η

])
+ 2τ(log(N + 1)− 1)

We call the term 2τ(log(N + 1) − 2) in the above expression as the latency
component which is an indication of time spent in barrier due to the commu-

nication latency. The term w f
1−f E

[
Y

(N+1)/2
η

]
is called the noise component as

it represents the slow-down due to the presence of asynchronous daemons. The
expected time taken by a phase can be decomposed into the work component
w, the latency component and the noise component. The daemons start playing
a significant role as soon as the noise component becomes comparable to the
latency component. Now, we examine different types of noise distributions and
prove a lower bound for the expected time taken to complete a phase.

The Exponential Case. This distribution arises as the continuous limit of
the discrete geometric random distribution and occurs very often in practice
as a description of the time elapsing between unpredictable events, such as,
telephone calls, radioactive emission, arrivals of buses. Being one of the most
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natural and important distribution to model such events, in this section we
consider the case when the noise ηij-s are also distributed according to the
exponential distribution. An exponential distribution Xexp with mean 1 has the
following distribution: ∀x ≥ 0, Pr[Xexp ≤ x] = 1 − exp(−x). In this case, the
following lower bound shows the impact of the noise being exponential.

Theorem 2 (Exponential Noise). If {ηij : i ∈ [1 . . .N ]} are independently
and identically distributed according to Xexp, then the expected time taken per

phase is at-least w
(
1 + f

1−f (ln(N + 1)−Θ(1))
)

+ 2τ(log(N + 1)− 2).

The lower bound has the form c log N + d, where c = wf
(1−f) log e + 2τ . This is

a linear function of log N, similar to the ideal noiseless case. When wf
(1−f) log e is

comparable to (or less than) 2τ , the performance is close to the ideal noiseless
case. Hence, only when wf

(1−f) log e is large compared to 2τ , this model of noise

impacts the performance by a constant factor of wf
2τ(1−f) log e compared to the

ideal noiseless case.

The Heavy-Tailed Case: The Pareto Distributions. In this section we
consider the case when the noise has a heavy tail. This is unlike the exponential
case and the noise looks more like the uniform distribution. A natural and very
popular way to model data which has heavy tail is the so-called Pareto distri-
bution. The Pareto random variable Xa

par with parameter a has the following
distribution: ∀x ≥ 1, Pr[Xa

par ≤ x] = 1− 1
xa . The Pareto distribution has mean

a
a−1 . To make this random variable with unit mean, we let η be a−1

a Xa
par.

Theorem 3 (Pareto(a) Noise). If {ηij : i ∈ [1 . . .N ]} are identically and
independently distributed according to a−1

a Xa
par, then the expected time taken per

phase is at-least w
(
1 + f

1−f

(
N+1

2

)1/a (
a−1

a

)1−1/a
)

+ 2τ(log(N + 1)− 2).

The theorem shows that, in this case, the scalability of the parallel systems
suffers far more than in the exponential case or the ideal noiseless case. The
scaling becomes worse as the value of a goes lower. Hence, fixing w, τ, f and a,
and letting N increase, the term that will dominate here is N1/a. We refer to this
as polynomial scaling, and such a scenario is extremely undesirable, especially
for small values of a.

The Bernoulli Case. This is parameterized by a probability p and a time T.
In this setting, each thread takes time w+T with probability p, and time w with
probability 1−p. The Bernoulli distribution models the expected scaling behavior
of collectives in the presence of in-frequent and bursty noise. This model can also
be thought of as a first order and discrete approximation of a heavy-tailed noise,
where the size of the tail can be controlled by varying pT.

Theorem 4 (Bernoulli Noise). If {ηij : i ∈ [1 . . .N ]} are identically and in-
dependently distributed according to the Bernoulli distribution, then the expected
time taken by a phase j is at-least w+T (1−(1−p)(N+1)/2)+2τ(log(N +1)−2).
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When pN
2 is small compared to 1, the first term in the above lower bound is

essentially w(1 + pT
2w N) = w

(
1 + f

1−f N
)
. Hence, in this range, the system is

expected to show linear scaling. For very large values of N , the maximum slow-
down in the performance is approximately a factor of 1 + T/w.

4 Discussion

In this section, we discuss the implications of our results by plugging in the
values for w, τ and f, which are typical to the HPC systems, see [3].

We use the weak scaling model to measure the scalability of the system in
presence of different noise distributions. In the weak scaling model, the work
per processor is kept fixed and the performance is studied as the number of
processors is increased. Define N1/2 to be the minimum number of processors
with which the program takes twice as much time as with one processor. For the
ideal noiseless case, this happens when w ≈ 2τ log(N + 1), or N + 1 ≈ 2w/(2τ).
This parameter gives an indication of how well a program scales in the presence
of noise. Subsequently, we also discuss the values of N1/2 for different noise
distributions.

The Exponential Case. Figure 2 shows the expected time needed for one
phase of computation in our model when η is distributed according to the expo-
nential distribution (see Theorem 2). When w = 10µs, the noise intensity f has
little impact on the performance, whereas when w = 1ms, f has a significant
impact.

In this case, N1/2 may be approximated as N1/2 ≈ exp
(

1
f/(1−f)+2τ/(w ln 2)

)
.

With 1% exponentially distributed noise, N1/2 ≈ 2.3 · 1027 and with 10% noise,
N1/2 ≈ 5196. This shows that in the presence of an exponentially distributed
noise, the programs are expected to scale well. However, unlike the the ideal
noiseless case, the time taken by collectives may be dominated by the noise
component (when wf > τ) as opposed to the latency component.
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The Pareto Case. Figure 3 shows the expected time needed for one phase of
computation as a function of N when η is distributed according to the Pareto
distribution (see Theorem 3). In the first plot, different lines represent different
values of a, while the value of f is kept fixed at 0.005. In the second plot, different
lines represent different values of f, while a is kept fixed at 3.

In this case, N1/2 may be approximated as N1/2 ≈ min
(
2 ·

[
1−f
fca

]a

, 2w/(2τ)+2
)
,

where ca =
(

a−1
a

)1−1/a. If f is kept fixed at 0.005, then N1/2 ≈ 35.4 · 106 for
a = 3, N1/2 ≈ 158, 404 for a = 2, and N1/2 ≈ 9724 for a = 1.5. Similarly, for
a = 2, N1/2 ≈ 39, 203 when f = 0.01, and N1/2 ≈ 9604 when f = 0.02. This
shows that scaling behavior is sensitive to the Pareto parameter a, as well as the
noise intensity f .

The Bernoulli Case. Figure 4 shows the expected time taken by a phase as
a function of number of nodes for different values of p and T (with w = 2ms).
Note that the x-axis is in logarithmic scale. For small values of N , the total
time varies linearly with N (with a slope of pT/(2w)). For large values of N , it
saturates to w + T .
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The N1/2 in the presence of Bernoulli noise may be approximated asN1/2 ≈ 2/f .
For f = 0.01, N1/2 ≈ 200. This indicates that systems with Bernoulli noise are
expected to have very poor scaling properties.
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Abstract. Complexity of parallel application development has been one
of the major obstacles towards the mainstream adoption of parallel pro-
gramming. In order to hide some of these complexities, researchers have
been actively investigating the pattern-based approaches to parallel pro-
gramming. As reusable components, patterns are intended to ease the
design and development phases of parallel applications. Parallel Archi-
tectural Skeleton (PAS) is one such pattern-based parallel programming
model which describes the architectural aspects of parallel patterns. Like
many other pattern-based parallel programming models and tools, the
benefits of PAS were offset by the difficulties in extending PAS. EPAS is
an extension of PAS that addresses this issue. Using EPAS, a skeleton de-
signer can design new skeletons and add them to the skeleton repository
(i.e., extensibility). EPAS also makes the PAS model more flexible by
defining composition of skeletons. In this paper, we describe the model
of EPAS and also discuss some of the recent usability and performance
studies. The studies demonstrate that EPAS is a practical and usable
parallel programming model and tool.

1 Introduction

Parallel application design and development is often a complex process. There
are several approaches to parallel programming for hiding some of the complex-
ities. This research focuses on one such approach, which is based on the idea
of (frequently occurring) design patterns in parallel computing. In the domain
of parallel computing, (parallel) design patterns specify recurring parallel com-
putational problems with similar structural and behavioral components, and
their solution strategies. Several parallel programming systems have been built
with the intent to facilitate rapid development of parallel applications through
the use of design patterns as reusable components. Some of these systems are
Enterprise [1], DPnDP [2], COPS [3], PAS [4], and ASSIST [5].

Unlike the algorithmic skeletons [6] research, which deals with the behavioral
aspects of patterns, Parallel Architectural Skeletons (PAS) [7, 4] focus on the
architectural or structural aspects of message-passing parallel patterns. Each
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architectural skeleton in PAS encapsulates the various structural attributes of
a pattern in a generic (i.e., pattern- and application-independent) fashion. An
architectural skeleton can be considered as a pattern-specific virtual machine
with its own communication, synchronization and structural primitives. A de-
veloper, depending upon the specific needs of an application, chooses the ap-
propriate skeletons, supplies the required parameters for the generic attributes,
and finally fills in the application-specific code. An architectural skeleton supply
most of the code that is necessary for the low-level and parallelism-related issues.
Consequently, there exists a clear separation between application dependent and
application independent issues (i.e., separation of concerns).

Though re-usability is an obvious benefit, the lack of extensibility and the lack
of support for pattern composition are some of the major concerns associated
with many of the pattern-based parallel programming systems, including PAS.
Most existing systems support a limited and fixed set of patterns that are hard-
coded into those systems. Generally, there is no provision for adding a new
pattern without understanding the entire system (including its implementation)
and writing the pattern from scratch (i.e., lack of extensibility). Consequently,
if a required parallel computing pattern demanded by an application is not
supported, generally the designer has no alternate but to abandon the idea of
using the particular approach altogether (lack of flexibility).

EPAS is an extension of the PAS system and it addresses the drawbacks men-
tioned previously. An earlier discussion of EPAS emphasizing more on the user
interface part (Skeleton Description Language) appeared in [8]. In this paper,
we describe the complete model of EPAS along with some of the recent usability
studies. Using EPAS, a skeleton designer can extend PAS by adding new skele-
tons to an existing skeleton repository. EPAS also makes the PAS system more
flexible by defining the composition of skeletons, whereby two or more existing
skeletons can be composed into a new skeleton.

In the next section, we introduce the necessary preliminaries. We elaborate
the model of EPAS in Section 3. The subsequent section describes the sum-
mery of usability and performance test results. Section 5 discusses the related
works and compares EPAS with them briefly. Finally, Section 6 concludes our
discussion.

2 Preliminaries

Parallel Architectural Skeletons (abbreviated as PAS) [4, 7] generically encap-
sulate the structural/architectural attributes of message-passing parallel com-
puting patterns. Each PAS skeleton is parameterized where each parameter is
associated with some attribute. The value of a parameter is determined during
the application development phase. A PAS skeleton with unbound parameters
is called an abstract skeleton or an abstract module. An abstract skeleton be-
comes a concrete skeleton or a concrete module, when the parameters of the
skeleton are bounded to actual values. A concrete skeleton is yet to be filled
in with application-specific code. Filling a concrete skeleton with application-
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Fig. 1. PAS skeletons and their components

specific code results in a code-complete parallel module or simply a module. Var-
ious phases of an application development using PAS are roughly illustrated
in Fig. 1(a). The figure shows that different parameter bindings to the same
abstract skeleton can result in different concrete skeletons.

Each abstract skeleton (or abstract module) consists of the following set of
attributes: (i) Representative of a skeleton represents the module in its action
and interactions with other modules. The initial representative is empty and
is subsequently filled with application-specific code during application develop-
ment. (ii) The back-end of an abstract module Am can be formally represented
as {Am1, Am2, . . . , Amn}, where each Ami is itself an abstract module. The
type of each Ami is determined after the abstract module Am is concretized.
Note that collection of concrete modules inside another concrete module results
in a (tree-structured) hierarchy. Consequently, each Ami is called a child of Am,
and Am is called the parent. The children of a module are peers of one another.
In this paper, the children of a module are also referred as computational nodes
of the associated skeleton or patterns. (iii) Topology is the logical connectivity
between the children inside the back-end as well as the connectivity between the
children and the representative. (iv) Internal primitives are the pattern-specific
communication, synchronization or structural primitives. Interactions among the
various modules are performed using these primitives. The internal primitives,
the inherent properties of the skeleton, capture the parallel computing model
of the associated pattern as well as the topology. Fig. 1(b) diagrammatically
illustrates attributes of an abstract and a concrete 2-D Mesh skeleton.

There are pattern-specific parameters associated with some of the previous
attributes. For instance, if the topology is a Mesh, then the number of dimensions
of the mesh is one parameter, and the nature of the connectivities among the
nodes at the edges (i.e., toroidal or non-toroidal) is another parameter. Binding
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these parameters to actual values, based on the needs of an application, results
in a concrete module. A concrete module Cm becomes a code-complete module
when: (i) the representative of Cm is filled in with application-specific code, and
(ii) each child of Cm is code-complete.

All of the attributes of an abstract skeleton are inherited by the corresponding
concrete skeletons as well as the code-complete modules. In addition, we define
the term external primitives of a concrete or a code complete module as the set
of primitives using which the module (i.e., its representative) can interact with
its parent (i.e., representative of the parent) and peers (i.e., representatives of
the peers). Unlike internal primitives, which are inherent properties of a skeleton,
external primitives are adaptable, i.e., a module adapts to the context of its par-
ent by using the internal primitives of its parent as its external primitives. While
filling in the representative of a concrete module with application-specific code,
the application developer uses the internal and external primitives to interact
with other modules in the hierarchy.

A parallel application developed using PAS is a hierarchical collection of
(code-complete) modules. Conceptually, each concrete module can be consid-
ered as a pattern-specific virtual machine with its own communication, synchro-
nization and structural primitives. A user fills in these virtual machines with
application-specific code, starting bottoms-up in the hierarchy, to create the
complete parallel application. The root of the hierarchy, i.e. a code-complete
module with no parent, represents a complete parallel application. Each non-
root node of the hierarchy represents a partial parallel application. Each leaf
of the hierarchy is called a singleton module (and correspondingly, a singleton
skeleton for the abstract counterpart).

3 The EPAS Model

EPAS is targeted for two categories of users: skeleton designers and application
developers. Often a user can fall into both the categories. EPAS provides a set
of virtual processors, interconnected to form a specific topology (described in
the next subsection), and a rich set of basic communication and synchronization
primitives for interactions among these processors. In the process of designing a
new skeleton, a skeleton designer first decides about the constituents of the new
skeleton (i.e., back-end components, topology, primitives, etc). Subsequently she
needs to map the children (i.e., abstract modules in the back-end) of the newly
designed (abstract) skeleton to the virtual processors provided by EPAS, and
define the topology and the communication-synchronization primitives of the
new skeleton on top of the basic primitives and the specific topology provided
by EPAS. A Skeleton Description Language (SDL) facilitates this design phase.
The discussion in the following sub-sections elaborates these issues.

3.1 The Virtual Processor Grid

The previously discussed virtual processors of EPAS are arranged into a set of
multidimensional grids. Each node of such a grid is a virtual processor. Conse-
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quently we will use the term virtual processor grid (VPG) to describe such a
grid, and use the terms node of a grid and virtual processor interchangeably. The
topologies of the newly designed skeletons are embedded into these grid topolo-
gies. Usually one skeleton is embedded into one VPG. Each multidimensional
VPG is equipped with its own communication and synchronization primitives.
These primitives include primitives for synchronous and asynchronous peer-to-
peer communication, collective communication and synchronization primitives.
We chose to make the VPG primitives a super set of the basic communication-
synchronization primitives supported in some of the prominent parallel pro-
gramming environments. Our choice is influenced by the research article [9],
MPI standard, PVM documentations, and our experiences with PAS and other
pattern-based systems.

3.2 Mapping a Skeleton Topology into a VPG

In the process of designing an abstract skeleton, the skeleton designer needs to
embed the topology of the newly designed skeleton to the existing grid topol-
ogy provided by EPAS, and consequently map each of its children (i.e., abstract
modules of the back-end) into a VPG node. Fig. 2 shows one such mapping
where the designer wants to design an abstract Wavefront skeleton, a structural
implementation of the Wavefront pattern. Fig. 2(a) is the visualization of the
Wavefront skeleton where the topology of its constituents is shown. The visual-
ization helps the designer to make several design decisions. At first, she decides
about the parameters of the skeleton. For example, in this case, the structure of
a Wavefront skeleton becomes generic if the the number of rows (or the num-
ber of columns) of the skeleton is considered to be a parameter rather than a
constant. In this example, we name this parameter as size.

In the case of a Wavefront, the choice of a two dimensional VPG (Fig. 2(b))
is obvious because it facilitates a one-to-one mapping of the children (of the
skeleton) into the nodes of the VPG. Fig. 2(c) shows such a mapping. Note that

Representative

... ... ...

...
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size

(a) Wavefront skeleton

VPG nodes
Implicit
representative
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... ... ... ...

...

...

...
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... ... ... ...

...

...

...

Null nodes
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(c) Embedding skeleton
topology to the VPG

Fig. 2. Mapping Wavefront skeleton components into a 2-D VPG
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each VPG has an implicit representative node, to which the representative of
the skeleton is mapped onto. From the figure, it can be found that even after
limiting the height and width of the VPG (to the parameter size), there are
virtual processors to which no child of the skeleton are mapped onto. Those
virtual processors are called null virtual processors or null nodes.

The embedding of a skeleton into a VPG is complete when the associated
communication, synchronization and structural primitives of the skeleton are
defined. These primitives are defined on top of the existing EPAS-provided
primitives for the VPG (in this case, a 2-D VPG). In Fig. 2(c), some of the
channels along which communication primitives are defined are marked. Exam-
ples of some communication primitives for a Wavefront skeleton are: (1) receive
a message from the representative, (2) send a message to the left neighbor, etc.
Examples of some structural primitives are the operations: (1) to check whether
a child is located at the nth column, (2) to check whether a child is located on
the diagonal, etc. The discussion in the following elaborates it further.

In the EPAS model, the topology of an abstract skeleton (as in Fig. 2(a))
is called the abstract topological space (AT ) of the skeleton. The abstract topo-
logical space of a skeleton is constituted of zero or more nodes (i.e., children
of the back-end) along with their connectivities. Connectivity among the nodes
of AT is represented by a connectivity function T . The mapping function, M,
maps nodes of AT to the virtual processors of the VPG space (designated as
VPG). The embedding of an AT into a VPG results in an abstract mapped space,
designated as P , which is a subgraph of the VPG space and is constituted of
only the non-null nodes of VPG. Note that for a composite skeleton, discussed
in the next subsection, there can be more than one abstract mapped spaces.

Provided that M and T are already defined, it is easy to express the con-
nectivities among the non-null virtual processors of the VPG (i.e., nodes of P)
as the composite function: M.T .M−1. As mentioned before, skeleton-specific
primitives are defined on top of the VPG-primitives. Once M, T , and conse-
quently M.T .M−1 are known, it is a rather mechanical procedure to define
any skeleton-specific communication-synchronization and structural primitive in
terms of a sequence of EPAS-provided VPG-primitives. Further discussion in
this direction is omitted due to space constraints.

3.3 Composition

EPAS model supports the idea of composition of abstract skeletons. Composition
is the way to combine simpler abstract skeletons into a complex one. In the
following discussion, we describe the motivation behind incorporating the idea
of composition into EPAS.

Motivation Behind Composition. A large-scale parallel application is of-
ten a composition of multiple patterns. Sometimes it is more desirable to have
a single composite skeleton rather than a collection of smaller skeletons, if the
composite skeleton will be used frequently later on. Another reason for having
a composite skeleton is performance. Let us consider the example in Fig. 3(a),
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Fig. 3. Composing skeletons towards performance

where a Wavefront and a Pipeline skeleton are shown. The output of the right-
most child of the Wavefront is sent back to the representative; the representative
routes it to the representative of the Pipeline skeleton, which in-turn again routes
to the first stage of the Pipeline. Composition of these two skeletons is shown
in Fig. 3(b). It is evident from the figure that composition, in this case, reduces
the number of routing requirement by 1 as compared to the case in Fig. 3(a).

Readers should note that composition is different from the construction of
skeleton hierarchy during concretization. Composition is performed on abstract
skeletons to create a composite abstract skeleton. Composition is performed by
the skeleton designers, whereas the skeleton hierarchy is constructed by the ap-
plication developers. Composition may require an in-depth knowledge of the
abstract mapped spaces, whereas the creation of the skeleton hierarchy does not
require that. Composition of two or more skeletons during concretization in-
creases the height of the skeleton hierarchy during application development. On
the contrary, use of composite abstract skeletons during application development
reduces the height of the skeleton hierarchy.

Model of Composition. In simple words, composition of skeletons Si and
Sj into a skeleton Sk results in the union of the parameters, primitives, and
the abstract mapped spaces of Si and Sj . Moreover, newer primitives may be
defined for a composite skeleton. Say, constituents of skeleton Si are mapped onto
abstract mapped spaces P1i, P2i, . . . , Pmi; and those of Sj are mapped onto P1j ,
P2j , . . . , Pnj ; then constituents of Sk will be mapped onto P1i, P2i, . . . , Pmi,
P1j , P2j , . . . , Pnj . We define the extended mapped space (E) of a skeleton as
a space which is exactly big enough to hold all the abstract mapped spaces of
that skeleton. Formally, let us assume that a skeleton S consists of the abstract
mapped spaces P1, P2, . . . , PN . Assuming that the abstract mapped space Pi is
a ki dimensional space (i.e., result of mapping the abstract topological space of
the skeleton into a ki dimensional VPG), the extended mapped space, E , would
be of dimension K = max{ki | 1 ≤ i ≤ N}+ 1.

To create the extended mapped space E , an abstract mapped space Pi is
extended from ki dimension to K − 1 dimension. While extending the dimen-
sion, the higher K − 1 − ki dimensions are made limited to length 1 to ensure
consistency. The length of the K-th dimension of the extended mapped space,
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E , is N and the extended abstract mapped space of Pi is placed on the i-th
entry of the K-th dimension of E . Fig. 3(b) is redrawn in Fig. 4(a) to reflect the
idea of the extended mapped space. The extended mapped space, as is shown
in the figure, includes the abstract mapped spaces of the Wavefront skeleton
and the Pipeline skeleton. Among the two abstract mapped spaces, the mapped
space for the Wavefront is of the highest dimension, which is two. As a re-
sult, the extended mapped space is 3-D. As is shown in the figure, the first
plane of the extended mapped space includes the mapped space of the Wave-
front skeleton, and the second plane includes the mapped space of the Pipeline
skeleton.

In order to achieve more flexibility, EPAS provides an aliasing facility. Alias-
ing is the way to combine two nodes from two different abstract mapped spaces
of a particular skeleton. The idea is shown in Fig. 4(b). Aliases in EPAS are
expressed using an aliasing function (designated as A). EPAS provides two
types of aliasing: (1) fusion paradigm, and (2) linkage paradigm. In the linkage
paradigm, two aliased nodes are connected via a channel and both the nodes
remain as separate entities. On the other hand, in the fusion paradigm, two
aliased nodes are unified into one node. As a result, that unified node becomes
members of both of the abstract mapped spaces, where the original nodes be-
longed to. To describe the idea formally, let us assume that ES is the extended
mapped space of skeleton S, and Pi, Pj and Pk are three abstract mapped
spaces of S. Lets Pl ⊆ Pl where l ∈ {i, j, k}. The aliasing function is defined as,
A : Pm → Pn where m, n ∈ {i, j, k} ∧m �= n. Say, A(pi) = pj and A(pj) = pk,
where pl ∈ Pl ∧ l ∈ {i, j, k}. In the fusion paradigm of the model, those two
aliases imply that A(pi) = pk. However, this implication is not true for the
linkage paradigm.

3.4 Labelling

In PAS, during the concretization phase, a labelling function L labels each child
of a concrete skeleton, CS, with an abstract skeletons type. In other words,
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labelling can be considered as specifying the types of the children inside the
back-end. These children are subsequently concretized, and consequently con-
cretization can be considered as a top-down process in the skeleton hierarchy.
Suppose, in the presence of aliasing, A(pi) = pj and L(pi) = ASs where ASs is
an an abstract skeleton type. If the aliasing follows the fusion paradigm, then
L(pj) must also be ASs. However, if linkage paradigm is used then pj can be
labelled without considering the labelling of pi, as pi and pj are considered to
be two separate entities.

4 Usability and Performance Studies

A Skeleton Description Language (SDL), a usable form of the EPAS model,
facilitates both the skeleton designers and the application developers. EPAS
generates C++ object frameworks for a given skeleton hierarchy and the run-
time system uses MPI-2 as a system software. A discussion of the SDL and EPAS
tools are out of the scope of this paper and can be found in [8].

To conduct our usability tests, we chose a group of twelve students, enrolled
in an introductory graduate-level course on parallel and distributed computing.
Students were asked to compare their experiences with MPI and EPAS. The
study pointed out five important points: (1) the learning curve for the EPAS
model is more than the MPI model. On the average, the time to learn the
EPAS model and the SDL is approximately 30% more than that of the MPI
model and its API; (2) developing parallel applications is significantly easier
and less time consuming, if the required abstract skeletons already exist in the
repository. In the case of EPAS, it took approximately 50% less time and coding
effort as compared to MPI; (3) the EPAS system becomes more beneficial with
increased complexity of the given problem, i.e., if the problem structure is simple,
it is better to use MPI, provided that the required abstract skeletons are not
available in the repository; (4) the object-oriented interface and skeleton-specific
primitives for communication-synchronization are easier to use as compared to
the generic primitives provided by MPI.

To test the performance of EPAS system, we developed two image processing
applications. The first application convolutes a series of images and the second
one finds the contours of objects in images of maps of buildings and roads.
The applications were developed using both MPI and EPAS. The run-times of
the applications were measured as an average of at least 10 runs. The results
showed that the performance degradation using EPAS as compared to MPI is
rather negligible (less than 1%). It is also found that the initial environment
initialization phase for a EPAS application is much more complex and hence
more time consuming than that of a similar MPI application. However, it should
be noted that this initialization takes place only once during the life time of the
application. Though the initialization time grows proportional to the complexity
of the skeleton hierarchy, it becomes rather insignificant if the application has a
relatively long execution time.
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5 Related Research Works

Patterns in parallel computing have often been employed not only at the de-
sign level but also at the implementation level, i.e., parallel design patterns
are often pre-implemented as reusable components. This is analogous to the
idea of a framework in conventional software engineering. Beginning with the
late 80s, several parallel programming systems have been built with the intent
to facilitate rapid development of parallel applications through the use of pre-
implemented, reusable components. Some of the earlier systems include Frame-
works [10], Enterprise [1], Code2 [11], and HeNCE [11]. Some of the recent sys-
tems are Tracs [12], DPnDP [2], COPS [3] and ASSIST [5]. Around the same
time period of late 80s, another approach to explore the use of parallel design
patterns emerged, which focused on the idea of substituting explicit parallel pro-
gramming by the selection of a variety of pre-packaged parallel algorithmic forms
popularly known as algorithmic skeletons. Algorithmic skeletons are described as
higher order polymorphic functions and are, in practice, realized using various
functional and logic programming languages [6, 13]. A comprehensive survey of
some these approaches can be found in [14].

The significance of extending a given library of parallel patterns has been
recognized for about a decade now. Early systems such as Frameworks [10], En-
terprise [1], and HeNCE [11] did not have any support for extensibility and com-
position. The next line of parallel design patterns based systems like Tracs [12],
DPnDP [2], COPS [3] and ASSIST [5] have some support for extensibility and
composition. However, the support is often quite limited in several ways. For
example, patterns in TRACS are essentially parallel program segments with-
out any application code. Also, these patterns are not parameterized and there
is not much support for creating applications that employs multiple patterns.
Similarly, support for extensibility in DPnDP [2] is limited to the structural as-
pects and, thus, it is not possible to describe the behavioral aspects of a pattern
and, therefore, a programmer has to fill in all the parallel code to get the right
behavior. The COPS system does not support pattern composition. Although,
ASSIST system supports composition, the system is limited to only three types
of topologies among the virtual processors, i.e., multi-dimensional array, none
(they work independently of each other) and one (sequential component with
features like non-determinism, etc.). The multi-dimensional array topology can
easily express data parallelism whereas the none topology can easily express in-
dependent task parallelism. But, in real life, a parallel application is a complex
composition of both of them. In ASSIST, it is difficult to describe such complex
compositional structures. Neither COPS nor ASSIST supports reusable compo-
nents with parametric structures (for example, a k dimensional mesh rather than
a two dimensional mesh). Note that parametric templates supported by COPS
are more from the algorithmic or behavioral perspective. ASSIST demands ex-
plicit declaration of connectivities among concurrent modules. As a result, the
user of the patterns either needs to design her solution space conforming to the
restricted structure of the available pattern (in the repository) or needs to de-
sign new patterns according to the needs of her application. The EPAS model
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allows skeletons with parametric structures and topologies, and the user just
needs to tailor the required skeleton according to the application requirements
by specifying proper values for the associated parameters.

6 Conclusion and Future Work

EPAS is a step towards making PAS more flexible and usable by supporting
both extensibility and skeleton composition. In this paper, we describe the EPAS
model for designing abstract PAS skeletons. We also extend the model for sup-
porting composition of abstract skeletons to design new abstract skeletons. Re-
cent usability studies have demonstrated that EPAS might ease the development
process for big and complex applications. We have also found that there is no
significant performance degradation (less than 1%) while using EPAS.

Perhaps, the usability of the EPAS system could be further enhanced by de-
signing a suitable graphical user interface. Moreover, the associated subsystems
for performance modeling and profiling need to be included into the system to
provide a complete parallel programing environment. Currently we are investi-
gating these aspects. We are also working on the issues of static and dynamic
optimizations and fault tolerance aspects of applications developed using EPAS,
and these issues will be reported in our future works.
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Abstract. A minimum connected dominating set is an efficient ap-
proach to form a virtual backbone for ad-hoc networks. We propose a
tree based distributed time/message efficient approximation algorithm
to compute a small connected dominating set without using geographic
positions. The algorithm has O(n) time, O(n log n) message complexity,
and has an approximation factor of eight. The algorithm is implemented
using dominating set simulation program, which shows that our method
gives smaller connected dominating set than the existing methods.

Keywords: independent set, connected dominating set, MANET.

1 Introduction

An ad-hoc network can be modeled as a unit disk graph (UDG) G = (V, E) [1],
where V represents the wireless mobile hosts and E represents the connectivity
among them. Two hosts are connected if distance between them is at most one
unit. A dominating set D is a subset of V in which, each node of V is either in D
or adjacent to at least one node in D. If the graph induced by D is connected then
it is called a connected dominating set (CDS). The nodes in CDS are known as
dominator/gateway hosts and others are called dominatee/non-gateway nodes.
A independent set (IS) I is a subset of V such that no two vertices of I are
adjacent. A maximal independent set (MIS) is an independent set in which no
node can be added with out destroying the IS property. If a dominating set is
independent then it is called independent dominating set (IDS).

CDS based routing is an efficient approach for routing, since it simplifies
the routing process through a smaller sub-network. In proactive approach, only
gateway hosts need to keep routing information and in reactive method, route
search space is reduced to CDS. So the efficiency of routing depends largely
on the size of CDS and its maintenance. But, unfortunately finding a minimum
connected dominating set (MCDS) for most graphs is a NP-complete problem [1].
So, several researchers proposed various approximate algorithms for computing
CDS. We briefly discuss related work.

One class of algorithms are based on independent dominating set. Gerla and
Tsai [2] proposed two localized algorithms, one using node-ID and other using
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node degree respectively as a rank. Using both node-ID and degree as a rank,
Chen and Stojmenovic [3] proposed a distributive algorithm for IDS. The rank
idea is generalized by Basagni [3] such that any meaningful parameter can be
used as rank to exploit the network properties.

Main draw back of IDS based approach is maintenance of IS property un-
der the mobility condition. So, another class of algorithms are proposed on the
bases of CDS. A centralized approximation algorithms for CDS is proposed by
Guha and Khuller [4] which have asymptotically optimal approximation ratios
of O(log ∆) where ∆ is the maximum vertex degree of the input graph. Ad-hoc
networks need distributed algorithms. A distributed version of the algorithm
proposed in [5]. A localized distributed algorithm is proposed by Wu and Li [6]
for finding CDS. But the approximation ratio of this algorithm can be as large
as n/2, where n is the number of nodes in the network [7]. Another distributed
algorithm for CDS is proposed in [8]. Wan et al. proposed many algorithms
[9, 10, 11, 7] for finding connected dominating sets in unit disk graphs. Two dis-
tributed algorithm for CDS is proposed in [9]. The first algorithm uses node-ID
as a rank and the second algorithm is a tree based approach using level and
node-ID. The size of CDS is further improved for level based algorithm and
discussed in [11, 7]. Another node-ID based algorithm is proposed [10], which is
a message optimal algorithm, but the approximation ratio of the CDS can be
bounded above by 192. Wu et al. added rule-k [12] to their previous algorithm
[6] to get a smaller CDS. The performance comparison of these algorithms are
tabulated in the Table 1.

Table 1. Performance comparison of various algorithms: n is number of nodes, m is
number of edges, and ∆ is the maximum node degree

[5, 13, 14] [6] [8] [11, 7] [9] [10]
Approx factor Θ(log n) O(n) n/2, n ≤ 8 8 − 12 ≤ 192

Msg. Complexity O(n2) Θ(m) O(n2) O(n log n) O(n log n) O(n)
Time Complexity O(n2) O(∆3) Ω(n) O(n) O(n) O(n)

Non-trivial Yes No No Yes Yes Yes
Ngh. Knowledge 2 hop 2 hop 1 hop 1 hop 1 hop 3 hop

In this paper we propose a new distributed algorithm for small connected
dominating set. Our algorithm uses level, degree, and ID as a rank. The time
and message complexity of the algorithm are respectively in O(n) and O(n log n).
The approximation size factor of the CDS is 8. To the best of our knowledge,
tree based CDS maintenance of mobile nodes has not been discussed in the
literature, which is an important issue in ad-hoc networks. In this paper we
propose a method of maintaining the CDS under mobility.

The rest of the paper is organized as follows: next section describes our dis-
tributed algorithm for constructing a small connected dominating set. Section 3
we present a method for node maintenance. Our simulation results are shown in
the fourth section. We conclude in the last and final section.



304 B. Paul, S.V. Rao, and S. Nandi

2 The Proposed Algorithm for Finding Virtual Backbone

Each node in the network is identified uniquely by its rank. In our approach, we
use (level, degree, ID) as the rank of node. We explain each term in the rank.
The level of a node is the number of hop distance from the root of an arbitrary
spanning tree rooted at a particular node called leader/root. The degree of a
node is the number of neighbor nodes. The id of a node is the node’s unique ID.

Our algorithm works in two phases. First phase constructs a maximal inde-
pendent set using a spanning tree. In the second phase, we connect nodes in IS
using the other nodes to form a CDS. The detailed description of these phase
are given in the following subsections.

2.1 Maximal Independent Set Formation

We first elect a leader node x and construct a spanning tree (ST) rooted at node
x using the distributed algorithm described in [15]. One can use any criteria in
[15], like ID or (degree, ID), to elect the leader. We use (degree, ID) criteria,
since by selecting a node with maximum degree as a dominator covers maximum
number of nodes. Next step is to find level of each node in ST. This process starts
at the root. The root node sets its level to zero and sends this information to
its children. Each child sets its level one more than the level of its parent and
propagates this information to its children. Each node informs its parent after
all nodes complete their level marking in the subtree rooted at it. Once the root
receives such message, all nodes in the ST are marked. During the construction
of ST, each node collects information about ID, level, and number of neighbor
of all its neighbors. This can be done by single broadcasting by each node. After
construction of ST, independent set formation starts.

We discuss the algorithm using colors WHITE, GRAY, and BLACK. Initially,
each node is marked WHITE. After completion of the IS formation algorithm,
each node colored either GRAY or BLACK, such that the set of the BLACK
nodes forms an IS. The GRAY nodes are later used to connect BLACK nodes
to form a CDS. In addition to level and ID, each node maintains a sorted list
of BLACK neighbors in ds, which is initialized to null. As we mentioned earlier,
we use (level, degree, ID) to rank of nodes. We can order nodes as per their
ranks. For example, let (li, di, IDi) and (lj , dj , IDj) be ranks of nodes ni and nj

respectively. The node ni is higher rank than nj if (li < lj)||((li = lj)&&(di >
dj))||((li = lj)&&(di = dj)&&(IDi > IDj)).

The root node marks it self BLACK and sends its color information to its
neighbors. All other nodes mark as per the following algorithm.

– When a WHITE node receives the message from a BLACK node, it marks it-
self GRAY and stores the sender’s ID in ds. Then sends its color information
to its neighbors.

– When a WHITE node receives the message from GRAY node for the first
time, it marks itself BLACK, if its rank is higher than its unmarked neigh-
bors. Then sends its color information to neighbors.
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Fig. 1. Independent set construction

– Subsequently, any node receives the message from BLACK node, adds the
sender’s ID in ds.

– When a leaf node is marked, it send a message to its parent stating marking
is complete. Each non-leaf node of ST wait till it receives this message from
each of its children and then forward it up the tree.

By the time when root gets the marking complete message, all nodes in the
tree ST have been marked with either BLACK or GRAY and thus root moves
to the construction of CDS. To show our algorithm gives smaller CDS, we con-
sider the example discussed in [7]. The Fig. 11 illustrates the IS construction
process.

2.2 CDS Formation

Main idea of this phase is to form a dominating tree (DT), by connecting BLACK
nodes with the help of some GRAY nodes, of which all the non-leaf nodes form
a CDS. This dominating tree is another spanning tree of the set of nodes. In
dominating tree construction, each node maintains root, parent, list of children,
and list of gateway neighbors respectively in root, parent, child, and gate. These
are initialized to NULL for each node. We also use another variable b degree
like [7], to indicate total number of black neighbors. But unlike in [7], we initialize
b degree of root to one.

Among the root of ST and its neighbors, we choose the node with highest num-
ber of BLACK neighbors as the root of DT. This can be achieved by the root
of the ST by broadcasting CHECK message. Gray nodes receiving the CHECK
message, sends their number of black neighbor’s in the form of a STATUS mes-
sage. Upon receiving the STATUS messages from all its neighbors, root node set
the variable root with the ID of node with highest number of BLACK neighbors.
Then sends a START message to the node, whose ID is in root for construction
of DT. The Fig. 2(a)- 2(c) illustrates the process of finding root of DT. Upon
receiving the START message, this new root node starts the construction of DT,
by setting its level to zero and broadcast the CONSTRUCT message. Each node
act according to the following principle.

– BLACK nodes having parent = NULL receiving CONSTRUCT message,
sets its parent to sender’s ID, and level to one more than the level of sender,
send an ACCEPT message to sender, and broadcast an INITIATE message.

1 In figures, tree and backbone edges are respectively denoted by solid and bold
solid/dashed edges. Message passing direction is indicated by arrows.
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Fig. 2. CDS construction process

– GRAY nodes having parent = NULL receiving the first INITIATE mes-
sage, sets its parent to sender’s ID and level to one more than the level of
sender, send an ACCEPT message to sender, and broadcast a CONSTRUCT
message.

– Upon receiving the ACCEPT message, each node adds ID of the sender to
its child list and then broadcast the GATEWAY message.

– Upon receiving the GATEWAY message, each node adds the sender ID to
gate list.

The Fig. 2 shows a possible execution scenario of CDS construction process.
The size of the CDS can be further improved by using the following rule. We
assume every parent and child exchange periodic HELLO messages for finding
each other activeness. This rule can also be applied during node movement.

Improvement Rule: Each non-gateway node tries to reduce its level by con-
necting to a lesser level gateway neighbor node. This can be done by searching
for a node in its gate list, and if found, it establishes a parent-child relation. In
the process of changing the parent, if any gateway node looses all its children, it
becomes a non-gateway node by broadcasting a NONGATEWAY message. All
nodes receiving the NONGATEWAY message, removes the sender ID from its
gate list.

The distributed spanning tree algorithm [15] is in O(n) time and O(n log n)
message complexity. In our proposed algorithm, each node sending constant
number of messages in IS formation, hence the time and message complexity is
in O(n). Similarly, one can see the time and message complexity of the second
phase also in O(n). Hence, follows the theorems.

Theorem 1. The time and message complexity of CDS construction is in O(n)
and O(n log n) respectively.

Theorem 2. [7] The size of the CDS can be bound above by 8 ∗ opt− 2, where
opt is the size of MCDS.
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3 Backbone Maintenance

In ad-hoc network, the communication links and backbone may get disconnected
due to nodes switch on/off or movement. It is necessary to maintain the backbone
such that the whole network is connected. In this section, we propose a strategy
for backbone maintenance under switch on/off cases and mobility environment.

3.1 Switch On/Off

In ad-hoc network, any node can go down or come up due to limited resources.
The backbone gets disconnected if any gateway node goes down. All the children
of it connect themselves to some other gateway node whose level is less than its
level, so that the backbone is again connected. We assume that the root node
can move but can not go down. If the root goes down, we reconstruct a CDS
from the beginning, which is initiated by the level one nodes. We describe the
handling process case wise.

Switch On. Initially, when a node comes up, it notifies its existence by broad-
casting a NOPARENT message. We handle different cases separately as follows.

New Node Near to Gateway Nodes: If any gateway node receives the NO-
PARENT message, it sends a AVAIL message to the sender in response. If this
new node receives AVAIL message first time, it sets its parent to sender ID, level
to one more than the sender level, adds the sender ID in its gate list, and sends
a OK message to the sender. Otherwise, it simply adds sender ID in its gate list.
When gateway node receives this OK message, it adds the sender ID in its child
list and sends a DONE message for confirmation.

New Node Near to Non-gateway Nodes: If within specific interval, the new
node does not get AVAIL message, it broadcasts the NOPARENT2 message to
connect through some non-gateway nodes. This time non-gateway nodes which
are in its range reply with the AVAIL2 message. Upon receiving the first AVAIL2
message, the new node sets its parent to the sender ID, level to one more than
the sender level, and sends a OK message in reply. When non-gateway node
receives this OK message, adds the sender ID in its child list and broadcasts a
GATEWAY message. Each node receiving this GATEWAY message, adds the
sender ID in their respective gate lists.

Switch Off. If any non-gateway node goes down, its parent gateway node does
not receive periodic message, so its parent removes its entry from child list. By
doing this, if it does not have any more child, it broadcasts NONGATEWAY
message. Each node receiving the NONGATEWAY message removes the sender
from their respective gate lists.

When any gateway node goes down, its children searches for another parent.
If the child is a non-gateway node, it broadcast the NOPARENT message and
the remaining process of finding a parent is same as discussed in the section 3.1.
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If the child is a gateway node, it searches for a gateway node whose level is less
than its level. This process of searching initially starts in 1-hop neighbors in the
form of a NOPARENT3 message. If successful, it establishes the connection and
changes its level in consistence with the new parent gateway. If unsuccessful,
searches in 2-hop gateway neighbors and so on till it finds a gateway node with
lesser level. Let assume such a node y is found at a distance of i-hops through
a node path y1, y2, . . . , yi−1. This path becomes a part of the backbone. These
nodes changes their level inconsistent with the level of y and propagates the level
change to their respective subtrees rooted at them in DT. We show an example
of this process in node movement section 3.2.

3.2 Node Movement

We deal the cases non-gateway and gateway nodes movement separately in the
following sub sections.

Non-gateway Node Movement. When a non-gateway node moves out of its
parent vicinity, two cases may arise. First, it moves near to other gateway nodes
and second, near to non-gateway nodes. In these case, the earlier parent of this
node does not receive any periodic message from this child. Hence, the parent
gateway node removes the child from its child list. When any child non-gateway
node does not receive periodic message from its parent, the child broadcasts the
NOPARENT message. The next process of finding its parent is similar to the
method described in the section 3.1.

Gateway Node Movement. If gateway node moves from the vicinity of any
child, the child need to find a new parent for maintenance of the backbone. The
process of finding is very similar to the method discussed in the section 3.1.
Consider an example given in the Fig. 3(a) where node 12 is the root. Assume
node 9, at level two, moves from its original position to the new position as
shown in Fig. 3(b). Since, node 9 does not get periodic messages from its parent
node 5, searches for a gateway node at level zero or one, by broadcasting a
NOPARENT3 message with hop = 1. But it is unsuccessful, so it broadcasts
again NOPARENT3 message with hop = 2 after some fixed time interval. This
time, it finds a gateway node 12 with level zero through the node 7. The node 12
responds with AVAIL3 message to node 9 through node 7. The nodes 9-7, and 7-
12, establishes the child-parent relation by sending OK2 and DONE2 messages.
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Fig. 3. (a) Initial backbone. (b) The updated backbone after movement of node 9.
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Once the path 9, 7, 12 is established, node 12 sends NEWLEVEL messages to
node 7. All nodes in the subtree rooted at 7 changes their level in consistence
with the level of node 12, forwarding the NEWLEVEL message. The Fig. 3(b)
shows the updated backbone of the network.

4 Simulation Results

Theoretical comparison of various algorithms is given in the Table 1. These
bounds give an upper bound on the size of CDS, but it does not give actual
difference in size. Simulation gives more realistic approximation to real scenario
than theoretical bounds. So, we have simulated our algorithm to show the size dif-
ference with other methods. We have compared only with tree based approaches,
since they give smaller backbone than other approaches [12].
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We have used the ds custom simulator [17]. We assume, the network is con-
nected with bidirection links. We have consider a 50×50 square units area, with
10 units transmission range. For a fixed transmission range, average degree, d,
of nodes increase as network density increases. Network density increase as the
number of nodes, N , increases in a fixed confined area. So, we change the average
degree and number of nodes in the network to cover all possible scenarios.

We have chosen d ∈ {6, 18, 30}, and N ∈ [25, 500]. For given d and N , the
average of 250 readings are plotted in the Fig. 4. From this simulation, we can
conclude that our algorithm without improved rule gives smaller backbone than
existing tree based algorithms. The size of the backbone reduce further by using
improved rule.

5 Conclusion

In this paper we presented a distributed algorithm for finding a small connected
dominating set. The algorithm consists of two phases: first, maximal independent
set construction, and second, CDS formation. The time and message complexity
is respectively in O(n) and O(n log n). It has been shown by simulation that
our algorithm constructs smaller CDS compared to prior heuristics method of
MCDS in ad-hoc network. A simple node maintenance scheme also incorporated
in the proposed algorithm. The increase in the size of the CDS, due to node
movement, can be reduced by improvement rule. Note that the same rule can
also applied for gateway nodes without level consistency. It would be interesting
to study other network parameters like delay, jitter, packet delivery ratio, etc
using the constructed backbone.
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Abstract. Wireless Sensor Networks (WSNs) possess highly con-
strained energy resources. The existing Medium Access Control (MAC)
protocols for WSNs try to either minimize the energy consumption or the
latency, which are conflicting objectives, or find a trade-off between them.
They fail to achieve the minimum energy × latency, which ensures that
transmission should occur such that both the energy consumption and la-
tency are minimized. We propose a novel Battery-aware Energy-efficient
MAC protocol to minimize the Latency (BEL-MAC) that exploits the
chemical properties of the batteries of the sensor nodes, in order to in-
crease their lifetime. Our protocol reduces the latency of the packets in
an efficient manner without compromising on the lifetime of the network.
We compare our protocol with the SMAC, DSMAC, TMAC, and IEEE
802.11 MAC, in terms of throughput and latency and show that our pro-
tocol outperforms these existing protocols, in terms of energy × latency.

1 Introduction

A Wireless Sensor Network (WSN) consists of a large number of distributed
sensor nodes that organize themselves into a multi-hop wireless network. They
possess one or more sensors, embedded processor(s), and low-power radios, and
are normally battery operated. The main task of the sensor nodes in a sensor
field is to detect events, perform quick local data processing, and then transmit
the processed information to the data sink.

Sensor nodes are battery-driven and hence operate on an extremely low energy
supply. In most applications, once deployed, battery replacement is not preferred
because of a larger number of nodes and hostile and remote environment they
are deployed in. Hence, battery power is a precious resource that has to be
used efficiently. The nodes of a WSN have the following three modules: sensing,
processing, and communication. All these modules support various operating
modes for power management purposes. The amount of energy consumed by
the sensor nodes mainly depends on the operating modes of the modules. For
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example, the communication module consists of Transmit, Receive, Idle, and
Sleep modes. Power consumption for communication is several times higher than
that for other activities, such as sensing and processing. Hence, the radio should
be completely shut off whenever possible, in order to save energy. Experimental
results indicate that the energy consumed by the wireless devices, while in idle
state, is almost equal to that in the transmission or receiving state [1]. Recent
works in [2] - [5], aim only at switching off the communication module, which
they achieve by applying a wakeup/sleep schedule for the radios. In addition, the
batteries of the sensor nodes tend to possess an interesting chemical property
and the maximum lifetime is achieved by switching off the battery periodically
[6], [7]. This paper attempts to exploit this property of the battery, in order to
increase its lifetime.

2 Related Work

In order to save energy and prolong the network lifetime, switching between the
operating modes of the sensor node radio can be applied. Several works [2] - [5]
have been proposed in this context. SMAC protocol [2] periodically switches the
radio between the sleep and listen modes. This listen mode, also called the active
period, is known as the basic active slot. Since the sleep time duration is chosen
statically without considering the network traffic and is much higher than the
active time, SMAC introduces a large latency. On the other hand, the PAMAS
[3] and STEM [1] protocols use a dual channel radio setup. The data channel
always remains in the sleep mode and it is activated for the data transmission by
sending a wakeup signal in the control channel, which becomes on periodically.
However, all the above-mentioned protocols have a fixed sleep duration and do
not consider the network traffic, while designing the wakeup/sleep schedule.

DSMAC [4] improves the latency over SMAC by appropriately adding or
removing the active slots. Though DSMAC protocol reduces the sleep time du-
ration of the nodes compared to SMAC, it, at the maximum, uses only 40% of
the frame duration for the data transmission, and thus, achieves lesser through-
put in the presence of a high network traffic. In TMAC protocol [5], after a node
gains access to the channel, based on the network traffic, it transmits a burst
of packets by increasing the active slot time duraion. However, this continuous
transmission of packets leads to a decrease in the nodes’ battery charge and thus
reduces the network lifetime [6]. Though DSMAC and TMAC protocols attempt
to dynamically add/remove the active slots based on the network load, they do
not achieve the minimum possible latency for a given fixed lifetime. To the best
of our knowledge, there exists no MAC protocol in WSNs that considers chemi-
cal behavior of the batteries of the nodes to arrive at an efficient wakeup/sleep
schedule. Hence, we propose a novel MAC protocol, which dynamically alters
the number of active slots and achieves the minimum possible latency without
compromising on the network lifetime by taking the chemical behavior of the
battery into consideration.
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3 Our Work

Since the WSNs deal with real world processes, it is often necessary for the
communication to meet real-time constraints, in the form of end-to-end latency
targets. Making nodes sleep too often may considerably save energy, but may
also increase latency. The existing works aim at reducing either of these con-
flicting requirements. Hence, it is required to design a generalized wakeup/sleep
schedule, which reduces both the energy consumption and latency. We propose
a novel Battery-aware Energy-efficient MAC protocol to minimize the Latency
(BEL-MAC). The main goal of our protocol is to attain the minimum achiev-
able end-to-end latency and maximum lifetime by using an appropriate dynamic
wakeup/sleep schedule by exploiting the chemical behavior of the batteries of
the sensor nodes. We, in this section, discuss the basic battery characteristics,
working principle of our protocol, and the dual-battery setup.

3.1 Basics of Batteries

The following definitions and notations for batteries are taken from [6]. Battery
capacity can be expressed in either of the three ways: (1) Theoretical capacity
(T): This value is based on the amount of energy stored in the battery, and is an
upper bound on the total energy that can be extracted in practice, (2) Nominal
capacity (N): This value is the energy that can be extracted when it is discharged
under standard load conditions, which are specified by the manufacturer, and
(3) Actual capacity: This value is the amount of energy that the battery delivers
under a given load, and is usually used as a metric to judge the battery efficiency
for constant loads.

Two important effects that decide the battery performance are: (1) Rate-
capacity effect: As the intensity of the discharge current increases, an insoluble
component develops between the inner and outer surfaces of the cathode of the
batteries. The inner surface becomes inaccessible and as a result of this phe-
nomenon, the cell (battery) becomes unusable even while a sizable amount of
active materials still exists. (2) Recovery effect: This effect is concerned with
the recovery of charges under idle conditions. Due to this effect, on increas-
ing the idle time of the batteries, the theoretical capacity can be completely
utilized.

A battery can be represented by a tuple < Ni, Ti >, where Ni and Ti represent
its nominal and theoretical capacities at any time instant i. Actual capacity may
be higher than N , but cannot exceed T . The recovery process depends on the idle
time duration of the battery, its Ni, and Ti. Whenever the battery is discharged,
it goes from state < Ni, Ti > to < Ni−k, Ti−k > where k is the number of
time units for which a constant discharge current is applied to the battery. If
a battery is continuously discharged for N time units, it goes from state N to
0, also called the dead state, after which no more recovery is possible. Using
a pulsed discharge, the battery alternates between the discharge and recovery
process and thus it recovers one charge unit in one unit of idle time with a
probability (RNi,Ti) [6] and goes from state < Ni, Ti > to < Ni+1, Ti >, where
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RNi,Ti = e−g×(N−Ni)−φ(Ti) if (1 ≤ Ni ≤ N, 1 ≤ Ti ≤ T ) and otherwise
RNi,Ti = 0. Here, g = 0.05 is the battery constant [6], and Φ(Ti) is a piecewise
constant function of Ti, which are specific to the battery’s chemical properties.
Hence, Ni of the battery should be maintained close to N , in order to increase
its recovery capabilities.

3.2 BEL-MAC Protocol

Basic Assumptions: The basic assumptions, which facilitate the working of
our protocol, are as follows. (1) Sensing and computing (if any) are carried out
periodically. (2) We assume the presence of a dual-battery setup, a setup with a
primary and a smaller secondary battery, as explained at the end of this Section.
(3) Sleep state of the nodes corresponds to a complete shut-off of the primary
battery during which the battery can recover its nominal capacity.

Working of BEL-MAC Protocol: Here, we introduce a new wakeup/sleep
schedule, which reduces the latency without compromising on the lifetime. Dur-
ing the sleep time of the radio, the primary battery is switched off for a particular
period of time by using the dual-battery setup. In the discussions that follow,
battery of a sensor node represents its primary battery, unless otherwise men-
tioned. The recovery of a battery decreases as Ni decreases [6]. The wakeup/sleep
schedule of a node is designed so as to maintain Ni close to its initial value (N)
by providing enough idle times for charge recovery.

In our scheme, each frame has a number of slots, also called the dynamic active
slots added, in addition to the basic active slot. Figure 1 shows the wakeup/sleep
schedule of SMAC, DSMAC, TMAC, and BEL-MAC protocols. Each node’s
primary battery is turned on at the beginning of every slot by the SBS system
[8] and the nodes attempt to grab the channel. As followed in the SMAC protocol,

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

���
���
���
���
���
���
���

���
���
���
���
���
���
���

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

��
��
��
��
��
��

��
��
��
��
��
��

SMAC

DSMAC

TMAC

Sleep

BEL−MAC

One slot

One frame

Basic active slot Dynamic active slot

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

Node−A

Node−B

Node−C

Node−D

One frame
One slot

Cluster−head
or Data sink

Recovery of batteryData transmission Contend for channel

Primary battery is ON
(No recovery)(Primary battery (Primary battery

is ON) is OFF)

Fig. 1. Wakeup/sleep schedule of
different protocols

Fig. 2. BEL-MAC – Data transmission for
1-hop network



316 M. Dhanaraj, S. Jayashree, and C. Siva Ram Murthy

BEL-MAC also uses 802.11 DCF for resolving contentions. After the contention
is resolved, except the sender and receiver, all the other nodes enter the idle
state by turning off their primary batteries to enable recovery. The sender node,
on the other hand, transmits its packets continuously, until all of its packets are
transmitted or the slot ends. Since the SMAC and DSMAC protocols add only
a limited number of active slots in a complete frame, these protocols are meant
for low and medium traffic. The proposed BEL-MAC aims at adding optimum
number of additional active slots and each of the active slots is used by different
nodes, which have higher battery capacity. Since our protocol does not allow
a continuous transmission by a node for consecutive slots, it enables recovery
of the battery charges, and thus, achieves the maximum lifetime. However, the
latency of the packets is also minimized in our protocol, because the nodes that
gain access to the channel are allowed to transmit packets continuously for the
complete duration of the slot.

Figure 2 shows the data transmission for 1-hop network, where all the nodes
transmit their packets to the cluster-head/data sink. The nodes are placed in any
one of the following states: 1) Transmission (Transmit/receive), 2) Recovery, and
3) Idle (contend for channel). When a node remains in the Transmission state,
its battery is assumed to discharge by two units for every packet transmission,
that is, both Ni and Ti values decrease by 2 [6]. When the battery is switched
off during Recovery state, the recovery of charges increases its Ni by one unit
with a probability RNi,Ti . Thus, a longer sleep time for the battery may allow
it to attain the maximum value of N . This helps to utilize the maximum value
of T . In our protocol, Only those nodes which have packets to transmit and
Ni = N are allowed to contend for the channel. Hence, the complete recovery
is provided for the nodes in the network. Since we add additional active slots in
addition to the basic active slots, the packets can be transmitted at any active
slot instead of waiting for the basic active slots. Thus, the latency is minimized
in the presence of low traffic. Since the dynamic active slots can be extended and
a complete frame duration can be used for packet transmissions, the latency is
reduced even in the presence of high traffic without compromising on the network
lifetime.

Dual-Battery Setup: Battery recovery takes place only when the power source
(battery) is completely switched off. This is quite possible in sensor networks,
where information is generated by periodically sensing the environment. Till
date, sleep state in WSNs refers to the switching off of the radio alone, with
the rest of the modules (for example, sensing) on, whereas, in our scheme, sleep
state corresponds to a complete battery shut off. In order to wakeup the pri-
mary battery periodically, another small battery, which remains always in the
active state, can be used to trigger the sleeping primary battery to turn on.
Adding this small battery does not account for much space and cost in the
overall design [8], [9]. Our basic dual-battery setup contains a primary bat-
tery, secondary battery (non-rechargeable button cell), timer, and the SBS for
controlling both the batteries. The primary battery is periodically made active
using SBS.
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4 Theoretical Analysis

We now analyze the lifetime and latency of the SMAC, DSMAC, BEL-MAC,
TMAC and IEEE 802.11 MAC protocols.

The lifetime of a node is estimated by calculating the maximum number of
packets that can be transmitted (Pm) by that node throughout its lifetime. Since
SMAC protocol has enough sleep time and BEL-MAC protocol allows for com-
plete recovery of the battery charges, they achieve the maximum lifetime (T/2)
independent of the network load. This is the maximum possible lifetime with a
battery of theoretical capacity (T ) as each transmission consumes 2 charge units.
Since the 802.11 MAC protocol does not have sleep slot, the battery charges
never get recovered and hence, Pm is N/2. In the presence of heavy traffic, DS-
MAC and TMAC protocols achieve only the minimum lifetime (N/2). During a
heavy traffic, the recovery of the battery charge may not be possible, whereas
in the case of light traffic, the recovery is possible. Hence, for DSMAC/TMAC
protocols, N/2 ≤ Pm ≤ T/2.

The latency denotes the sum of the propagation, queuing, and transmission
delays encountered by a packet. The notations used for the latency estimation are
given as follows: DC - Number of active slots per frame (Basic DC + Dynamic
DC), Ltotal - Total latency for transmitting all the packets, Lavg - Average
latency per packet, nt - Number of nodes trying to access the channel at time
t, Ta - Inter arrival time of the packets, Tf - Time duration of one frame, Tc -
Time taken to resolve a collision, Td - Time taken to transmit a data packet,
Li - Latency of packet i, Lqi - Queuing delay for packet i, Lci - Channel access
delay for packet i, and Lti - Time taken for transmitting packet i after gaining
access to the channel.

For SMAC and DSMAC protocols, the latency is estimated as follows. The
number of active slots (DC) is 1 and 4 for SMAC and DSMAC, respectively.
Latency of any packet i is given by, Li = Lqi + Lci + Lti. We now calculate Li

for the first packet in the queue of a node. If a packet i, on its arrival, has xi

previous packets in the queue, queuing delay for packet i is the time taken for
the previous xi packets to get transmitted. Since the first packet has no previous
packets in the queue, Lq1 = 0. Let Lti be Td for all i. In order to calculate the
channel access delay, we use the delay analysis of IEEE 802.11, proposed in [10].
In [10], the backoff time or Lci gives the channel access delay (total waiting time
to get access to the channel for a node). Hence,

Lc1 =
α(Wminβ − 1)

2q
+

(1 − q)
q

tc where, β =
q − 2m(1− q)m+1

1− 2(1− q)
(1)

Here, if qi is the probability that a packet is successfully transmitted at the
end of ith stage, we assume, according to [10], q1 = q2 = . . .. Wmin and Wmax

are the minimum and maximum contention windows, respectively. If m is the
maximum back-off stage, Wmax = 2mWmin. If i, c, and s denote the events, idle
state, collision of packets, and successful transmission of a neighbor, respectively,
when a node is in the back-off state, α = piti + pctc + psts, pi and ti are the
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probability of channel to be idle and the corresponding time duration, when a
node is in the back-off state. pc, tc, ps, and ts follow corresponding notations for
the other two events. In the case of SMAC, DSMAC, BEL-MAC, and TMAC
protocols, α = Tf/DC. This is because, unlike 802.11 protocol, in which the
nodes attempt to transmit continuously, in all the other protocols, the nodes
contend for the channel only during the beginning of the time slot. Hence, in
SMAC protocol, Lq1 = 0 ; Lt1 = Td

Lc1 =
Tf

DC (Wminβ − 1)
2q

+
(1 − q)

q
tc ; Li = (

xi∑
j=1

Lj) + (Lci + Lti) (2)

Ltotal =
T/2∑
i=1

Li =
T/2∑
i=1

[(
xi∑

j=1

Lj) + Lci + Lti]; Lavg =
Ltotal

T/2
(3)

Hence, for any ith packet in the queue, which has xi preceding packets to be
transmitted when it arrives, latency is given in the above equation. Since, this
Lavg is directly proportional to Tf

DC , it is higher for SMAC (DC = 1) than the
DSMAC (DC = 4) protocol.

For TMAC and BEL-MAC protocols, latency is estimated as follows. TMAC
protocol uses the same DC value of 1 as that of SMAC protocol, whereas DC
value is 3 for BEL-MAC protocol. Then,

Ltotal =

⎧⎨
⎩

∑T/2
i=1 (Lci + Lti) +

∑T/2
i=1 Reco(i) :for low traffic∑T/2

i=1 [
(
�xi

j=1 Lj)+Lci

Tf
DC×Td

+ Lti] +
∑T/2

i=1 Reco(i) :for heavy traffic(4)

where, Reco(i) is the time spent by the battery in recovering its charges com-
pletely, before transmitting the ith packet. For TMAC, Reco(i) value is 0 always.

5 Simulation Results

We have carried out extensive simulations for measuring the performance of our
protocol and compared our results with that of SMAC, DSMAC, TMAC, and
IEEE 802.11 MAC protocols using GloMoSim simulator. The various parameters
used in our simulation are listed in Table 1. In our simulations, we consider a
cluster, where the nodes communicate with the cluster-head in a single-hop path.

Table 1. Simulation Parameters

Description Value Description Value

Simulation area 200m × 200m Frame duration (Tf ) 3000 ms
Number of nodes 10 Active slot duration (Tb) 300 ms

Channel bandwidth 20 Kbps Theoretical capacity of the battery (T ) 200
Packet size 512 bytes Nominal capacity of the battery (N) 25

Transmission range 300m Battery parameter (g) 0.05
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However, our protocol can be extended for multi-hop networks. Throughout
the simulations, we assume that each packet transmission discharges its battery
charge by two units. All the simulation results in this section have been obtained
at 95% confidence level.

The average end-to-end latency of the packets by varying the network load
is measured for all the protocols and the results are shown in Figure 3. The
latency of all the protocols reduces as the load reduces, because the number
of packets in the queue is lesser and thus the average queuing delay reduces.
In the case of TMAC, 802.11 MAC, and BEL-MAC protocols, the latency is
lesser than that of SMAC and DSMAC protocols, because SMAC and DSMAC
do not use the complete frame duration for the transmissions. In the case of
SMAC, the latency is 4 times higher than that of DSMAC and hence, this is not
shown in the figure. As the inter arrival time decreases, the latency in the case
of 802.11 MAC and TMAC becomes lesser than that of BEL-MAC, because the
number of packets transmitted in the case of 802.11 MAC and TMAC is lesser
and we calculate the latency only for the transmitted packets. The latency of
the packets which are not transmitted because of the death of a node is not
used in the latency calculation. In the case of BEL-MAC, the number of packets
transmitted remains higher which increases the queuing delay. In the presence
of a medium/low network traffic, the latency of BEL-MAC is lesser than that of
SMAC, DSMAC, and TMAC, because it transmits a set of packets continuously
and adds additional active slots. However, the latency of 802.11 MAC is lesser
than that of all other protocols, because it does not wait for active slot to start
the transmission. The simulation and theoretical results (Figures 3 and 4) are
compared, in terms of the average latency of the packets. The theoretical and
simulation results are found to be almost close to each other. In the simulations,
the chances of getting access to the channel are random. Since a node that has a
few packets may get more number of chances to transmit, it leads to a reduction
in the amount of channel utilization. Hence, the TMAC and BEL-MAC protocols
have higher latency in the simulation results and slightly lesser latency in the
theoretical results.
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Since SMAC and DSMAC have a fixed number of active slots, the through-
put remains constant irrespective of the network load as shown in Figure 5.
The throughput of 802.11 MAC and BEL-MAC protocols remains higher, since
they transmit packets continuously. However, the throughput of 802.11 MAC
is higher than that of BEL-MAC, because BEL-MAC waits for the active slot
period to start the transmission and thus there exists a delay between the packet
transmissions. In the case of 802.11 MAC, the packets are transmitted continu-
ously without any delay. The throughput of TMAC protocol is lower than that
of 802.11 MAC and BEL-MAC protocols, because TMAC transmits only during
the basic active slot. In addition, the complete frame is used for the transmis-
sion only if the node has enough packets for transmission. As shown in Figure
6, SMAC, DSMAC and BEL-MAC achieve the maximum lifetime independent
of the network load, since SMAC and DSMAC protocols have enough sleep slots
and BEL-MAC provides enough sleep time for the battery recovery. 802.11 MAC
does not have the sleep slot and the lifetime always remains lesser. In the case
of TMAC, the lifetime increases as the network load reduces, because the nodes
get more sleep time and thus enables recovery of the nodes’ battery.

We use e × l (energy × latency) metric, which should be minimized and is
commonly used in WSNs, to compare our protocol with other existing protocols.
Here, energy represents the amount of energy consumed. We calculate the e× l
value by multiplying the average number of battery charge units (1 + Maximum
charge units that can be recovered - Number of units recovered) and latency.
Since our protocol recovers the maximum battery charge units and achieves the
minimum latency, e× l value is lesser than that of all the other protocols at any
network load. This is shown in Figure 7. We observed an improvement of 93%,
65-85%, 95%, and 95% in the e × l for our protocol compared to the SMAC,
DSMAC, TMAC, and 802.11 MAC protocols, respectively.

Here, we find the optimum number of active slots per frame for BEL-MAC
protocol. At the beginning of each slot, all the nodes try to grab the channel,
which leads to a collision. This causes additional energy consumption. Thus, as
the number of slots added increases, the total energy consumption increases.
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However, higher number of slots reduces the duration of the sleep time, and
thus reduces the waiting time for a slot (latency). As the traffic increases, both
the latency per packet and the contention time durations increase, leading to
a corresponding shift of both the curves. Figure 8 shows the contention time
per frame and the average latency per packet for varying number of active slots
through the simulation. Thus, we find the optimum number of slots/frame to be
3 for different traffic scenarios.

6 Conclusion

In this paper, we proposed a novel Battery-aware Energy-efficient MAC pro-
tocol to minimize the Latency (BEL-MAC) for WSNs. Our protocol exploits
the battery characteristics to achieve the maximum lifetime and minimize the
latency to the maximum extent possible. Our protocol increases the network
lifetime by allowing the nodes to recover their charges completely, before at-
tempting to transmit the packets. The analytical and simulation results proved
that our protocol achieves the minimum possible latency without compromising
on the network lifetime. In addition, we showed that our protocol performs bet-
ter than all the other existing protocols at varying network load conditions by
using energy × latency metric.
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Abstract. With the emergence of powerful processors and complex ap-
plications, wireless communication devices are increasingly power hun-
gry. While there exist several solutions to provide transmission power
management in cellular wireless networks and ad hoc wireless networks,
it remains an open problem in recently proposed hybrid wireless net-
works. The Multihop Cellular Network (MCN) and Multi Power Ar-
chitecture for Cellular network (MuPAC) are instances of hybrid wire-
less networks, which are proposed to increase the system throughput
and spectrum reuse by infusing multihop radio relaying mechanism into
the infrastructure-based wireless networks. This paper proposes a novel
variable power optimization scheme for the hybrid wireless network ar-
chitectures such as MCN and MuPAC in order to optimize the power
consumption at a mobile node without losing the throughput advantage
gained by the multihop scheme. Extensive simulation results show 10% to
15% improvement in power consumption and system throughput which
is significant in case of power constrained mobile nodes.

1 Introduction

The mobile terminals in the wireless domain lack significant advantages that
their counterparts in the wired domain have. These include the computing re-
sources, energy storage, potentially large bandwidth and of course the threats
posed by the wireless domain such as high bit error rates and security issues.
With the fast developing computing technology, the problem of limited com-
puting resources gets alleviated to some extent, but applies a greater pressure
on other scarce resources provided by the network. The increasing number of
applications on the mobile devices places an additional demand on the limited
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bandwidth and available battery power. A significant amount of power is con-
sumed at the mobile nodes during transmission and reception, display, and I/O
access. Earlier attempts for design of power saving protocols for mobile ad hoc
networks that allow mobile hosts to switch off to a low power sleep mode are
suggested in [1]. An attempt is made in [2] to solve the problem of adjusting
transmit power in an ad hoc network to create the desired network topology. A
power control multiple access protocol (PCMA) is proposed in [3] which uses
variable transmission power. PCMA uses a separate channel, to indicate busy
state of channel, over which the receiver transmits a busy signal during data
reception. Though this scheme gives a significant power improvement, it does
not account for mobility of the sender and the receiver and it also consumes
additional power for the signaling channel. The presence of mobility and inter-
ference might cause fluctuations in the strength of the busy signal that is crucial
for determining transmission power. Vaidya et. al. [4] show that using variable
power for transmission, in fact leads to a reduction in throughput. However,
their study is based on increasing power for RTS/CTS while retaining and nor-
mal power level for the data and ACK transmission. However, by doing so they
prevent some nodes which could have otherwise been permitted to send data
from transmission. The MCN architecture though primarily proposed with the
aim of improving the throughput, showed a significant improvement in power
utilization per successfully delivered packet as compared to the Single-hop Cel-
lular Networks (SCNs) [5]. The MCNs proposed in [6] and [7] are examples
of this performance improvement, which show a significant power optimization
(i.e., average power consumption per successfully delivered packet) in addition
to very high throughput as compared to the SCN [5]. But, these network archi-
tectures require mobile nodes to expend power for relaying traffic generated by
other nodes. Hence we propose a new power optimization scheme for these ar-
chitectures. The MuPAC architecture proposed in [8] extends the idea of MCN
to use multiple transmission ranges. This provides flexibility to the mobile nodes
to use a lower transmission power when the receiver is nearer. But the choice of
the transmission range was restricted to a limited set of data channels decided
a priori. We extend this idea further to incorporate variable power transmis-
sion ranges. This leads to a better power utilization and an improvement in the
throughput over the existing MCN and MuPAC architectures.

The organization of the rest of this paper is as follows. We first briefly describe
the MCN and the MuPAC architectures in Section 2. Section 3 describes
our solution for transmission power management. In Section 4 we discuss the
performance results. Finally, Section 5 concludes this paper.

2 Related Work

The MCN [6] was originally designed to provide spacial reuse of the channel by
decreasing the transmission power of the mobile nodes without having to pay the
penalty for a large number of Base Stations (BSs). The MCN architecture uses
a data channel transmission range that is a fraction 1/k of the cell radius, R.
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This means that, in the same cell, up to a maximum of k2 nodes can transmit
simultaneously. The analysis in [6] proved that the hop count increases linearly
with k. So, in effect, the throughput increase is expected to follow linearly with
k. The extension of MCN architecture and a unicast routing protocol proposed
in [7] used a single data channel of transmission range R/2 and a control channel
with the transmission range of R. The control channel is used for delivering the
topology information to the BS. The registration and Route Request messages
use the control channel for communication with the BS. The MuPAC [8] is a
multi-power scheme for packet data cellular networks. This scheme was primar-
ily proposed to overcome the limitations posed by the MCN architecture and to
enhance the throughput further. The n-channel MuPAC uses (n) data channels
with different transmission ranges and a control channel. The available band-
width is divided among n data channels and a control channel, thus denoted
as (n,r1 ,b1 ,...,rn ,bn), where ri is the transmission range of the ith data channel
and bi is the bandwidth of the ith data channel. The transmission range of the
control channel is R, the cell radius. In case of a route established using mul-
tiple hops, higher channels serve as backups to avoid link breaks, therefore, if
the node on the next hop which was reachable using the ith data channel is no
longer reachable using the same then MuPAC upgrades the transmission to the
(i+1)th data channel. MuPAC chooses the transmission power as follows: For
a given route the data is transmitted to the next hop using the data channel
given by ri > α ∗ dapprox; where α > 1 is the safety factor and dapprox is the
distance estimated using the received power of the Hello beacons. The MuPAC-2
refers to specific case of the MuPAC architecture in which the number of data
channels is two, and similarly MuPAC-3 has three data channels. From the sim-
ulation studies in [8], for the MuPAC-2, the optimal performance is obtained
when r1 is R/3 and r2 is R/2 with b1 = b2 = 2.5Mbps when the bandwidth
for control channel is 1Mbps. MuPAC-3 uses r1 = 170m, r2 = 220m and r3 =
250m for a cell radius (R) of 500m. b1 = 0.75Mbps, b2 = 1.25Mbps, and b3 =
3Mbps. Henceforth MuPAC-2 and MuPAC-3 mean the division with the above
characteristics and we shall use the same for our study.

The popular MAC protocols such as the IEEE 802.11 may not work efficiently
with variable power transmission system. This is because IEEE 802.11 uses the
Request-to-Send/Clear-to-Send (RTS-CTS) mechanism for gaining access to the
channel. In this mechanism the sender senses the channel to be idle, sends an
RTS message to the receiver. The receiver replies back with a CTS message.
Neighbor nodes avoid transmission during this period so as to avoid collisions.
However, when multiple transmission powers are used this effect will be nullified
as illustrated with an example in Figure 1 (a). Consider a wireless network shown
in Figure 1 (a). Node A wishes to send data to Node B. Node A finds the channel
idle and hence sends an RTS message to Node B. Since Node B is close enough
to Node A, A uses a lower transmission power sufficient enough for Node B to
hear. Node B replies back with the CTS with the same power. Both the RTS and
CTS are not heard by Nodes C and D who are relatively further apart. Thus the
transmission between Nodes A and B is initiated. Now, Node C wishes to send
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RTS−CTS
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A

RTS−CTS
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(b). Collision avoidance in our scheme

(a). Problem in using variable power in IEEE 802.11

Fig. 1. (a) Problem in using variable power
directly on MAC protocols like IEEE
802.11 and (b) the collision avoidance in
the proposed power optimization scheme

                         

end

begin
Update the neighbour table
Inform the changes to the BS 

end

begin

         begin

HelloMessageReceived()

SendMessage(Message m)

end

         end
         else

SendHelloMessage()
begin

         if (the time since last broadcast is greater 
            than  MIN_HELLO_INTERVAL) 

         if (the next hop of m is reachable)

             Estimate the distance to the next hop
    Apply the mobility magin correction to 

   the estimated distance
 Calculate the required transmission 
    power based on the above distance   

   Estimate the transmission power by 
  MuPAC scheme

 if (MuPAC transmission power is less)   

 else
    begin                  

     end

 Send a route error to the BS 

 Broadcast Hello Message

  Send the packet using MuPAC scheme

 Send the RTS/CTS with power 
 calculated using MuPAC

  Send the data using reduced power

Fig. 2. The proposed algorithm

data to Node D, also finds the channel idle, but Node D being relatively further
apart Node C uses a higher transmission power. This transmission is audible at
Node B and hence a collision occurs at Node B. Thus, the origination of a new
packet transmission causes interference with an existing packet transmission.

3 Our Work

We propose a transmission power management scheme for hybrid wireless ar-
chitectures. We assume that the available bandwidth is divided into n different
channels with different transmission ranges similar to the MuPAC architecture.
We do not consider MCN separately because it can be considered as a special
case of the MuPAC with one data channel. Thus we shall use the same repre-
sentation as MuPAC to represent this division: (n, r1, b1,..., rn, bn), where ri

is the transmission range of the ith data channel and bi is the bandwidth of the
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ith data channel. The rn is used to exchange the Hello messages as in the Mu-
PAC architecture. Using the Hello message and received power at every node,
an approximate distance to the sender can be calculated as in the MuPAC. The
MuPAC uses α as a safety factor to calculate this distance. In addition to this,
we define Mobility Margin (MM) to be the mobility safety factor. This is neces-
sary because the factor α only compensates for the error in the calculation of the
distance. But, mobility may cause two nodes to move further apart till the next
Hello message is transmitted. This is accounted by MM. MM may be transmit-
ted by the BS to every node at the time of registration. The value of MM may
be defined based on the desired need for power consumption (in which case the
value needs to be less) and the mobility of the network (in which case the value
needs to be more). Also, the value of MM depends on the frequency of neighbor
updates. In case of high update frequency a low value of MM may suffice. How-
ever, in case of low update frequency the value of MM needs to be increased.
The transmission power is estimated from the sum of estimated distance and the
MM value. This is done as follows: Let the estimated distance between the two
nodes be x m. Let s be the MM. Thus a transmission power needed to transmit
up to a distance of radius x+s is calculated to be tx. Let ri be the transmission
range of the channel selected by MuPAC for transmission. If the transmission
power tx is greater than the transmission power of ri then the transmission takes
place as in MuPAC, without any change. Otherwise, as shown in Figure 2 (in
function SendMessage()), the RTS-CTS are exchanged over the ri

th channel but
the data transmission takes place with the reduced transmission power. The ac-
knowledgment is also sent over the reduced transmission range. Though we are
affecting the transmission range of data, we do not alter the transmission power
of the RTS and CTS messages. Hence, we may expect a higher throughput due
to increased reusability of bandwidth as opposed to the study by Vaidya et. al.
in [4] which increases the transmission range of RTS and CTS to the maximum
possible value. Hence, our scheme prevents only the nodes that pose a threat
to the ongoing transmission from transmitting. In fact, in our scheme, the same
number of nodes that are blocked by the non-optimized version of the scheme
are only prevented. For example, in Figure 1 (b), Nodes C and D hear the RTS
sent by Node A or the CTS sent by Node B though they may not hear the actual
transmission. Thus Nodes C and D are prevented from transmitting data on the
same data channel as Nodes A and B for the transmission interval specified by
RTS-CTS. Hence the chances of collision during the data transmission interval is
reduced. In our proposed optimization to the MCN and MuPAC architectures,
we depend on the estimated distance between the nodes for the calculation of
the reduced transmission range. We assume that it is possible to estimate the
approximate distance between two nodes. This can be done in many ways. If
the GPS information is available the receiver can convey this to the sender in
the CTS. Alternatively, the sender can translate the signal strength of the Hello
messages received form the neighbors, thus estimating the distance. An exam-
ple for such a physical layer system that is capable of estimating the distance
between the transmitter and receiver is the Ultra Wide Band physical layer. In
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other physical layers, the transmission power information may be included in
the packets by all the nodes in their transmissions. Further to do away with
the variable noise levels a node may average the received power for the last few
receptions from the same sender. In this work we assume that provisions exist
for approximate calculation of distance between nodes.

3.1 Theoretical Analysis

We analyze the improvement in the power consumption of the above proposed
architectures for MCN and MuPAC. Let α, β, and γ be the traffic generated on
the data, neighbor, and the control channel respectively. Let δ denote the MM.
By traffic, we refer to bytes of data generated and not the number of packets.
We do not take into account the reception energy because it is a constant and
unaffected in all the schemes studied in this paper. In case of MCN, the mobile
node uses a transmission range of R/2 for transmitting data to any other mobile
node within a distance of R/2. Regions 1, 2, and 3 in Figure 3 (a) correspond
to the area covered by the transmission range of R/2. However, in our proposed
optimization, the mobile node uses a transmission range r for transmitting to
the nodes in Region 2. Region 2 corresponds to a circular ring of thickness dr
and radius r. In the calculations below we integrate over r to find the average
transmission power per data transmission. The average power consumed per
node per transmission in the MCN architecture for transmitting data alone over
one hop is proportional to∫ R/2

0

2πrdr(R/2)2

πR2/4
=

R2

4
(1)

Similarly, the average power consumed in case of the power optimized MCN
architecture for transmitting data over one hop is given by∫ R/2

0

2πrdr(r + δ)2

πR2/4
=

R2

8
(ignoring δ) (2)

Here δ is the MM. Hence the ratio of the total power consumed by power opti-
mized MCN to MCN without power optimization is given by

αR2/8 + βR2/4 + γR2

αR2/4 + βR2/4 + γR2
(3)

Here, the terms from left to right (in both the numerator and the denominator)
refer to the power consumed in transmissions over data channel, neighbor ex-
changes, and the transmissions over the control channel, respectively. These can
be compared directly owing to the fact that the routes chosen for data transmis-
sion in both the schemes will be the same and no additional traffic is generated
by the power optimized version of the protocol.

In case of MuPAC-2, the mobile node uses a transmission range of R/3 for
transmitting data to any other mobile node within a distance of R/3 but a trans-
mission range of R/2 for transmitting to mobile nodes beyond a distance of R/3
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R/2Base Station

r
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R
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Base Station

R/2

Mobile Node
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R/3

dr
Region 2

r  =  Transmission range used
           of MCN for transmissions

R/2 = Transmission range used
          to nodes in Regions 1, 2, and 3.

(a). Power optimized MCN

           in the optimized version
           to nodes in Region 2.

        in MCN for transmissions

r  =  Transmission range used           in the optimized version
           of MuPAC−2 for transmissions           to nodes in Region 2.

R/2 = Transmission range used        in MuPAC−2 for transmissions
          to nodes in Region 4.
R/3 = Transmission range used          in MuPAC−2 for transmissions

            to nodes in Regions 1, 2,             and 3.

(b). Power optimized MuPAC

Fig. 3. Analysis for power optimization: (a) MCN and (b) MuPAC

but within a distance of R/2. Regions 1, 2, and 3 in Figure 3 (b) correspond
to the former and Region 4 corresponds to the latter. In our proposed optimiza-
tion, a transmission range of r is used for the nodes in Region 2. The value of r
varies up to R/2. The average power consumed per node per transmission in the
MuPAC architecture for transmitting data alone over one hop is proportional to∫ R/3

0

2πrdr(R/3)2

πR2/9
+

∫ R/2

R/3

2πrdr(R/2)2

πR2/4− πR2/9
=

13×R2

36
(4)

Similarly, the average power consumed in case of the power optimized MuPAC
architecture is given by∫ R/2

0

2πrdr(r + δ)2

πR2/4
=

R2

8
(ignoring δ) (5)

Hence the ratio of the total power consumed by power optimized MuPAC to
MuPAC without power optimization is given by

αR2/8 + βR2/4 + γR2

α13R2/36 + βR2/4 + γR2
(6)

Here, the terms from left to right (in both the numerator and the denominator)
refer to the power consumed by data transmission, neighbor exchanges, and the
transmissions over the control channel, respectively. In both the Equations 3 and
6 the numerator is proportional to the power consumed by the power optimized
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version of MCN and MuPAC, respectively while the denominator refers to the
power consumed by the MCN and MuPAC without power optimization. From
the above we see that the numerator in both the MCN and the MuPAC cases
remains the same but the denominator is more in case of MCN. Hence we expect
more saving in case of MCN than in case of MuPAC. Comparing the above
analysis for the data channel alone (i.e., the terms with α alone) we see up to
50% improvement in case of power optimized MCN and 34% in case of power
optimized MuPAC-2. When we consider the power consumed by all the interfaces
this saving percentage reduces. However, the values of the quantities in Equations
3 and 6 determined from the simulations in Section 4 show about 10% to 15%
improvement in power consumption.

4 Performance Analysis

In order to evaluate the performance of the power optimization scheme we sim-
ulated the MCN and MuPAC architectures using GloMoSim. Each simulation
result is averaged over 8 runs. The bandwidth of the system was fixed at 6 Mbps
(1 Mbps for the control channel and the rest for data channels). The cell radius, R
is set to 500m. For the MCN architecture we used the data channel transmission
ranges as R/2. We evaluated the performance of MCN, MuPAC-2, and MuPAC-
3 with and without power optimization on the basis of throughput obtained and
the transmission power expended at various values of UDP load. The UDP load
generated at each node varies from 2 packets/sec/node to 10 packets/sec/node.
The maximum mobility of the nodes is restricted to 10 m/s and the value of MM
is fixed at 4m. The results were studied under two traffic locality (L) scenarios:
L = 1 and L = 0. (Here L = 1, corresponds to the case when all the mobile
nodes in a cell have data meant for nodes in the same cell.) At a mobility mar-
gin value of 4m, the power consumption in all the power optimized MuPAC is
around 10% to 15% lower (see Figure 4). MCN performed slightly better than
MuPAC. The MCN and MuPAC-3 schemes give almost the same throughput
with or without power optimization. MuPAC-2 with optimization however gives
a slightly poorer performance at lower values of load but outperforms its coun-
terpart without optimization at higher loads. But when the MM was increased
to 6m or 8m the performance in terms of throughput matches MuPAC-2 with-
out power optimization (see Figure 5). We compared the MuPAC-2 without
power optimization and the power optimized version at MM of 4m, 6m, and
8m when traffic locality is zero (see Figures 6 and 7). The power consumption
shows minor differences across various values of MM. We simulated the system
at various maximum mobility values, from 2 m/s to 18 m/s, at varying values of
MM from 2m to 10m. This was at a fixed UDP load of 5 packets/sec/node and
at L=1. For the power optimized MuPAC-2 the throughput was not significantly
different from its non-optimized counterpart but the power consumed showed an
improvement of 10% to 15% as shown in Figure 8. The increase in MM did not
affect the power consumption significantly but the throughput improved with
the MM, more so at high mobility values. The same conditions when applied to
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MCN architecture though the power gain was significantly higher, about 20% to
25%, the throughput remained slightly lower than the non-optimized version for
low mobility values (about 2% to 5% lower). We simulated the system at varying
sizes of the network ranging from 40 nodes to 240 nodes, at a fixed locality of
1, load of 5 packets/sec/node and a maximum mobility of 10m/s. In case of low
node density the power optimized MuPAC-2 performed significantly better both
in terms of throughput and power consumption and the improvement was about
25%. Increase in the network size was not found to be improving the throughput,
whereas the power consumption increased but seemed to stabilize at about 12%
gain as compared to MuPAC-2 without power optimization (see Figure 9).

5 Conclusions

In this paper we proposed a transmission power management scheme for the hy-
brid wireless network architectures such as MCN [7] and MuPAC [8] to improve
power consumption performance and throughput. Though the main aim of the
scheme was to conserve power, up to 10% improvement of the throughput is
achieved. The main cause of improvement of throughput is that some collisions
caused as a result of mobility are avoided because the data transmissions affect
a smaller portion of the network. On the other hand the factor that has a neg-
ative effect on the throughput is mobility margin. From our studies we noticed
10% to 15% improvement in power consumption which is a significant saving for
power constrained mobile nodes. Theoretical analysis shows a significant saving
in power consumed. Considering the data channels alone in MCN and MuPAC
we get almost 50% and 34% reduction of power consumption.
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Abstract. Time synchronization is an important aspect of distributed
computer systems and networks. Nodes must be synchronized to a com-
mon clock to determine slot durations for a TDMA based transmission
scheme. Most efficient slot-assignment algorithms apportion the TDMA
slots with the underlying assumption of a reasonably accurate global
synchronization of the network. In this paper, we propose a novel syn-
chronization protocol for ad hoc, sensor, and other dense multi-hop
infrastructure-less wireless networks. The protocol performs a random
leader election to achieve global network synchronization. We have ana-
lyzed the variation of synchronization time and error with different node
densities and mobility speeds, by simulating the protocol. Expressions
have been derived reflecting the worst case synchronization error, and
the maximum synchronization time, for a network with uniform distribu-
tion of nodes. Simulation results show that out-of-band and piggybacked
signaling have good accuracy of synchronization, and that a considerable
bandwidth saving occurs with piggybacking on data or acknowledgment
packets.

1 Introduction

Sensor networks form a class of ad hoc wireless networks, where the nodes are
low-cost, lightweight, and highly power-constrained. They are deployed in very
large numbers to collect data about the environment or any physical event like
an intrusion, aggregate the information, and convey parameters of interest to
monitor nodes either on demand or periodically. Typical scenarios of interest
include seismic monitoring, power plant or nuclear reactor control, and military
usage to sense the enemy territory. The nodes are organized into hierarchical
clusters to reduce long range message transfers. Messages are short and bursty
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in nature, and spaced apart, to optimize power consumption. A TDMA schedule
can be chalked out so that power loss due to collisions is minimized and sensors
can be in standby mode when they are not scheduled to transmit. Synchro-
nization is essential to support TDMA-based multihop communication. Sensor
networks also require synchronization to determine temporal ordering of events
and discard duplicate reports.

2 Related Work

Many existing synchronization algorithms rely on the time information in the
Global Positioning System (GPS) to provide coarse time synchronization. In the
worst case, with only one observed satellite, GPS offers an accuracy of 1 µs
[1]. But, GPS is not a suitable choice for ad hoc and sensor networks, because
GPS receivers cannot be used inside large buildings and basements, or under-
water, or in other satellite-unreachable environments where sensor or ad hoc
networks may have to be deployed. In [2], Yoram Ofek proposed a global syn-
chronization protocol, with the assumption that the total number of nodes in
the network is known a priori, and a leader can be elected by majority, but this
may not always be known accurately in ad hoc and sensor networks due to mo-
bility and power drain. In [3], precision of upto 1 ms is achieved based on local
computation and communication. But the synchronization achieved is localized
and short-lived. In [4], authors discuss a method for randomized initialization
and leader election in ad hoc wireless networks. Two synchronization algorithms
are discussed in [5], which offer synchronization accuracy of the order of 10µs.
Reference-Broadcast Synchronization (RBS) proposed in [6] is a receiver-receiver
synchronization scheme. In RBS scheme, nodes send reference beacon packets
to their neighbors. The time of arrival of a reference beacon is exchanged by its
receivers for using as a reference point for comparing their clocks. A survey of
existing synchronization mechanisms is provided in [7].

3 Our Work

In this paper, we propose a time synchronization protocol that ensures global
synchronization of a connected network, or synchronization within connected
partitions of a network. Any two nodes are considered to be synchronized if their
clocks have a time difference small enough to be accounted for by the guard bands
of a TDMA scheme. The synchronization is intended to be long-lasting, i.e., last
for as long as the network operates. We have preferred a random leader election
protocol over optimal leader choice using the knowledge of the topology in order
to avoid the expensive overhead of topology discovery. The network synchroniza-
tion is maintained through periodic beaconing. We have studied synchronization
under the following scenarios: (i) out-of-band synchronization where the synchro-
nization packets are sent over a dedicated control channel, (ii) piggybacking on
data packets where the control information is piggybacked onto outgoing data
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packets, and (iii) piggybacking on acknowledgments. The piggybacking on ac-
knowledgements scheme is explicitly designed for use in sensor networks where
data usually flows from all sensors to the monitor, which is a fixed node with
greater computing and power resources than the sensors. If the monitor is forced
to be the leader, the synchronization information moves in the reverse direction,
i.e., along the link-level acknowledgments sent by the nodes for each hop of the
data packets.

In the basic synchronization protocol, each node in the network maintains
its own local clock, and a virtual clock, to keep track of its leader’s clock. A
unique leader is elected for each partition in the network, and virtual clocks are
updated to match the leader’s real clock. On power-up, every node makes an
attempt to either locate a leader in its partition, or claim to be a leader itself.
The node decides, with a small probability, to stake a claim for leadership, by
transmitting a LeaderAnnouncement packet, which contains a random number
generated by the claimant, its transmission power, and a timestamp referring
to its real clock. The transmission power field is to account for the possibility
that each node may use a different transmission power. The algorithm used by
the nodes is explained through the flowchart in Figure 1. As soon as any node
receives a LeaderAnnouncement, it takes the following actions: (i) it does not
stake a claim to become a leader, (ii) it checks the last LeaderAnnouncement it
has received, (iii) the node discards the new LeaderAnnouncement if its random
number is higher than the earlier packet, otherwise, it resynchronizes to the new
leader, (iv) in the highly unlikely event that two different nodes have generated
the same random number, the ‘clash’ is resolved on the basis of preferring the
lower node address, and (v) if the LeaderAnnouncement packet still has a non-
zero time-to-live (TTL), the node relays the packet with its own time stamp
and transmission power. The node receives the packet at a particular recep-
tion power. Assuming a suitable pathloss model, the distance d between source
and receiver can be estimated. Given the transmission and reception power, and
the antenna characteristics, the distance between receiver and sender can be
estimated. This is used to calculate propagation delay for the packet transfer.
When added to the time stamp on the packet, this gives the new clock value to
which the receiving node should change its virtual clock. The error involved in
this estimation is mainly due to the error in the estimation of propagation delay
and receive time. Propagation delay is of the order of 1µs for 300m distance
for electromagnetic waves, hence it does not affect the accuracy of the clock
significantly. In reality, the pathloss may drop inversely as d2 to d6. Hence, the
error in distance estimation is usually positive, i.e., the receiving nodes advance
their clock earlier than the actual leader clock. The receive delay has been ex-
perimentally analyzed in [6], and found to follow a Gaussian distribution, of the
order of a bit-reception time. Randomness in queuing and medium access delay
has been circumvented by time-stamping the outgoing packets at the physical
layer. We also make an assumption that there is no buffering at the physical
layer, so the time stamp accurately reflects the actual commencement of packet
transmission. The TTL is measured in terms of number of hops traversed since
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Fig. 1. Synchronization algorithm

originating from the leader. This is used as an indicator so that a LeaderAn-
nouncement packet does not get broadcast indefinitely to all nodes, and a false
presence of a leader is not reported in a partition even after change in topology.
The value of TTL must be set depending on the expected network diameter so
that the LeaderAnnouncement reaches all nodes. Every node which has sent out
a LeaderAnnouncement continues to send periodic LeaderAnnouncements, until
it receives a LeaderAnnouncement with a lower random number than its own.
In order to adapt to topology changes, a node starts its synchronization process
if it misses LeaderAnnouncement beacons for more than a number of intervals
specified by BeaconWait.

The synchronization protocol discussed requires an independent channel for
the transmission of control packets. We have explored the possibility of piggy-
backing the synchronization information along with data packets. Sensor
networks could piggyback synchronization information onto the periodic data
updates sent to the monitor. The effectiveness of piggybacking depends on the
duration of buffering allowed for control packets. A small latency does not uti-
lize the advantage of piggybacking, while a very large latency will delay the syn-
chronization of the network. In the piggybacked version of the synchronization
protocol, a node which has to send LeaderAnnouncements includes the informa-
tion with all the data packets that are sent from it. For any intermediate node
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which has to relay the LeaderAnnouncements, it buffers the packet and waits for
MaximumPiggybackWait units of time for any data packet to be sent before it
creates an independent control packet and relays the synchronization informa-
tion. The number of packets buffered at a node can be decided depending on the
expected traffic generated from a node. Piggybacking offsets the overhead of ex-
tra message size by power saving through fewer transmission startup attempts.
Synchronization information can also be piggybacked effectively on the link-level
acknowledgment packets in sensor networks, when the fixed monitor is the leader.

3.1 Theoretical Analysis

A bound on the maximum number of hops required for synchronization of the
network is derived. We assume that the diameter of the network is k. In the
worst case, this will be one less than the number of nodes in the network. We
model the network as a uniform distribution of n nodes in a circular region of
radius R. We assume that there are relaying nodes on the straight line joining
any two nodes. We first calculate the probability of a ‘clash’ occurring during
the leader election i.e., two nodes claiming to be the leader generating the same
random number. A leader packet needs atmost k hops to reach all the nodes. We
define a slot as the minimum time for a 1-hop transmission to be performed. Let
LLeaderAnnouncement be the length of the LeaderAnnouncement packet in bits
and the bandwidth of the synchronization channel be B bits per second. The
propagation delay depends on the distance between sender and receiver. Under
the condition of uniform distribution, it is a random variable τ . If the expected
value of propagation delay be E(τ), then the slot time is given by

LLeaderAnnouncement

B
+ E(τ) (1)

This is the minimum time at which a packet can be received by a neighboring
node, assuming zero queuing and medium access delay. Any node which is i hops
away from the leader gets i slots to generate its own leader packet. If a node
stakes a claim to becoming a leader with a probability p, then the probability
that it does not generate a leader packet in any of these i slots is (1 − p)i.
Hence, probability of staking a claim before seeing the other leader packet is
1 − (1 − p)i. Assuming that random numbers are generated in the range 1 to
N , the two claimants can generate the same random number with a probability
1/N . Hence, prob(clash with a node i hops away) = 1−((1−p)i)

N . Therefore, the
probability of a clash is given by

1−
n−1∏
i=1

[1− 1− ((1 − p)ip)
N

]. (2)

Consider the general case of the leader being at a distance a from the center of
the region. We divide the entire region into zones of i-hop reachability. Since the
whole radius R can be reached in k hops, each hop distance is roughly R/k. Let
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Fig. 2. Geometric representation of network

Ai represent the common area between the network, and the i-hop reachable
region. As Figure 2 indicates, for smaller i, Ai is a circular annulus, and for
larger i, it is the annulus of the intersection of two circles. For the smaller values
of i, where the i-hop zone is a circle,

∀i ≤ k(1− a

R
), Ai = π(

iR

k
)2 (3)

Represent the network as a circle of radius R, centered at (0, 0). The leader is
located at (a, 0), and its i-hop zone is a circle of radius iR/k. The two circles
can be represented by the equations x2 + y2 = R2 and (x − a)2 + y2 = ( iR

k )2.
The points of intersection A1(x1, y1) and A2(x1, y2), where say y1 is the positive
root, are calculated as

x1 =
R2(1− i2

k2 )+a2

2a (4)

y =
√

R2 − x2 = 1
2a

√
[(R + a)2 − ( iR

k )2]×
√

[( iR
k )2 − (R− a)2] (5)

The total area of intersection is given by
∫ R

(a− iR
k ) ydx, which can be rewritten as

A = 2[
∫ x1

(a− iR
k )

√
(
iR

k
)2 − (x− a)2dx +

∫ R

x1

√
R2 − x2dx] = 2(I1 + I2) (6)

We use
∫ √

R2 − x2dx = R2sin−1( x
R ) + x

√
R2−x2

2 to obtain

I1 = (
iR

k
)2[sin−1 (x1 − a)

iR/k
+ sin−1 a

iR/k
]

+
(x1 − a)

2

√
(
iR

k
)2 − (x1 − a)2 +

a

2

√
(
iR

k
)2 − a2 (7)
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and

I2 = R2(
π

2
− sin−1 x1

R
)− x1y1

2
(8)

This expression for area A is valid for iR
k ≤ (R + a), i.e., ∀i ≤ k(1 + a

R ), Ai =
2(I1+I2) where Ai−Ai−1 gives the area reachable by the ith hop. The number of
nodes in this region is calculated, by the assumption of uniform distribution, as

ni = (Ai −Ai−1)
n

πR2
(9)

where there are n nodes in the network. The average hop-count from the leader
to a node is

k∑
i=1

i× ni

n
(10)

Also, the expression for probability of a clash can be simplified to

1−
k∏

i=1

[1− 1− ((1 − p)i)
N

]ni (11)

The maximum time required for synchronization of the network is thus a function
of the diameter of the network. The maximum possible diameter of a network of
n nodes is n, when all are arranged linearly. Hence, the network is synchronized
in finite time. The protocol relies on calculations using the two-ray pathloss
model which assumes a variation inversely proportional to d4. We try to place
a bound on the maximum error that can be present in delay calculation. We
represent the transmission power as Pt and the received power as Pr. As the
ratio, Pr/Pt decreases i.e., the distance increases, the error between the different
distance estimates increases. This is the reason for higher error in estimates
with greater hop distance. Also, the effects of multi-path interference and fading
lead to unpredictability in the propagation delay. Let the maximum possible
transmission power be Txmax and minimum received power required be Rxmin.
Then the largest Pt

Pr
ratio is Txmax

Rxmin
. The worst case error in distance estimation

is given by Equation 12, where α is a proportionality constant.

δr ≤ α× ((
Pt

Pr
)1/2 − (

Pt

Pr
)1/4) ≤ α× ((

Txmax

Rxmin
)1/2 − (

Txmax

Rxmin
)1/4) (12)

We now analyze the worst case scenarios for a network of n nodes. If all the
nodes are arranged linearly, there are at most n− 1 hops to be traversed by the
LeaderAnnouncement packet to reach all nodes. Therefore, the maximum error
in synchronization is given by (n − 1) × δt. Also, referring to our definition of
a slot in Equation 1, the minimum time for complete synchronization with the
worst-case diameter is given by (LLeaderAnnouncement

B + E(τ))× (n− 1) assuming
zero delay at each node.
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4 Results

The proposed synchronization protocol was implemented on GloMoSim simula-
tion platform. We have chosen a simulation area of 2000m×2000m with number
of nodes ranging from 40 to 120 and the node mobility model used was random
way-point. The BeaconWait duration was taken as 5× slot where the slot dura-
tion is 50ms. Also, the MaximumPiggybackWait duration was taken in the range
1ms to 100ms. The channel bandwidth is 2Mbps. The transmission powers used
were 9 dBm, 15 dBm, and 18 dBm and we used a two-ray radio propagation
model. IEEE 802.11 DCF is used as the MAC protocol. The protocol’s parame-
ter BeaconWait was set as 5 slots, where each slot width is 50 ms. The probability
p of claiming to be a leader was set at 10%, to ensure that even if the network
is highly partitioned, there is a high probability of some node claiming to be a
leader. The value of TTL was set at 10, comparable to the network diameter.
Statistics were collected for the different synchronization information delivery
mechanisms - out-of-band signaling and piggybacking on data and acknowledg-
ments. Each set of simulation parameters was run on several seeds, and the
results were averaged.

Figure 3 plots the variation of standard deviation of the clock times of nodes
in a partition, with respect to node density and mobility. It is observed that
there is a marginal increase in standard deviation with higher node density,
as the LeaderAnnouncement packets need to travel through greater number of
hops, and the errors in propagation delay estimates increase with higher hop
count. The maximum difference between any two NodeClocks in the partition is
observed to be less than 1 µs, at the transmission power of 15 dB. As Figure 4
shows, the dispersion of NodeClocks does not show a specific dependence on
node density or mobility, due to the inherent randomness in the propagation
delay and receive error estimates, the major contributors to the error in clock
synchronization. Similarly, the average difference between NodeClocks and the
LeaderClock is found to be less than 1 µs. The accuracy of synchronization relies
on the accuracy of estimation of distance, and hence propagation delay between
any two nodes. Additionally, the receive delay error contributes to a random
error of about a bit-width.
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Figure 5 shows the effect of a deliberate inaccurate estimation on the max-
imum difference between any two NodeClocks in a partition. Though the dis-
persion does increase with larger errors, the maximum dispersion is still 1.2µs
with 20 % error in estimation, which is of an acceptable order. Similar increasing
differences are indicated between the NodeClocks and LeaderClock in Figure 6.
Figure 7 analyzes the dependency of synchronization time on hop count from
the leader. At all node densities, the synchronization time shows an upward
trend with greater hop count, due to the increased queuing delays experienced
by the LeaderAnnouncement packets at the intermediate nodes. The synchro-
nization control information was piggybacked onto the data packets being sent
from the nodes. The saving per piggybacked control packet is the difference be-
tween the overhead introduced by extra fields in the data packet, and sending
a dedicated control packet. The minimum size of a packet, with only the head-
ers and zero payload, is 160 bytes. The actual control information carried is
only 25 bytes. As indicated earlier, the effectiveness of piggybacking depends on
the MaximumPiggybackWait. Figure 8 clearly indicates that a larger number of
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LeaderAnnouncement packets are buffered when the nodes wait for 100 ms to
find a data packet to piggyback the control information. The overall bandwidth
saving is higher in denser networks with larger MaximumPiggybackWait. We ob-
served the dispersion of NodeClocks at different waiting times in the presence of
sensor data traffic which appeared similar for voice and sensor traffic at different
delays. Hence, the waiting time does not have an impact on the effectiveness of
the synchronization protocol, since the time-stamping accounts for the buffering
delay. The effect of piggybacking on acknowledgments on the accuracy of syn-
chronization is minimal. The error is found to be of the same order of 1µs, as in
the case of piggybacking on data packets.

5 Conclusions

We have proposed a novel distributed global time synchronization protocol ap-
plicable to dense ad hoc wireless and sensor networks. A unique leader is elected
for each partition of the network, and all the nodes in the partition synchronize
with it. Time-stamping was performed at the physical layer to eliminate random-
ness introduced in send and access times by MAC layer. It was observed that the
synchronization error is of the order of 1 µs, in all the scenarios of transmitting
synchronization information. Even deliberate introduction of error of upto 20%
in delay estimates, to account for randomness in propagation delay and receiver
delay, did not increase the synchronization margin by more than 2µs.
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Abstract. Wireless Sensor Networks (WSNs) consist of a large num-
ber of nodes networked via wireless links. In many WSN settings, sensor
nodes are deployed in an ad hoc manner. One important issue in this
context is to detect the boundary of the deployed network to ensure
that the sensor nodes cover the target area. In this paper, we propose
a new algorithm that can be used to discover the boundary of a ran-
domly deployed WSN. The algorithm does not require the sensor nodes
to be equipped with positioning devices and is scalable for large number
of nodes. Simulation experiments are developed to evaluate the perfor-
mance of the proposed algorithms for different network topologies. The
simulation results show that the algorithm detects the boundary nodes
of the network with high accuracy.

1 Introduction

Advances in wireless technologies, low-power computing, and embedded sys-
tems have enabled new and exciting applications for Wireless Sensor Networks
(WSNs) [3]. A WSN consists of a large number of sensor nodes networked via
wireless links. Numerous applications, such as efficient information sharing, mil-
itary surveillance, disaster aid and risk management, benefit from the ability to
efficiently deploy a (temporary) wireless network.

Typical applications of WSN systems may require a random deployment of
sensor nodes over a large target area. Moreover, military surveillance systems,
may also require detection of any activities around the boundaries of the target
area under surveillance. Thus, the system should be capable of detecting and
identifying any object that enters or leaves the monitored area. Hence, the de-
velopment of mechanisms by which the boundary nodes of the network can be
identified is important and a challenging problem. The nodes that represent the
perimeter of the target area under surveillance are called boundary nodes.

The WSN systems are naturally dynamic systems. A WSN infrastructure keep
evolving, because, nodes can fail, due to power-depletion, or displacement due
to some natural phenomenon or nodes can be redeployed. This dynamic nature
of WSNs makes the identification of the network boundary important as well
challenging. Detecting the boundary nodes of a WSN is usually not the primary
goal of deploying a WSNs. It is, therefore, required that the detection process
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does not tax node resources so that the network can perform its designated
functions. While equipping the nodes in the network with positioning systems
such as Global Position System(GPS) can simplify the problem, it does not
provide a cost-effective solution. Moreover, GPS can drain a considerable amount
of node energy over time leading to networks with short life-time.

In this paper, we develop an algorithm for detecting the boundary nodes of
a WSN. The algorithm does not require the sensor nodes to be equipped with
GPS. In addition, the algorithm relies on minimum communication between a
node and its neighboring nodes, making the algorithm suitable for large-scale
WSNs. The algorithm accuracy is evaluated for various network topologies and
different parameters. Our simulation results show that our algorithm performs
with high accuracy, even for random deployments with more than 500 nodes.

The remainder of the paper is organized as follows. The boundary detection
problem is formally defined in Section 2. The proposed algorithm is described and
analyzed via simulations in Sections 3 and 4, respectively. Concluding remarks
are presented in Section 5.

2 Problem Overview

In this section, we describe the main assumptions, present definitions and nota-
tions, and develop a formal definition of the boundary detection problem.

2.1 Assumptions

In this work, we consider a WSN with homogeneous nodes, where each node has
a unique global coordinate. The network is sufficiently dense so that each node
in the network has at least 3 neighbors. In addition, we do not require the nodes
to be equipped with GPS; however, nodes can determine their distance to their
neighbors. For simplicity, we consider a network with no communication holes.
The following is a summary of the main assumptions in this work:

1. Nodes can determine its distance to some of its neighbors.
2. Each node has a distinct global coordinate.
3. The network is sufficiently dense so that each node in the network has at

least three neighboring nodes from which it can calculate its distance.
4. There exist no communication holes inside the network.
5. Communications between the nodes are bidirectional and symmetric.

2.2 Notations and Definitions

A sensor network with n nodes can be modeled as a graph G = (V, E), where n =
|V | represents the set of nodes in the network, and E is the set of undirected edges
e(i, j), where i, j ∈ V and node j is within the communication range of node i.

Let p ∈ V be a node in the network, define N k(p) to be the set of all the
nodes that are within k hops from node p. Formally, N k(p) = {i : i ∈ V, d(p, i) ≤
k}, where d(p, i) represents the distance between nodes p and i. Thus, N k(p)
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represents the kth order closed neighborhood of p in G. The set N 1(p), or simply
N (p), contains all nodes that are within the communication range of node p.
Formally, N (p) = {i : i ∈ V, (p, i) ∈ E}.

Definition 1 (Interior Node). A node p ∈ V is said to be an interior node
if there ∃ at least three nodes a, b, c ∈ V such that a, b, c ∈ N (p) and the nodes
a, b, c forms a triangle that encloses the node p.

Definition 2 (Boundary Node). A node p ∈ V is said to be a boundary
node if p is not an interior node.

Define B to be the set of boundary nodes in the network; and I to be the set
of interior, i.e. non-boundary, nodes in the network.

Definition 3 (Network Boundary). The imaginary line that connects the
boundary nodes of the sensor network is defined as a network boundary. The
network boundary defines the perimeter of the entire network.

2.3 Problem Definition

Given a randomly distributed network with a set of nodes with unknown position
coordinates, and a mechanism by which a node could determine its distance to
its neighbors, our objective is to devise a method for identifying the boundary
nodes of the network.

The problem, thus can be stated formally as follows. Given a graph G =
(V, E), where nodes of G are embedded in a two dimensional space. For a node
p ∈ V , determine if there exists a set S such that S ⊂ N (p), and |S| ≥ 3, where
there exist at least three nodes a, b, c ∈ S that enclose the node p in a triangle.

3 Proposed Algorithm

In this Section, we describe the proposed algorithms for detecting the boundary
of the network. The approach consists of two algorithms: the InteriorPoint al-

InteriorPoint(IP) Algorithm:
Input: Four points P, A, B, C and dAP , dBP , dCP , dAB , dBC , dCA

Output: Whether or not P is inside ∆ABC

1. Find the areas of ∆s ABC,PAC, PBC, and PCA
using the equation(Heros formula):
Area =

�
[s(s − a)(s − b)s − c)]

where s = (a+ b+ c)/2 and a, b, c are length of three
sides of the ∆.

2. IF Area ∆ ABC = Area (∆ PAC + ∆ PBC + ∆
PCA)
RETURN P is inside the ∆ ABC
ELSE RETURN P is out side the ∆ ABC

Fig. 1. The InteriorPoint (IP) Algorithm
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gorithm (IP), and the ChooseGoodNeighbors algorithm (CGN). Figures 1 and 3
give the details of the IP and CGN algorithms, respectively.

In the IP algorithm we verify whether or not a given node is enclosed inside
its three chosen neighbors.

It should be noted, however, that the accuracy of this algorithm depends on
how we choose the three neighbors A, B and C of node P . Because possibly each
node will be have more than three neighbors. It may be possible that the node
P will be interior or exterior node depending on the three neighboring nodes
we choose. A situation is depicted in Figure 2. If we choose the neighbors A, B

B

P

A C

C

P

B A

D

Fig. 2. Steps of CGN Algorithm

ChooseGoodNeighbors(CGN) Algorithm:
Input: Node P .
Output: Four good neighboring nodes A, B, C and D of P

1. Find a node from N (P ) which at the minimum distance from
P . Name it as node A.

2. SearchRadius = dPA;
3. WHILE(CommunicationRange �= SearchRadius) FOR all

the nodes within SearchRadius of P
Find a node B, such that it is in both N (P ) and N (A), and
distance dAB is maximum.
ROF
IF node B is found
EXIT WHILE
ELSE
SearchRadious + +;
END-WHILE

4. Find a node C such that it is in N (A), N (B) and N (P ),
and |dAC − dBC | is minimum and dPC is minimum.

5. Find a point D such that, D is in N (A), N (B), N (C), N (P )
and |dAD − dBC | is minimum and dDC is maximum and
dDC > dDP and dDC > dPC

6. IF (InteriorPoint (P, A,B, C))
RETURN ’P is an interior point.’
ELSEIF (InteriorPoint (P, A,B, D))
RETURN ’P is an interior point.’
ELSE RETURN ’P is a boundary point’

—

Fig. 3. The ChooseGoodNeighbors(CGN) Algorithm
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and C as the three neighbors of the P , then P is an interior node as it could be
enclosed inside the ∆ABC (Figure 2(a)). But incase we choose the ∆ABD then
the node P is an exterior node(Figure 2(b)).

Hence we present our second algorithm (Figure 3) which intelligently selects
four neighbors, A, B, C and D, of a node P (Figure 2(b)). The four nodes have
the property that these are pairwise neighbors among themselves. The node P
is detected as an interior node if it is either inside the ∆ABC or ∆ABD.

Figure 4 explains how the CGN algorithm works. This algorithm tries to
discover neighbors close to the given node, which could possibly surround it. So
first, a node A closest to the given node P is found (Figure 4(a)). Then a node
B is searched, such that it would possibly lie on the opposite side, to side of A
to P (Figure 4(b)). If such a node is found, a third node C, is searched which is
equidistant from A and B, but at a minimum distance from P . So it could lie
anywhere inside the search space shown in Figure 4(b). So if C is found on the
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other side, to the side of C to AB shown in Figure 4(c), then P could not be
enclosed inside ∆ABC. Hence P could be detected as an exterior node, even if
it is not. Hence we search for another node D, which will be again equidistant
from A and B, and at a maximum distance from C. It should also satisfy the
two conditions specified in Step 5 of Figure 3. By this we make sure that, if a
node D is found, it should lie somewhere on the other side, to the side where
node C is of the line APB(shown in Figure 4(d)). Note that if no node D is
found and node P is not inside ∆ABC, then node P is a boundary node.

Figure 5 shows the interior nodes detected by the algorithm in black and
others nodes detected as boundary nodes in white. Hence, in this case both the
FD and MD is 0 %.

4 Simulation and Results

In this section we describe the simulations performed to evaluate our algorithms
and analysis of the results obtained.

4.1 Simulation Set-Up

We used MATLAB to simulate all our algorithms. We assumed the communi-
cation range of all the nodes in the network to be of fixed radius and all the
communication channels to be symmetric.

For our simulation, we imagined our area of deployment to be divided into unit
grids. In that area, two types of sensor network deployment were considered: grid
deployment and random deployment. In grid deployment, the nodes are placed
exactly at the grid points. But in random deployment, sensors are randomly
placed inside one unit grid. For all the simulations with grid deployment, except
for simulations on various number of nodes, we used network of 78 nodes deployed
in 10×10 grid, on a square terrain of dimension 10 m× 10 m. Nodes are placed on
78 randomly selected grid points out of 100 such points. Similarly, for a random
deployments, nodes are randomly placed inside 78 unit grids out of 100 such
possible unit grids.

We assume that each node in the network knows all its one-hop neighbors
and its distance to them. In addition, it must know the list of one-hop neighbors
of each of its one-hop neighbors and their distances to them. Each node can
do that locally by querying all its one-hop neighbors and acquiring the one-hop
neighbor list from each of them.

4.2 Simulation Parameters

Three different evaluation parameters were considered for the simulation- number
of nodes, node communication range and sensor network deployment.

– number of nodes. In this scenario we evaluated the algorithm’s perfor-
mance with increasing network size (number of nodes). We consider: 6×6



An Algorithm for Boundary Discovery in Wireless Sensor Networks 349

0 50 100 150 200 250

8

10

12

14

16

18

20

No. of Nodes

%
 o

f f
al

se
 d

et
ec

tio
n

(a)

0 50 100 150 200 250
11

11.5

12

12.5

13

13.5

14

14.5

15

%
 o

f m
is

se
d 

de
te

ct
io

n

No. of Nodes

(b)

0 100 200 300 400 500 600
1

2

3

4

5

6

7

%
 o

f f
al

se
 d

et
ec

tio
n

No. of Nodes

(c)

1 2 3 4 5 6 7 8 9 10

6

8

10

12

14

16

18

%
 o

f f
al

se
 d

et
ec

tio
n

Communication range

(d)

2 3 4 5 6 7 8 9 10
7

8

9

10

11

12

13

14

%
 o

f m
is

se
d 

de
te

ct
io

n

Communication range

(e)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

%
 o

f f
al

se
 d

et
ec

tio
n

Communication range

(f)

Fig. 6. Simulation results for different network size and different communication range

grid with 30 nodes, 10×6 grid with 50 nodes, 10×10 grid with 78 nodes,
15×16 grid with 200 nodes, 18×20 grid with 300 nodes, 22×22 grid with
400 nodes and 30×22 grid with 564 nodes. For all these network sizes, we
simulated both grid and random deployment.

– communication range. In this scenario we evaluated the algorithm’s per-
formance with increasing communication range of each node. Different com-
munication ranges for each node that were considered: 3, 4, 5, 6, 7 and 8
units. This defines a communication range of radius 3, 4, 5, 6, 7 or 8 units
for each node and all the other nodes within that radious are the one-hop
neighbors for that node. For these simulations we kept the network size fixed
with 10×10 grid with 78 nodes.

– network deployment. In this scenario we compared the algorithm’s per-
formance with two above defined network deployments: grid deployment and
random deployment. We considered networks with 10×10 grid and random
topology with 78 nodes.
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4.3 Evaluation Metrics

To measure the effectiveness of our algorithm we considered two evaluation
metrics- % of false detection and % of missed detection. Let D = the set of
nodes detected as boundary nodes by the algorithm.

– False detection(FD). False detection represents the nodes that are not
boundary nodes, but they are detected as boundary nodes by the algorithm.

% of false detection =
# of false detection
Total # of nodes

= | I ∩D

N
| ×100

– Missed detection(MD). Missed detection represents the nodes that are
boundary nodes, but the algorithm failed to detect them as boundary nodes.

% of missed detection =
# of missed detection

Total # of nodes

= | B \D

n
| ×100

All the simulation parameters defined in Section 4.2 were evaluated using the
above two metrics.

4.4 Simulation Results

In this section we discuss and analyze the results obtained by the simulation.
Ideal case. We started with an ideal sensor network deployment with 16 nodes in
4× 4 grid. So all the nodes are placed at one of the grid points and each having
a communication range of 4 units. Hence all the nodes in the network are within
the communication range of each other.

Network size. Next we considered the scenario of varying network size. Figures
6-a, 6-b, and 6-c summarizes the results for both the grid and random deploy-
ment. The first two subplots describe FD and MD for the random deployment
respectively and the third one shows FD for grid deployment. It is evident from
the three plots that the FD and MD increases with increasing network size. The
maximum value of FD in case of grid deployment is 6.7 % for 546 nodes, where as
it is 16.8 % for random deployment with same number of nodes. It is interesting
to note that for all the different network sizes in case grid deployment the MD
remained 0 % (no missed detection). Thus, the algorithm is highly scalable.

Communication range. In our next experiment, we increased the communication
range of each node in the network keeping the size of the network fixed (10×10
grid with 78 nodes). Figures 6-d, 6-e, and 6-f shows that in all the cases the FD
or MD deceases with increasing communication range. But after certain value of



An Algorithm for Boundary Discovery in Wireless Sensor Networks 351

0

2

4

6

8

10

12

14

16

18

30 50 80 200

Number of Nodes

%
 F

al
se

 D
et

ec
ti

o
n

Grid

Random

Fig. 7. Grid vs. Random deployment

communication range the values of FD and MD remains constant. Thus, when
each node in the graph has reached the threshold on the number of neighboring
nodes, the algorithm fails to improve its performance with further increase in
the number of neighboring nodes. Hence the FD or MD value remains constant.

Network deployment. Figure 7 shows the comparison of FD for both grid and
random deployment with increasing network size. The first bar (black) of each
pair of bars shows the FD for grid deployment and the other (gray) is for random
deployment. It is clear that for all the cases the FD is more incase of random
deployment, but the increase in the value of FD grid deployment with network
size, is proportionate to that of random deployment.

5 Conclusion and Future Work

In this paper, we proposed an algorithm that can be used to discover the bound-
ary nodes of a randomly deployed WSN. The algorithm rely on limited commu-
nication between a node and its neighbors. This feature makes the algorithm
suitable for networks with large number of nodes. Simulation experiments of dif-
ferent network topologies confirm the accuracy of the algorithm in detecting the
boundary of the network, even for random networks with more than 500 nodes.

Future work includes the extension of the algorithm to detect the coverage
boundary of the network. We define the coverage boundary of a network as
the boundary encompassing the areas that could be monitored or covered by
the sensor nodes inside the network. This defines the entire area that is within
the communication range of the sensor nodes of a WSN. The extension of the
algorithm to detect the network boundary in the presence of communication
holes (i.e. unconnected sensor network) is our current research topic.
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Abstract. Current superscalar architectures inherently depend on an
instruction issue queue to achieve multiple instruction issue and out-of-
order execution. However, the issue queue is implemented as a centralized
structure and mainly causes globally broadcasting operations to wake up
and select the instructions. Therefore, a large issue queue ultimately re-
sults in a low clock rate along with a high circuit complexity. This paper
proposes Speculative Pre-Execution Assisted by compileR (SPEAR), a
low-complexity issue queue design. SPEAR is designed to manage the
small issue queue more efficiently without increasing the queue size. To
this end, we have first recognized that the long memory latency is one
of the factors which demand a large queue, and we aim at achieving
early execution of the miss-causing load instructions using another hier-
archy of an issue queue. We speculatively pre-execute those miss-causing
instructions as an additional prefetching thread.

1 Introduction

For the past ten years, the superscalar architecture model has been adopted for
general purpose microprocessors. The superscalar architecture model ultimately
aims at expediting program execution by finding parallelism among instructions;
this fine-grain parallelism is called Instruction Level Parallelism (ILP). In gen-
eral, exploiting ILP in superscalar architectures is based on the two runtime
techniques: multiple instruction issue and out-of-order execution, and both tech-
niques are achieved through dynamic scheduling. Dynamic scheduling requires
the storing of multiple decoded instructions in a pool of instructions (the pool is
often called issue queue or instruction window) and issues “ready” instructions
from the queue (where ready instruction means the instruction for which the
source registers have been computed so that there is no data hazard in issuing
the instruction).
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In essence, the execution of an instruction i is decided by the previous in-
struction k which produces the value for the source registers of instruction i. This
implies that instruction k should broadcast the register name and value across
the issue queue to wake up and select any ready instruction. In conventional su-
perscalar designs, this operation cannot be pipelined and represents a one-cycle
operation [1]. Therefore, as far as the size of the issue queue is concerned, more
instructions within an issue queue mean more communication overhead (wire de-
lay) for the wake up and select operations within a single clock cycle. In fact, the
wires tend to scale poorly compared to semiconductor devices, and the amount of
states that can be reached in a single clock period eventually ceases to grow [2].
As a consequence, there is a scaling problem regarding the issue queue size in any
superscalar design. Larger issue queue and faster clocks, while both necessary, be-
come paradoxically antagonistic in the design of future superscalar processors [2].

This paper introduces our low-complexity SPEAR (Speculative Pre-
Execution Assisted by compileR) architectural technique as an alternative to
conventional superscalar designs. Instead of using a large issue queue, we imple-
ment an additional separate issue queue which is dedicated to the execution of
performance-critical instructions. The performance-critical instructions include
cache miss instructions and instructions on which the cache miss instructions
have data dependencies. Indeed, the increasing performance gap between proces-
sor and main memory imposes a high burden on the dynamic scheduling capabil-
ity of a small issue queue since it causes a significant amount of pipeline stalling
at cache misses. Therefore, the proposed architecture aims at reducing pipeline
stalling in the main program flow by an early scheduling of those instructions.

Our performance analysis is based on a cycle-time simulator derived from
the SimpleScalar 3.0 tool set [3]. The simulation results demonstrate that the
proposed SPEAR architecture yields high degrees of ILP, comparable to what a
superscalar architecture with a large issue queue (256 entries) would achieve. In
the next section, we describe background research and related work. Section 3
presents the detailed description of the proposed SPEAR architecture. Section
4 includes experimental results and performance analysis.

2 Motivation and Background

2.1 Design Motivation

The increasing demands for a large issue queue are caused by the long latency
operations which occupy the queue slots for considerable amounts of time. It
consequently means that all the instructions which also need the data from
those long latency operations should remain inside the queue (Fig. 1-(a)). In fact,
this observation means a reduction of the available queue slots and accordingly
requires a large issue queue. One of the most critical long latency operations in
current microprocessors is memory access where a cache miss can reach hundreds
of cycles. Therefore, these long memory access latencies strongly imply the need
for a large issue queue.
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Fig. 1. Basic concept of the SPEAR approach

More specifically, a large issue queue hides the long access latency in two
ways (Fig. 1-(b)): first, it provides more issue slots during the memory accesses.
More slots mean more opportunities to uncover independent ready instructions
to hide the long access latency. Another advantage of the large queue is the
potential for dynamic preloading of the necessary data. Preloading operations
would take place when future load instructions are executed early. In a dynamic
scheduling scheme, any load instruction inside the issue queue can be executed
as long as the data dependencies have been resolved. Therefore, the large queue
increases the chances to execute load instructions even earlier. However, despite
the above advantages, a large issue queue has an inherent critical scaling problem.
As previous research indicates [1], the critical path delay shows a quadratic
dependency on the queue size.

As an alternative approach, we here propose our SPEAR model which is
designed to achieve the early scheduling of future cache miss instructions without
increasing the size of the issue queue. Our main idea is to extract frequently miss-
causing instructions and make them into prefetching threads. These instructions
can be scheduled through another issue queue to achieve data prefetching (Fig.
1-(c)). The prefetching thread runs as a stand-alone thread and is expected to
update the cache blocks before the main thread accesses them. Therefore, the
prefetching thread suitably reduces the number of cache misses on the main
thread. Consequently, fewer cache misses result in a reduction of the number
of load instructions occupying the issue queue due to memory accesses. A more
detailed description of our SPEAR technique will be given in Section 3.
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2.2 Related Work

There have been several research projects which have attempted to solve the
complexity problem of the centralized instruction queue. Palacharla et al. [1]
have performed an initial analysis of the complexity of wide issue superscalar
architectures. They have proposed a dependence-based instruction queue design
as a solution. Based on these dependencies, the instructions are sent to separate
FIFO queues. At the issue stage, only the head instructions of each FIFO are
considered for issuing.

Another approach called clustering scheme has also been developed. Cluster-
ing is strongly based on the partitioning of the queue and the functional units. In
general, the clustering technique separates the instruction streams considering
the register dependencies [1,4]. In addition, speculative multithreading which
finds parallelism across the control flow limits, has been developed. It normally
uses single-chip multiprocessor architectures as platforms [5,6,7].

Our SPEAR approach is fundamentally based on the concept of speculative
pre-execution [8,9,10,11,12,13,14,15]. Speculative pre-execution is a promising
prefetching technique which uses an auxiliary prefetching thread in addition to
the main program flow. The prefetching thread (p-thread) includes the frequently
miss-causing load instructions (as also referred to as delinquent loads) and back-
ward slices (the group of instructions on which the delinquent loads have register
dependencies). The p-thread runs earlier than the main program, on the spare
hardware context, and can achieve timely data prefetching. The speculative pre-
execution is first motivated by the fact that most of the cache misses are caused
by a small number of load instructions. Those load instructions (d-loads) are
normally identified through profiling.

3 Complexity-Effective Issue Queue Design with SPEAR

3.1 Description of the Basic Pipeline

The structure of the SPEAR pipeline is depicted in Fig. 2. It is mainly based
on an SMT model; our SPEAR design requires the support for the simultaneous
execution of the main thread and of the p-thread. A unique feature of our pro-
posed model is that the p-thread is a strict subset of the main program instruc-
tion stream, and it is not required to store the p-thread instructions in separate
memory locations. Instead, those instructions that belong to the p-threads are
simply marked with appropriate p-thread indicators during the pre-decoding op-
eration. When a p-thread is triggered, the instructions marked as belonging to
the p-thread are extracted from the Instruction Fetch Queue (IFQ).

Three additional units called the p-thread detector (PD), the p-thread table
(PT), and the p-thread extractor (PE) have been designed and implemented to
facilitate the execution of the prefetching thread. First, the PD is designed to
examine whether the instructions currently being fetched belong to the p-thread
or not. For that purpose, it looks up the PT with the PC of the instructions
being fetched. Indeed, the PT contains the PCs of all the instructions in the
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Fig. 2. Hardware description of the SPEAR

p-thread. If the instruction in the pre-decoding stage is identified as a p-thread
instruction, the PD sets the p-thread indicator of the instruction (recall that, as
described in Fig. 2, each slot of the IFQ includes a one bit p-thread indicator).
The third structure, PE, will be explained along with the p-thread execution in
the following subsection.

3.2 Extraction and Execution of the P-Thread Instructions

If an instruction being fetched is detected as a d-load, the PD changes the
machine state to pre-execution enabled mode. After that, the extraction and
delivery operations for the p-thread instructions are controlled by the p-thread
extractor (PE). First, to guarantee a deterministic state has been reached before
the live-in values are copied, the PE should wait until all instructions which have
been decoded retire the commit stage. After that, the live-in values are copied
from the main thread context to the p-thread context; the register names for
the live-in values are also provided by the PT. Finally, the PE starts extracting
p-thread instructions and delivering them to the decoder.

During the pre-execution enabled mode, the PE looks up each entry starting
with the head of the IFQ in order to extract the p-thread instructions. As the
PE finds instructions for which the p-thread indicator is “on,” it extracts them
and sends them to the decoder. In fact, it only copies the instruction to the
input field of the decoder and leaves the instruction in the IFQ for the main
thread to execute. This is because, although the instruction has been selected
and delivered to the decoding logic as a p-thread instruction, it also needs to be
executed as part of the main thread as well.

After the execution of the p-thread has begun, the processor should operate
in a multithreaded mode; the p-thread is executed as a thread running along with
the main thread. Every operation of an instruction is tagged with a dedicated
thread id. In our SPEAR model, 0 is assigned to the main program thread as a
thread id, while 1 is assigned to the p-thread. Indeed, the thread id 1 is assigned
to the p-thread instructions when the PE sends the instruction to the decoder.
Since the goal of the p-thread execution is to pre-execute the d-load, after the
d-load is retired from the reorder buffer at the commit stage, the pre-execution
mode is finished and the processor returns to the normal mode.
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3.3 Design of the SPEAR Compiler

An automated binary translator has been developed to produce the SPEAR
executable code. The SPEAR compiler is designed to directly work on the Sim-
pleScalar binary code. Inside the compiler, four individual modules have been
developed based on the SimpleScalar-3.0 tool-set [3]. The input to the SPEAR
compiler is the SimpleScalar binary named PISA (Portable Instruction Set Ar-
chitecture) [3]; the PISA binary is produced by SimpleScalar targeting gcc-2.6.3.
The output produced after all compilation steps is the SPEAR executable binary.

At the beginning of the compilation procedure, the input binary is sent to
the control flow graph (CFG) drawing tool and the profiling tool. The CFG
drawing tool has been developed to create the control-flow graph and iden-
tify the loop-region. The second one (profiling tool) has been designed to find
frequently miss-causing load instructions (delinquent loads) and also to collect
runtime information; different input data sets have been used between profiling
and the performance evaluation. After these two modules, the program slicing
tool collects the program structure information and dynamic information from
the previous two modules and constructs the p-threads.

Our slicing method is applied to the static program structure with the
control-flow graph which is drawn by the CFG drawing tool. In the slicing tool,
each static instruction has its own data structure. In addition to that, the data
structures for basic blocks are defined and pointed to by the corresponding in-
structions. The control-flow is defined by identifying the target address of each
conditional/unconditional jump instruction. The procedures are also defined by
identifying jump instructions to the function calls.

On the other hand, the profiling tool derives the data-flow graph among
instructions. The dynamic instances of instructions are analyzed and the depen-
dencies are examined by the source/destination-register names. Furthermore,
the access addresses of each store and load instructions are analyzed to find the
address dependencies. Finally, the p-threads are defined and constructed by the
backward chasing on the data-flow graph. The last module is the attaching tool
which attaches the p-thread information to the SPEAR binary. This information
needs to be loaded into the p-thread table (PT) at program execution time.

4 Experimental Results and Analysis

4.1 Benchmarks Description and Simulation Parameters

The set of benchmarks includes 12 applications: six benchmarks selected from
the SPEC2000 suite (bzip2, gzip, vortex, vpr, art, and equake), four applica-
tions chosen from the Atlantic Aerospace Stressmark suite (matrix, neighbor-
hood, pointer, and update), and two benchmarks from the Atlantic Aerospace
Data-Intensive Systems Benchmarks suite (data management and ray tracing).
The SPEC benchmarks have been compiled at peak optimization level and tested
with the reference input set.
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The execution-driven architectural simulator for SPEAR has been designed
by modifying sim-outorder simulator which is provided by the SimpleScalar 3.0
tool set [3]. The baseline superscalar architecture for performance comparison
has a 256-entry issue queue and the issue and commit widths are 8. The SPEAR
also has been tested with various sizes of issue queues: 32, 64, and 128. For all
simulation results, the performance is measured in terms of IPC.

4.2 Performance Results and Analysis

Since our SPEAR aims at achieving performance comparable to that of super-
scalars with a large issue queue, we first compare it to a superscalar model with
a 256-entry issue queue. Throughout all results, the diagrams show the normal-
ized performance in terms of IPC; although we do not quantify the expected
clock rates of our design, we claim that the small queues in our design would
eventually contribute to higher clock rates.

The simulation results for the SPEAR models are shown in Fig. 3. The first
SPEAR model has been tested with a 128-entry instruction fetch queue, shared
functional units between two threads, and two 128-entry issue queues for both
threads. The second bars in each benchmark show the normalized performance
of the initial SPEAR (SPEAR-128), whereas the first bars show the normalized
performance of the baseline superscalar architecture. In all twelve benchmarks,
the performance of SPEAR-128 remains better than a 10% degradation of the
baseline performance; recall that the baseline performance is measured with a
twice large issue queue. More particularly, SPEAR-128 produces an even better
performance in the six benchmarks.

Since the p-thread is spawned from the IFQ, the size of IFQ is believed to
affect the prefetching performance. To show how the IFQ size affects the overall
performance, we have changed the IFQ size from 128 to 256 entries. The perfor-
mance results for the longer fetch queue configuration (denoted as SPEAR.lfq-
128) are shown in the third bars in each benchmark. As the diagram shows, the
long range fetch queue considerably improves the SPEAR performance in some
applications. More particularly, matrix shows a 44.2% performance improvement
compared to the previous configuration. This is due to the fact that the matrix
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benchmark contains a high branch hit ratio (0.9942) and could yield significant
benefits from the long range fetch queue. On the contrary, the update bench-
mark shows a very low branch hit ratio (0.8865) and consequently does not gain
any improvement from the longer fetch queue. On average, the long fetch queue
achieves a 7.25% performance gain from the short queue configuration.

As explained earlier, our p-thread stream is extracted from the main thread
as a subset instruction stream. Therefore, the execution behavior of both threads
would contain similar patterns, and simultaneous accesses to the same functional
units are inevitable. Our next enhancement targets the elimination of this re-
source conflict by assigning dedicated resources for each thread. Fig. 4 shows the
performance enhancement by assigning dedicated resources to the p-thread. The
second bars in each benchmarks show the performance of the shared resource
configuration, and the third bars indicate the performance of the dedicated re-
source model (which is denoted as SPEAR.lfq.dr-128). The performance im-
proves in most benchmarks with dedicated functional units. On average, a 3.6%
performance improvement has been achieved compared to the shared resource
model. Over twelve benchmark programs, the average performance improvement
of SPEAR.lfq.dr-128 is 14.4% compared to the 256-entry queue superscalar.

In this part, the issue queues of the SPEAR approach have been further
reduced to 32 and 64 (with long fetch queue and dedicated resources). The per-
formance results of the 32 and 64 queue sizes are shown in Fig. 5 (denoted
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SPEAR-32 and SPEAR-64, respectively). The performance of SPEAR-64 is
higher than the baseline superscalar architecture in 8 benchmarks; note that the
baseline superscalar has a four times larger issue queue. On average, SPEAR-64
achieves a 4.7% improvement compared to superscalar-256. In fact, the average
performance of SPEAR-32 over 12 benchmarks reaches 98.1% of the baseline
performance even with one eighth of queue size.

Fig. 6 shows the effectiveness of latency hiding for each architecture model.
Compared to the latency hiding of the perfect d-load case, the latency hiding
of each architecture model has been calculated. In the three benchmarks (nbh,
pointer, and ray), the SPEAR-128 achieves more than 90% of latency hiding
compared to the perfect d-load prefetching. On an average over twelve bench-
marks, SPEAR-128 hides delinquent load latency up to 59.9% of time.

Regarding the smaller queue configurations, the SPEAR-64 configuration
hides 35.5% of the delinquent load latency compared to the perfect d-load re-
sults. SPEAR-32 only hides 9.5% of the delinquent load latency in terms of time,
and superscalar-256 hides 14.3% of the delinquent load latency. However, in half
of the benchmarks, SPEAR-32 shows better performance than the superscalar
model with a 256-entry issue queue. In fact, superscalar-256 shows a more sta-
ble performance than SPEAR-32. This is because the small issue queue size of
SPEAR-32 restricts the parallelism too much in some applications.

5 Conclusions and Future Work

In this paper, we have introduced a low-complexity issue queue design with
our SPEAR approach which implements another separate issue queue for data
prefetching instead of implementing a large issue queue. Compared to a super-
scalar architecture with a 256-entry issue queue, the SPEAR technique achieves
an even higher performance in some benchmarks with issue queue only half the
size. On average, SPEAR with the long fetch queue and the dedicated resource
achieves a 14.4% improvement compared to the baseline superscalar.

As future research, more study on possible clock rates will be investigated.
Quantifying possible clock speed will provide a better evaluation of the actual
performance gain of the proposed architecture. We will also perform a circuit
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level simulation for an accurate delay of the critical path of the SPEAR design.
In addition to that, VLSI implementation issues on the SPEAR including area
estimation and power consumption will be explored.
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Abstract. We describe the analysis of an on-line pattern-recognition algorithm to 
dynamically control the configuration of the L1 data cache of a high-performance 
processor. The microarchitecture achieves higher performance and energy saving 
due to the accommodation of operating frequency, capacity, set-associativity, line 
size, hit latency, energy per access, and chip area to program workload and ILP. 
We show that for the operating frequency 4.5 GHz, the execution time is always 
reduced with an average measure of 12.1% when compared to a non-adaptive 
high-performance processor. Additionally, the energy saving is 2.7% on average, 
and t1he product time-energy is reduced on average by 14.9%. We also consider a 
profile-based reconfiguration of data cache, which allows picking different cache 
configurations but only one can be chosen for each program. Experimental results 
indicate that this approach yields a high percentage of the performance improve-
ment and energy saving achieved by the on-line algorithm. 

1   Introduction 

The effects of caches on processor performance, area cost, energy consumption and 
power dissipation are correlated. Cache memory reduces average memory access 
time, and this is one of the reasons why some new families of processors provide 
features that include an increase of on-chip memory. Although the power density of 
SRAM memory is an order of magnitude smaller than logic [11], a large on-chip 
cache may be responsible for a significant part of the energy and power dissipated by 
the entire processor [12]. Power analysis is currently important since as power density 
of processors rises, die temperature increases and long-term reliability can be com-
promised. Additionally, energy consumption analysis is specially a determining factor 
in choosing a processor for battery-powered systems. 

The average memory access time, power dissipated and energy consumed by the 
on-chip cache depend on the number of hits and misses. However, these numbers 
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change in different applications and even in different execution phases of a single 
process [17]. A processor that fixes its cache organization at design time cannot adapt 
to these changing characteristics. Instead, adaptive processors, depending on the run-
time and/or off-line behavior of a process, may rearrange their microarchitecture to 
increase performance and energy saving ([4], [8]). 

This work describes and evaluates an adaptive L1 data cache designed for high-
performance and energy-efficient processors. It can be used in high-performance 
processors and embedded processors. The total amount of memory used, line size, and 
set-associativity of the cache are reconfigurable after the chip has been fabricated. 
The cache’s hit time (in cycles) and the processor’s power consumption per memory 
access vary depending on the selected cache configuration and on the processor clock 
frequency, which our design allows to vary dynamically.  

This paper studies two types of adaptation methods. Dynamic Adaptation is a 
mechanism that, for each execution interval, selects the cache configuration that tries 
to provide the best performance. We propose the Real Dynamic Adaptation which 
uses a control methodology that is inspired by pattern-recognition algorithms, to tune 
the cache organization with the running application. Measures taken at runtime pro-
vide feedback to decide if the current configuration should be changed and which 
configuration to use instead. The second type of proposed adaptation is called Static 
Adaptation, which determines the best cache configuration for the whole execution of 
a program. It is a software-based and lower cost method, which is inspired by the real 
dynamic adaptation. We demonstrate that the proposed realistic methods can reduce 
both the execution time of the processor and the energy consumption of the on-chip 
cache when compared to non-adaptive high-performance processors. We also evalu-
ate the advantage of our design over other adaptive proposals for the L1 data cache.  

The rest of the paper is organized as follows. Section 2 contains discussion of re-
lated work. Section 3 presents the processor with both adaptive methodologies for the 
L1 data cache. In Section 4, we describe our simulation methodology. In Section 5, 
we present a performance and power analysis of several baseline configurations. Sec-
tion 6 evaluates our control methodology for real systems with dynamic and static 
adaptive caches. Section 7 shows our concluding remarks. 

2   Related Work 

Configuration management algorithms are used to find the configuration that best 
suits the characteristics of a given program. Work on the subject has explored three 
basic properties of these algorithms ([3], [7]): (1) efficiency on detecting a phase 
boundary during execution of a process, (2) the tuning overhead, and (3) the recon-
figuration overhead. Additionally, we have observed that the set of tunable configura-
tions is required to be analyzed as it is one of the keys to success.  

Semeraro et al. have proposed the Multiple Clock Domain (MCD) architecture with 
multiple domains (one of them is the on-chip cache memory) for which frequency and 
voltage can be reduced independently [15]. They maintain the same cache access la-
tency during the voltage/frequency scaling. Balasubramonian et al. proposed an adap-
tive cache that was tuned at every instruction interval [3], with fixed clock frequency 
and varying cache latency (in cycles). Our adaptive L1 data cache proposal differenti-
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ates from [3] in the following ways: we don’t use the same tuneable cache configura-
tions for all programs; we propose a new methodology to know the most efficient con-
figurations for each program; the operating frequency of the processor/cache system can 
be varied; our methodology can be used for a wide range of frequencies and chip areas; 
the runtime overhead is significantly lower and independent of the number of configura-
tions, as we don‘t prove all the possible cache configurations each time a program phase 
change is detected; and finally, our proposal improves performance and reduces energy 
consumption at the same time.  Most of the adaptive techniques that have been proposed 
for energy saving in cache memory reduce energy consumption or the time-energy 
product, but also reduce performance ([2], [3], [10]). 

Off-line profiling and instrumentation of the application can be used to alterna-
tively implement the adaptation control. It provides a more global view of the pro-
gram than with a hardware solution and in some cases can achieve better results [13]. 
Our static adaptation is a control methodology that relies on an off-line profiling 
which determines for each application the cache configuration with the highest per-
formance. This cache configuration is activated just before the application runs. 

3   Adaptive Cache  

We propose an Adaptive L1 Data Cache with Intelligent Closed-Loop Control that is 
integrated into an out-of-order superscalar processor with a two-level memory hierar-
chy, where the L1 data cache may adopt different configurations during runtime. The 
cache can be reconfigured either dynamically (on-line), after each instruction interval, 
or statically (off-line), before a different program gets started. 

3.1   Hardware Support 

The hardware support for the adaptive cache is shown in Fig. 1. Firstly, a few internal 
microarchitectural registers called Sensors are required to measure frequency of instruc-
tion basic blocks (BB Sensor), and furthermore to measure execution time (cycle Sen-
sor). Secondly, a hardware coprocessor (called Copro) integrated in the same chip with 
the instruction processor is required for the on-line control tasks. At the end of each 
instruction interval, Copro reads the BB sensor and decides whether or not to change the 
cache configuration. Additionally, Copro contains two small tables: a Pattern Table 
with data of each program phase and the best cache configuration associated to that 
pattern; and a Configuration Table that contains the necessary control information to 
reconfigure the data cache, including the operating frequency at which the processor 
communicates with the cache memory. Thirdly, the adaptive cache memory is con-
ceived as a set of modular blocks of SRAM-based circuits that are selectively connected 
through the use of a fixed routing architecture with programmable switch-boxes at pos-
sible junction points, in much the same way as a Field-Programmable Gate Array [6]. 
The cache configuration is determined by the content of an integrated configuration 
memory which provides the cache change mechanism. The cache reconfiguration can 
be performed either on-line by the coprocessor or off-line by software. From an archi-
tectural point of view, the reconfigurable cache is characterized in this study by: (a) the 
set of possible cache configurations, in which capacity, set-associativity, line size, load-
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use latency and operating frequency can be individually selected; (b) the reconfiguration 
time; (c) the energy consumed in each hardware reconfiguration; (d) the maximum 
operating frequency of data cache (flimit, the same as processor clock speed); and (e) the 
maximum chip area devoted to data cache (Alimit). Many cache configurations may not 
need to use all available chip area devoted to data cache. The decommissioned portion 
of cache is considered to be powered down. When a different cache configuration is 
picked, all cache lines are invalidated.  

Pattern Table
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Fig. 1. Microarchitecture of the Processor with Adaptive L1 Data Cache 

3.2   Intelligent Control for On-Line Adaptation 

We propose an intelligent control system for dynamically managing the reconfigur-
able cache. Like other approaches used in human-like systems [9], three stages are 
required: Learning, Recognition, and Actuation. The Learning stage is proposed to 
identify patterns/phases of program behavior and associate each of them with a con-
figuration of our adaptive cache that provides the highest performance. Firstly, fin-
gerprints of instruction basic blocks are gathered for small intervals of the program’s 
execution. A fingerprint collects the frequency and size of each executed basic block 
in the form of a Basic Block Vector (BBV) [16]. The BB sensor in our design holds 
the BBV that is being built for the current execution interval. Each BBV represents an 
execution interval in a multidimensional space. Vectors that are close together in that 
space represent intervals with similar behavior, i.e. a program pattern/phase. In a 
second learning step, the K-means clustering algorithm (used in [17] for another pur-
pose) applies by software on BBVs collected from the execution of a large number of 
instruction intervals. The BBV vectors are grouped into a set of clusters called “Sim-
Point (SP) Classes”, where each SP class represents a different program pat-
tern/phase. The task of identifying these SP classes is performed off-line either by the 
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operating system, compiler, or an independent software layer [7]. In the last learning 
stage, associating each SP class with an optimal cache configuration involves execut-
ing the program and monitoring the times and SP classes of several execution inter-
vals for each cache configuration. This task and the periodic activation of the cache 
reconfiguration are also implemented by software. Since we are assuming that the 
best cache configuration is the same for all the intervals belonging to the same class, 
it is not necessary to execute the full program for every available cache configuration. 
A single program execution will suffice. Since an SP class should be composed of 
many intervals, the learning time is small in comparison with the total execution time. 
Additional executions of the same application amortize the learning time overhead. 
Each entry in the Pattern Table contains an association between the set of close BBV 
vectors of an SP class and a cache configuration.  

The Recognition stage is active on-line for the whole program execution. It detects 
if the current cache configuration does not provide the highest performance for the 
running program pattern/phase, and determines what different cache configuration 
should be used instead. The coprocessor performs the recognition task by firstly read-
ing the BBV vector from the BB sensor after each instruction interval. Next, the vec-
tor position in the representation space used in the learning stage makes it possible to 
recognize the SP class of the interval. The recognition stage can be executed in paral-
lel with the instruction flow and does not modify the critical execution path. So, this 
control stage does not provide performance degradation. The number of clock cycles 
to determine both the SP class of the previous instruction interval and whether the 
cache configuration requires to be changed depends on the execution time of each 
interval. This means that for example a processor with maximum IPC equal to 2 must 
execute the recognition phase of a 105 instruction interval in at most 5 104 cycles.  

The Actuation stage is activated by the coprocessor when the SP classes of three con-
secutive instruction intervals are assigned to the same cache configuration and this con-
figuration is different from the current one. When an actuation is fired, the instruction 
flow is stalled and the appropriate entry in the configuration table is read to obtain the 
data required for the reconfiguration process, including the operating frequency. After 
reconfiguring the hardware, the instruction flow is restarted. When a different program 
gets started, the pattern and configuration tables are previously updated with the infor-
mation derived from the respective learning stage, and the internal registers of Copro 
with the SP classes of recent instructions intervals are cleared.  

The Recognition and Actuation stages provide a closed-loop control mechanism 
since the actuation stage changes the cache configuration when this is recognized not 
to provide the highest performance for the current program phase. The actuation stage 
requires flushing of the cache contents, and introduces an overhead. It is dependent on 
the reconfigurable technology and we assume that each cache reconfiguration takes 1 
µs and consumes 5 µJ. However, since actuations are fairly infrequent, this overhead 
only very slightly reduces performance. So, our control policy adds minimum over-
head to the processor execution when the program enters different phases. 

3.3   Static Adaptation 

In the type of adaptation called Static Adaptation, the program’s phase behaviour is 
not considered. For each program, the configuration of the cache memory and clock 
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frequency can be different but is not changed during its run-time. This is done by 
software in two phases: Learning and Actuation. The Learning stage is executed ei-
ther during a profiling time or when the application is running normally. The software 
calculates the performance from the measures made by the cycle sensor after a long 
interval of retired instructions. This task is repeated for each available cache configu-
ration. After that, each program is associated with the cache configuration that pro-
vides the highest performance. In the Actuation stage, this configuration is picked and 
the hardware is reconfigured before running the program. 

4   Experimental Methodology  

This section describes the experimental methodology used to evaluate our proposals. 
We have used the Simplescalar-Alpha-3.0 tool set [5] to generate the dynamic instruc-
tion trace of the first 2 billion instructions for some programs of the SPEC benchmark 
suites. Table 1 shows the selected benchmarks and their inputs (Alpha ISA, cc DEC 
5.9, –O4). These programs were chosen to demonstrate how our proposed hard-
ware/software methodology can outperform both highly efficient non-adaptive ap-
proaches and other adaptive systems on SPEC benchmarks, and additionally, because 
they represent different program domains (integer, floating-point, and multimedia). 
Accurate cycle-by-cycle simulation was performed using KScalar [14], a CPU simu-
lator based on Simplescalar, to subsequently calculate for each available L1 data 
cache configuration the execution time, energy consumption, power dissipation and 
product time-energy during each instruction interval. Table 2 lists the parameters used 
for the simulated processor. The standard SimPoint-1.1 Toolkit [16] was used to extract 
 

Table 1. Selected SPEC benchmarks 

Benchmark input SPEC Benchmark input SPEC Benchmark input SPEC 
bzip source int00 parser Ref. int00 mgrid Ref. fp00 
eon cook int00 facerec Ref. fp00 ijpeg Ref. int95 
gcc 200 int00 lucas Ref. fp00 mcf Ref. int00 
gzip graphic int00       

Table 2. Microarchitecture parameters for the cycle-accurate simulations 

General Out-of-Order Microarchitecture Adaptive L1 Data Cache 
Up to 8 instructions renamed, dispatched, issued and 

retired per cycle 
Fetch Queue: 16 instructions 

Branch Predictor: perfect. Issue Queue: 48 instructions 
Reorder Buffer: 256 instructions 
Operation latencies like Pentium 4 

Load/Store Queues:  64/32 instructions 
I-Cache: perfect, 2-cycle load-use latency 

L2-Cache: perfect, 4.6 ns access time  (load-use latency 
depends on operating frequency, f) 

L1-L2 interface: 16GB/s 

Set-Associativity: 1-, 2-, 4-way, full 
associative 

Size: 1KB, 2KB, .., 128KB 
Line Size: 8, … , 64 bytes 

2 read/write ports 
Perfect memory disambiguation 

Store to Load forwarding 
Load-use Latency: 1, 2, 3, 4 clock 

cycles (depends on cache organization 
and operating frequency, f) 
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BBV vectors and classify execution intervals into simpoint (SP) classes. Benchmark 
traces were analyzed using intervals of 105 instructions per 1 billion instructions exe-
cuted, after a warming-up of 1 billion instructions. We also used CACTI-3.2 [18] to 
estimate the access time (Taccess), energy consumed in each memory access, and chip 
area of each L1 data cache organization, for a CMOS technology with λ = 100 nm. 
CACTI was conceived for on-chip caches whose organization is determined in design-
time. However, its results are pessimistic when compared with the cache circuits that 
regularly are presented at the IEEE ISSCC conferences [1]. So, we have considered that 
the values provided by CACTI characterize to cache configurations of our adaptive 
cache memory. Additionally, we reduced the access times and energy consumptions of 
the baseline configurations (described below) that were predicted by CACTI by 5% and 
10% respectively. To relate the cache load-use latency in cycles (n) with the operating 
frequency of the cache and processor (f), we use the equation: f = n/Taccess.  

Our experiments consider cache configurations with different operating frequen-
cies (f), and then different load-use latencies (n), and requiring a variable amount of 
chip area (A). To make fair comparisons, we set up a maximum frequency (flimit) 
and maximum chip area available for the data cache (Alimit). We have performed 
simulations exploring the design space of 48 different initial conditions 
(flimit,Alimit) for the microarchitecture design: flimit={1, 1.5, .., 4.5 GHz}, 
Alimit={0.5, 1, .., 3 mm2}. These initial conditions restrict the number of available 
cache organizations to those that achieve the following restrictions: f flimit and 
A Alimit (from 11 tunable cache configurations for flimit= 1 GHz and Alimit= 0.5 
mm2, to 322 for flimit= 4.5 GHz and Alimit= 3 mm2). In this paper, all the results 
reported consider Alimit=1.5 mm2.  

This paper reports results for four architectural metrics: execution time, energy 
consumption of the L1 data cache, power dissipation (obtained by dividing the energy 
consumption by the execution time), and time-energy product. The negligible energy 
consumed by sensors and the tables integrated into the coprocessor were not consid-
ered since they are physically very small. 

5   Reference Configurations 

This section describes four reference configurations used in evaluating performance 
and energy consumption. The first configuration is called Perfect Dynamic Adapta-
tion and is an ideal mechanism that for each instruction interval uses future knowl-
edge to select the cache configuration that provides the highest performance.  

One of the conventional non-adaptive microarchitectures that we used as baseline 
design to estimate the potential of perfect dynamic cache adaptation is similar to that 
used by Balasubramonian et al. to evaluate their proposal of adaptive memory hierar-
chy [3]. The processor is as described in Table 2. The L1 data cache has 256 KB, 64-
byte lines, is direct-mapped, has two read/write ports and a load-use latency of 2 
clock cycles. CACTI predicts (λ=100 nm) that its maximum operating frequency is 
1.44 GHz, its energy consumption is 0.72 nJ per access, and its chip area is 8 mm2. 
We assume 15-cycle load-use latency for the perfect L2 cache, and an energy cost of 
1.83 nJ per L1 miss. In order to make a fair comparison in a first experiment, the 



370 D. Benítez et al. 

 

clock speed of the perfect dynamic adaptation was set to flimit= 1.44 GHz. However, 
following the trend of current high performance processors, the chip area of the L1 
data cache was limited to Alimit= 1.5 mm2 (81% less chip area than baseline’s L1 
data cache). So, the largest capacity explored in Perfect Adaptation was 32 KB. 

We also evaluated a third reference configuration called Average-Base. It is a non-
adaptive microarchitecture with the L1 data cache configuration that provides the best 
performance of the second 1 billion instructions interval of all the benchmarks. Re-
sults presented in this section for the average-base configuration also assume flimit = 
1.44 GHz and Alimit = 1.5 mm2. In this case, the selected reference configuration 
has a capacity of 32 KB, is direct-mapped, its line size is 8 bytes, load latency is 1 
clock cycle, and the load-use latency of the perfect L2 cache was 7 clock cycles. 

We evaluated a fourth type of reference configuration called Adaptive-Base. It con-
sists of an adaptive L1 data cache with fixed clock speed (f=1.44GHz), and varying 
cache latency and energy consumption that resemble the proposal of Balasubramo-
nian et al. [3]. The differences are that we simulate inclusive caches instead of exclu-
sive caches, our design has an 8-way superscalar core, and we consider perfect branch 
prediction, perfect L2 cache and 15 cycles for L1 miss latency.  

As can be seen in Fig. 2, Perfect Dynamic Adaptation achieves on average a per-
formance improvement of 15.9%, energy reduction of 68.4%, power reduction of 
59.7%, and time-energy reduction of 74.6% with respect to baseline system. The 
average-base configuration achieves on average a performance improvement of 
11.5%, energy reduction of 65.8%, power reduction of 61.4%, and time-energy reduc-
tion of 76.1% with respect to baseline system. And the adaptive-base configuration 
only achieves a 4.4% performance improvement with respect to baseline system. 
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Fig. 2. Improvement of execution time, power dissipation, energy consumption and time-
energy of three reference configurations with respect to baseline for flimit =1.44 GHz. (Note: 
Most of the results for Adaptive-Base system were close to 0%). 
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The design-time conditions influence on the cache configurations with the highest 
performance and/or lowest energy consumptions. This justifies not adopting a unique 
baseline configuration. So, the criteria used in defining the Average-Base system have 
allowed determining baseline configurations for different operating frequencies and 
chip areas. Additionally, they are consistently better than our initial baseline configu-
ration (see Fig. 2). For all these reasons, they provide appropriate levels of compari-
son, and we will use them as our new baseline configurations for the rest of the paper. 

6   Results 

6.1   Real Dynamic Adaptation  

This section evaluates the potential of our Real Adaptive Cache Memory with Intelli-
gent Control. We simulate the learning stage described in Section 3 by combining for 
each 105 instruction interval the caches selected in Perfect Dynamic Adaptation with 
SimPoint (SP) classes of instruction intervals obtained by using SimPoint. Once the 
learning stage has initialized the contents of the pattern tables, the recognition and 
actuation stages of the Real Dynamic Adaptation can be simulated. After the execu-
tion of each instruction interval, the BBV vector provided by the processor core and 
the contents of the pattern table are used to find the corresponding SP class. We used 
different data sets for training (first billion instruction interval) and recognition (sec-
ond billion instruction interval). A reconfiguration is fired only when three consecu-
tive instruction intervals are assigned to the same SP class, and this SP class deter-
mines a cache configuration that is different from the current one. We assume that 
each cache reconfiguration additionally introduces an overhead delay of 1 µs and 
consumes 5 µJ. The number of reconfigurations performed during the simulation 
experiments (flimit= 4.5 GHz, Alimit= 1.5 mm2, 10,000 intervals) oscillated from 0 
(eon) to 846 (gzip) with an average of 278 per interval, i.e. less than 3%. These results 
indicate that the program patterns/phases exhibit high temporal locality, which re-
duces the performance overhead due to hardware reconfiguration. 

Figure 3 compares the results for Real and Perfect Dynamic Adaptation. On aver-
age, the performance improvement achieved by our adaptive processor with intelli-
gent control is 12.1% with respect to the Average-Base configuration. The maximum 
improvement was 28% for mgrid. In spite of the limitation on the number of configu-
rations and the reconfiguration overhead, the Real Dynamic Adaptation processor can 
achieve 78% of the improvement provided by Perfect Dynamic Adaptation. 

Note that, after finalizing the learning phase, the runtime selection of a cache con-
figuration does not require previous tuning of all available microarchitectures before 
the selection of one with the highest performance, as proposed in [3]. Therefore, our 
adaptation control method requires lower overhead for the determination of the stable 
state of the microarchitecture than previously reported methods. 

Energy, power and time-energy reductions for the benchmarks are also shown in 
Figure 3. These results are presented relative to the same average base machine used 
for performance estimations. As can be seen, real adaptation achieves a 2.7% mean 
reduction of energy consumption, a 14.9% mean reduction of time-energy and 
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Fig. 3. Performance and power evaluation for the adaptive processor with closed-loop control 
(Real) and Perfect Cache Adaptation (Perfect) with respect to Average-Base for flimit= 4.5 
GHz and Alimit= 1.5 mm2 (Average-Base={16KB,direct-mapping,8B/line,n=3clks}) 

a power increase of 12%. This phenomenon is mainly due to the frequent selection of 
caches with smaller sizes and lower energy cost per memory access than the average-
base configurations. The dynamic adaptation enables us to increase frequency when 
the size is reduced, while not increasing both the number of hit cycles and CPI. 

6.2   Static Adaptation  

We have simulated the learning stage of static adaptation for each benchmark by 
selecting the cache configuration that provides the best performance during the first 
one billion instructions. The set of initial cache configurations depends on the pair 
“flimit, Alimit” (see Table 2). In the actuation phase, cache is reconfigured with the 
learned configuration which is not changed until the following context switch. Fig. 4 
shows the results of the analysis of static adaptation for the second one billion instruc-
tion, all limit frequencies and Alimit=1.5 mm2. The range of performance improve-
ments with respect to the respective average-base reference configurations is 
(1.1%,9%), 4.8% on average.  The range of power reduction is (-11.4%,17.5%), 2.3% 
on average. The range of energy reduction is (-1.6%,20.7%), 7.4% on average. The 
range of time-energy reduction is (5.9%,23.8%), 11.9% on average.  

For each flimit and Alimit, a small set of configurations was selected in the learn-
ing stage. Contrasting the configurations selected in static adaptation, we observe that 
the variability of the hit latency depends on the limit frequency flimit and limit area 
Alimit as in perfect dynamic adaptation; however, the range is narrower. Static 
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Fig. 4. (a) Execution time reduction, (b) Power reduction, (c) Energy reduction and (d) Time-
Energy reduction, of the adaptive processor with Static Adaptation (Static) and Perfect Dy-
namic Adaptation (Perfect) for eight limit frequencies and Alimit= 1.5 mm2 

adaptation does not require more than two different hit latencies. We additionally 
observe that static adaptation is more efficient than the average-base configurations 
because flimit is exploited in two ways: to perform at a higher operating frequency, 
although the IPC is lower; and to take advantage of the higher frequency to reduce the 
execution time. Both justify why static adaptation achieves more performance than 
the average-base configuration, and dynamic adaptation more than static adaptation. 

Therefore, the potential of the static adaptation of the L1 data cache organization is 
as in real dynamic adaptation, the accommodation of energy per access, area, operat-
ing frequency and hit latency to program workload and ILP parallelism. The reduced 
cost of static adaptation with respect to dynamic adaptation is due to the absence of 
specialized control hardware because cache adaptation is managed by software. How-
ever, the performance of static adaptation is lower than dynamic adaptation because 
the phase behaviour of programs is not exploited. 

7   Conclusions and Future Work 

We have proposed an adaptive L1 data cache, which is managed by an intelligent 
control system. The main contributions are the following. The adaptive data cache: (a) 
improves performance and energy consumption at the same time, (b) achieves a high 
percentage of the improvements that a processor with perfect adaptive cache would 
achieve, with independence of the design-time constrains: operating frequency and 
chip area, (c) is superior to previous and similar approaches, (d) exploits the SimPoint 
mechanism, but applied to a different goal: reduce tuning overhead, (e) can be man-
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aged by two proposed control methodologies: dynamically on-line or statically off-
line. We additionally discovered that high efficiency can be achieved when for each 
benchmark and design-time constrain, the set of preferred cache configurations is 
determined. In future papers, we will describe how our adaptive cache can be tuned to 
other preferred metrics such as power or time-energy instead of performance. 
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Neural Confidence Estimation 
for More Accurate Value Prediction 
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Abstract. Data dependencies between instructions have traditionally limited the 
ability of processors to execute instructions in parallel. Data value predictors 
are used to overcome these dependencies by guessing the outcomes of 
instructions. Because mispredictions can result in a significant performance 
decrease, most data value predictors include a confidence estimator that 
indicates whether a prediction should be used. 

This paper presents a global approach to confidence estimation in which the 
prediction accuracy of previous instructions is used to estimate the confidence 
of the current prediction. Perceptrons are used to identify which past 
instructions affect the accuracy of a prediction and to decide whether the 
prediction is likely to be correct. 

Simulation studies compare this global confidence estimator to the more 
conventional local confidence estimator. Results show that predictors using this 
global confidence estimator tend to predict significantly more instructions and 
incur fewer mispredictions than predictors using existing local confidence 
estimation approaches. 

1   Introduction 

Much research has been done in the area of data value prediction as a means of 
overcoming data dependencies.  The goal of data value prediction is to guess the 
outcome of an instruction before the instruction is actually executed, allowing future 
instructions that depend on its outcome to be executed sooner.  Data value predictors 
are usually designed to look for patterns among the data produced in repeated 
iterations of static instructions.  Accurate prediction can be attained when the repeated 
outcomes of a particular instruction follow easily discernable patterns. 

Accuracy is a major problem with data value prediction.  Even in the most 
advanced data predictors, as many as 30% to 60% of the predictions are incorrect 
[14].  If an instruction is mispredicted and the incorrect prediction is used to execute 
subsequent data dependent instructions, all of those dependent instructions must be 
executed again.  For such instructions, it is typically better not to predict at all than to 
mispredict.  For this reason, most data value predictors include a confidence 
estimator, which determines whether a prediction for a particular instruction is likely 
to be correct or not [1].  If the estimator has high confidence in a prediction, the 
predicted value is used by dependent instructions.  Otherwise, the prediction is 
ignored and dependent instructions wait for the current instruction to be executed. 
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A typical confidence estimator approach tries to determine the accuracy of a 
prediction (an instruction’s predictability) by looking at whether the last several 
predictions for that instruction were correct.  If they were all correct, intuitively the 
next prediction should also be correct.  But if the instruction was recently predicted 
incorrectly, then the new prediction is not trusted. 

This localized approach does not consider the effect that other surrounding 
instructions may have on the instruction being predicted.  Correlations often exist 
between the predictability of different instructions, especially if one instruction is a 
source of data for another [14].  Hence, one instruction’s prediction outcome may be 
correct only if a certain prior instruction’s prediction outcome was correct. 

However, in order to make use of other instructions’ prediction accuracies, one 
must determine which surrounding instructions affect the current instruction.  We 
base our estimator on the perceptron, a simple form of neural network.  A perceptron 
is assigned to each instruction whose outcome needs to be predicted.  Each perceptron 
identifies which past instructions tend to affect the instruction’s prediction 
confidence.  It then uses the prediction accuracies of those past instructions to 
determine a confidence value for the current prediction. 

We have simulated this confidence estimator in conjunction with three different 
data value prediction methods that are commonly used – Last-Value, Stride, and 
Context – and compared it with the conventional “up-down counter” estimator [8].  
Experiments show that our confidence estimator allows predictors to predict 
significantly more data values along with a sizeable increase in accuracy on average. 

This paper is organized as follows: Section 2 discusses how perceptrons can be 
used to uncover predictability relationships.  Section 3 describes how our perceptron-
based confidence estimator works.  Section 4 details our simulation setup and  
presents our simulation results.  Section 5 summarizes the paper’s conclusions. 

2   Theory 

2.1   Related Work 

Lipasti, Wilkerson, and Shen introduced the earliest confidence estimator used in data 
value prediction in [8].  It is comprised of a 2-bit saturating up-down counter that 
chooses between three prediction states: 0 or 1 = “don’t predict”, 2 = “predict”, and 3 
= “constant” (highly predictable).  If a given instruction makes a correct prediction, 
the counter is incremented; otherwise, it is decremented.  Regardless of whether the 
instruction predicts correctly or mispredicts, the counter is not allowed to exceed 3 or 
go under 0.  This approach is used in many other proposed data value predictors 
[1,16] . 

Calder, Reinman, and Tullsen proposed a confidence estimator similar to ours that 
uses the history of whether past value predictions were correct to index a table of 
saturating counters which make the confidence decision [2].  They likewise found a 
very large increase in speedup using this estimator, but they found their estimator to 
be unfeasible to implement because of the immense size of their counter table, which 
grows exponentially with longer histories are considered.  We overcome this problem 
with perceptrons. 
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Jimenez and Lin introduced neural networks to the similar field of branch 
prediction in [4,5,6].  They used perceptrons to predict whether a conditional branch 
instruction in a program will be taken or not based on the results of prior branch 
instructions.  Their results found that their perceptron branch predictor significantly 
outperforms conventional branch prediction techniques. 

2.2   Predictability Relationships 

Most prior work in confidence estimation for value prediction only considers local 
prediction history, in which only the past prediction outcomes for the current 
instruction are used [1,8,16].  Another source of data for confidence estimation can be 
the prediction outcomes of other instructions.  For example, consider two instructions 
run sequentially: 

 1) (MUL) A = B * C 

 2) (ADD) D = A + A 

If no changes are made to register A between the two instructions, a prediction 
outcome for the output of instruction 2 is likely to be correct only if the prediction 
outcome for the output of instruction 1 is correct.  There is clearly a predictability 
relationship between the two instructions. 

Of course, predictability relationships are not always so precise.  An instruction’s 
predictability could depend on the predictability of several previous instructions, and 
control flow changes due to branches could change which preceding instructions 
affect the current instruction’s predictability [15]. 

Table 1 quantifies the commonness of predictability relationships.  It shows the 
number of instructions whose prediction accuracy is always the same as the prediction 
accuracy of at least one of its previous instructions.  This study is meant to indicate 
whether the global prediction history gives enough information to reliably estimate a 
prediction’s confidence.  If an instruction always predicts correctly when a particular 
instruction before it predicts correctly, and mispredicts when that past instruction 
mispredicts, then a predictability relationship exists between the two instructions.  In 
this case, a confidence estimator can base its outcome on the accuracy of that past 
instruction’s predictor.  A global confidence estimator ought to perform well if this is 
the case for a significant percentage of instructions. 

This simulation study was done using three value predictor approaches: stride, last-
value, and context.  All instructions with a single destination register that are executed 
100 times or more are considered.  For each static instruction, we keep track of the 
prediction correctness outcomes of the 256 instructions preceding it.  Once 500 
million dynamic instructions are executed, we look at each static instruction’s 
prediction correctness results.  If an instruction has a particular past instruction that 
always predicted correctly when it predicts correctly and mispredicted when it 
mispredicts, it is tallied under 100% dependent.  If an instruction has a past 
instruction that predicted correctly only 99%, 95%, or 90% of the time when it 
predicts correctly, it is tallied under 99%, 95%, or 90% dependent, respectively. 

As may be seen in the 4th row of Table 1, the stride prediction correctness of 
79.12% of instructions depend entirely on some previous dynamic instruction’s stride 
prediction correctness 90% of the time.  For last-value, this is true for 77.16% of 
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instructions, and for context 94.05% of instructions.  These are significant 
percentages, considering that the study only considers account predictability 
dependence on a single previous instruction, rather than predictability dependence on 
the outcomes of combinations of previous instructions.  It suggests that confidence 
estimation based on the outcomes of other instructions should be successful. 

There are several possible advantages of using this global approach to confidence 
estimation over traditional methods that use outcomes from repeated instances of 
static instructions.  One advantage is accuracy.  If a particular instruction that was 
considered predictable suddenly becomes unpredictable, all of its dependent 
instructions may also become unpredictable.  If the dependent instructions determine 
confidence only from their own past instances, they might choose to predict and 
would suffer a series of mispredictions.  However, if the dependent instructions 
determine their confidence from the instruction that became unpredictable, they 
would choose not to predict, and fewer cycles would be lost due to mispredictions.   

Another advantage is in warm-up.  If a predictor uses a confidence estimator based 
on outcomes for a particular static instruction, the instruction must be executed 
several times before confidence can be established.  However, if the confidence 
estimator bases its outcomes on other instructions, an instruction only needs to be 
executed enough times to choose which other instructions affect it.  Consequently, 
less time elapses before accurate predictions can be made. 

Table 1. Prevalence of predictability relationships in each benchmark 

 Stride Context Last-Value 
100% 39.41% 15.82% 40.57% 
99% 56.49% 87.48% 57.36% 
95% 70.76% 91.22% 68.99% 
90% 79.12% 94.05% 77.16% 

2.3   Perceptrons 

To uncover predictability dependencies, we use a perceptron based confidence 
estimator.  A perceptron is a simple neural network consisting of an adder, a threshold 
function, and a set of weights implemented by saturating signed integer counters.  The 
perceptron uses these components to guess an output based on a series of inputs.  
Given a set of input bits, it computes the dot product of the inputs and the weights, 
and compares the result to a threshold value, typically 0 (an extra weight is hardwired 
to an input of 1 to provide a bias).  If the result is greater than 0, the perceptron 
returns “True”; otherwise it returns “False.” 

The perceptron determines the values of its weights by learning.  When a correct 
value is found, the perceptron is “trained.”  That is, an error value is computed by the 
difference between the training value and the perceptron output.  This error value is 
multiplied by each input bit and is added to the corresponding weight.  In this way, 
each weight is adjusted so that the desired output is realized from the particular input 
combination.   

When applied to confidence estimation, each weight value determines the 
relationship between a particular past instruction and the current instruction.  If a 



380 M. Black and M. Franklin 

 

weight value is positive and large, the past instruction’s predictability tends to have a 
direct effect on the current instruction’s predictability.  That is to say, the current 
instruction’s data predictor tends to predict correctly only when the past instruction’s 
data predictor predicted correctly.  If the weight value is negative and large, the past 
instruction’s predictability effect is inverse: the current instruction’s data predictor 
tends to predict correctly only when the past instruction mispredicted.  If the weight 
value’s magnitude is small, the past instruction has been found to have little effect on 
the current instruction. 

3   Confidence Estimator Organization 

Figure 1 shows a block diagram of our proposed confidence estimator.  It consists of 
two parts: a table of predictors and perceptrons, and the Global Prediction History 
(GPH).  The GPH contains information on whether the predictions for previous 
dynamic instructions were correct.  It acts as a shift register, in which the prediction 
outcome (correct / incorrect) is shifted in when each instruction completes. 

 

Fig. 1. Block diagram of the prediction architecture 

Our prediction system works as follows:  The instruction address is used to select a 
table entry.  This table entry consists of a value predictor, which predicts a value, and 
a perceptron.  The perceptron takes the GPH as its input and uses its weights to 
determine whether its output is “predict” or “don’t predict”.  If the output is “predict”, 
the value predictor outcome is used as a prediction; otherwise the prediction is not 
used.  Regardless of the perceptron outcome, when the actual result of the instruction 
is known, it is compared against the prediction.  If they match, a 1 (predicted 
correctly) is shifted into the GPH at the instruction’s completion stage.  Otherwise, a 
0 (predicted incorrectly) is shifted into the GPH.   The difference between the actual 
result and the prediction is then used to adjust the perceptron weights and train the 
perceptron. 
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3.1   Hardware Requirements 

The principal hardware cost of our perceptron estimator is storage space for the GPH 
and perceptron weights.  The space required is proportional to the number of dynamic 
instructions considered and the size of the table.  Each additional dynamic instruction 
in the history requires one extra entry in the GPH, costing 1 bit of storage, and one 
extra weight for each table entry.  We find that typically a minimum of 6 bits but 
never more than 9 bits are needed for each weight. 

Because an input bit is interpreted only as -1 or 1, the product between the input bit 
and its corresponding weight can be implemented simply by using the input bit to 
choose whether to invert the sign of the weight.  These products are summed together, 
but by using a threshold of 0, only the sign of the total sum is used as the output.  A 
threshold of 0 can be attained without any cost to the performance of the perceptron 
by including a bias weight: an extra input weight with a fixed input value of 1.  This 
additional bias weight mathematically replaces the threshold [11]. 

4   Experimental Results 

4.1   Experimentation Methodology 

We performed our measurements on the PISA instruction set architecture using the 
SimpleScalar 2.0a tool set.  The data value predictor considers every instruction that 
has a single destination register.   Predictions are made after each instruction executes 
and the actual instruction output is immediately used to train the predictor.  For 
benchmarks, we use eight programs from the SPEC2000 integer suite.  Each program 
is run for 500 million instructions. 

Our study is performed using three types of predictors: Last-Value, Stride, and 
Context.  The Last-Value predictor simply returns the value that an instruction 
produced the last time it was executed.  The Stride predictor computes the difference 
between the last two results of an instruction, and adds it to the most recent result to 
predict a value.  The Context predictor uses the most recent four data values produced 
by an instruction to index a pattern table of up-down counters [16].  The counters 
choose one of the four data values to be the prediction.  Each of the three predictors 
includes a table indexed by the instruction address.  We use 16k table entries and a 
direct-map organization for the table. 

The data value predictors can produce one of three outcomes: PCORRECT (prediction 
made, outcome correct), PINCORRECT (prediction made, outcome incorrect), and N (no 
prediction made).  We base our metrics on the metrics used in [1].  Coverage is 
computed as the number of predictions (PCORRECT + PINCORRECT) divided by the total 
opportunities for predictions (N+ PCORRECT + PINCORRECT).  Accuracy is computed as 
the number of correct predictions (PCORRECT) divided by the total number of 
predictions (PCORRECT + PINCORRECT).  Neither of these metrics alone is enough to 
compare predictors.  Accuracy is important, since a low accuracy means that many 
cycles are wasted due to mispredictions.  Coverage is also important in comparing 
predictors as an indicator of how much of the predictability potential is realized by the 
predictor.  A good predictor must have both a high accuracy and a high coverage. 
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We use the saturating up-down counter as our baseline confidence estimator 
because of its simplicity and because it is frequently used in other proposed data value 
predictors.  As mentioned earlier, an up-down counter estimates confidence based on 
the prediction history of a given static instruction.  It is incremented if the predictor’s 
outcome is correct, up to a maximum count, and decremented if the outcome is 
incorrect, down to 0.  In our implementation, the up-down counter estimator only 
chooses to predict if the count is at the maximum. 

An important consideration we faced in choosing an up-down counter is the size of 
its counting range.  The range size tends to create a tradeoff between coverage and 
accuracy.  An up-down counter estimator with a large range tends to have poor 
coverage because it requires many correct predictions before it becomes confident.  
However, because of the many correct predictions, its accuracy tends to be excellent.  
On the other hand, an up-down counter estimator with a small range has good 
coverage because it requires only a few correct predictions before it chooses to 
predict.  By the same token, however, its accuracy is terrible. 

For our baseline tests we used three up-down counters.  Counter-2 counts between 
0 and 1, where 1 is considered “predict” and 0 “don’t predict.”  Counter-4 counts 
from 0 to 3, predicting only on 3.  Counter-7 counts from 0 to 6 and predictions are 
only made on 6.   In our benchmark comparison we use Counter-4 for comparing 
results because it balances coverage and accuracy.  We tested our perceptron 
confidence estimator with three GPH sizes.  Neural-4 considers the 4 previous 
prediction outcomes, Neural-16 the 16 previous outcomes, and Neural-256 the 256 
previous outcomes.  We use Neural-256 in our benchmark comparison because it best 
shows the potential. 

4.2   Predictability of All Single Destination Register Instructions 

Table 2 shows the results of Counter-4 and Neural-256 tested on Last-Value, Stride, 
and Context, respectively, across the eight benchmarks, where predictions are made 
for every instruction that has a single destination register.  In Stride and Last-Value 
the perceptron estimator shows both improved coverage and accuracy for every 
benchmark.  Stride’s coverage improves from as low as 4.6% for bzip2 to as high as 
10.6% for perlbmk, while its accuracy improves from as low as 0.05% for bzip2 to 
as high as 6.1% for perlbmk.  Last-Value’s coverage improves from as low as 4.0% 
for mcf to as high as 14.4% for perlbmk, while its accuracy improves from as low as 
1.6% for bzip2 to as high as 10.0% for perlbmk.  On average, the coverage increases 
by 7.8% for Stride and 9.1% for Last-Value, and the accuracy increases by 2.8% for 
Stride and 5.5% for Last-Value. 

Context shows less improvement.  The coverage is generally higher for the 
perceptron estimator, improving as much as 12.6% for perlbmk; however, it is 2.3% 
lower for twolf.  On average the perceptron estimator’s coverage is 5.7% higher than 
that of the up-down counter estimator.  The accuracy, however, is actually lower for 
the perceptron estimator, decreasing by 2.1% on average.  While the perceptron 
estimator shows a 2.9% accuracy improvement for perlbmk, the accuracy falls for 
four of the benchmarks, by as much as 10.0% for gzip.  Because Context uses more 
complex predictability functions than Stride or Last-Value, it may be expected that 
the Context results can be improved when more complex neural network are used. 
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Table 2. Simulation results with perceptron and up-down counter 

  Stride  Last-Val  Context  
  Coverage Accuracy Coverage Accuracy Coverage Accuracy 
bzip2 counter 47.30% 97.16% 36.70% 94.88% 29.68% 96.79% 
 neural 51.93% 97.21% 42.66% 96.47% 33.04% 93.29% 
gcc counter 28.36% 92.20% 31.59% 87.22% 25.38% 88.43% 
 neural 38.60% 95.42% 44.45% 96.20% 35.16% 89.11% 
gzip counter 28.72% 92.47% 20.23% 87.94% 10.29% 90.96% 
 neural 34.61% 93.69% 27.12% 91.51% 14.78% 80.96% 
mcf counter 54.83% 97.48% 37.55% 96.12% 34.28% 96.08% 
 neural 60.16% 99.65% 41.64% 99.63% 38.80% 98.47% 
perlbmk counter 20.19% 92.31% 23.00% 89.06% 19.53% 90.42% 
 neural 30.82% 98.35% 37.38% 99.08% 32.06% 93.31% 
twolf counter 33.51% 91.05% 30.81% 87.77% 29.68% 96.79% 
 neural 42.29% 94.63% 39.92% 93.83% 27.43% 90.00% 
vortex counter 42.96% 97.26% 43.35% 94.45% 38.49% 97.00% 
 neural 52.10% 99.50% 55.17% 99.61% 47.28% 96.27% 
vpr counter 37.32% 92.66% 36.12% 91.17% 23.90% 93.06% 
 neural 45.37% 96.58% 43.99% 96.16% 28.62% 91.57% 
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Fig. 2. Simulation results for varying estimator sizes 
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4.3   Sensitivity to History Size 

In Figure 2 we show how the perceptron estimator is affected by its GPH size and the 
up-down counters by their counting range.  The results are based on the average of the 
benchmarks.  

The perceptron estimator’s coverage does not change more than 0.7% when the 
number of previous prediction outcomes is varied.  This is a result of the perceptron’s 
bias weight balancing the output.  The bias weight in a perceptron acts a threshold 
control for the perceptrons.  If the perceptron outputs “don’t predict” too often, it 
lowers the threshold to increase the number of “predict” outputs.  Likewise, it raises 
the threshold if the perceptron frequently outputs “predict”.  This has the effect of 
keeping the coverage constant at the expense of accuracy. 

As can be expected, the accuracy shows a marked increase when more previous 
instructions are considered.  It grows by as much as 7.0% when 256 instead of 4 
previous prediction outcomes are considered.  With more previous instructions, the 
perceptron is likely to find a more accurate combination of previous prediction 
outcomes to determine the current prediction’s accuracy. 

We compare these to the three up-down counters, which exhibit a coverage-accuracy 
tradeoff.  For Last-Value and Stride, the perceptron estimators have approximately the 
same accuracy as the largest counter and the same coverage as the smallest counter.  
However, their coverage is 12.7% to 14.4% better than the large counter’s coverage, and 
their accuracy is 3.7% to 15.0% better than the small counter’s accuracy.  Counter-4 tends 
to slightly outperform the perceptron estimators for Context, as described above.  Counter 
2 and Counter 7 outperform the perceptron estimators in coverage and accuracy, 
respectively, but Counter 2 suffers greatly in accuracy and Counter 7 in coverage. 

5   Conclusions 

In this paper we presented a perceptron-based confidence estimator for data value 
prediction that makes use of correlations between the predictability of different 
instructions.  Perceptrons are used to identify for each instruction which other 
instructions affect its prediction confidence.  The confidence estimator uses this 
information to raise the accuracy of value prediction. 

Simulation results show that the perceptron confidence estimator generally offers 
significant improvement over the conventional up-down counter confidence estimator.  
Stride and Last-Value predictors using a Neural-256 confidence estimator can predict 
7.8% and 9.1% more instructions, respectively, with a 2.8% and 5.5% accuracy increase 
on the average than with a 2-bit up-down counter estimator.  The Context predictor 
using the Neural-256 confidence estimator predicts 5.7% more instructions than with 
the Counter-4 up-down counter but suffers a 2.1% decrease in accuracy. 
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Abstract. We explore the opportunities offered by current and forthcoming
VLSI technologies to on-chip multiprocessing for Quantum Chromo Dynamics
(QCD), a computational grand challenge for which over half a dozen specialized
machines have been developed over the last two decades. Based on a careful study
of the information exchange requirements of QCD both across the network and
within the memory system, we derive the optimal partition of die area between
storage and functional units. We show that a scalable chip organization holds the
promise to deliver from hundreds to thousands flop per cycle as VLSI feature size
scales down from 90 nm to 20 nm, over the next dozen years.

1 Introduction

The high-end supercomputers of the near future will consist of many thousands of pro-
cessing chips, each featuring billions of transistors [32]. Yet, in today’s general purpose
microprocessors, only a small percentage of the available transistors goes into the func-
tional units that actually process data, while the vast majority goes into memory and
into the circuitry that orchestrates the execution of instructions. The main reason can
be traced to a major bottleneck in computing systems stemming from the limited band-
width available across the chip boundary. Thus, although a chip could host hundreds
of functional units, it would generally be difficult to feed them with data so to attain a
significant fraction of peak performance.

The impact of the chip I/O bottleneck varies with the application, critically depend-
ing upon its computation/communication ratio. For specialized domains, chip organi-
zations with many functional units are receiving growing attention. Announced in 2005
are products such as the IBM/Sony/Toshiba Cell capable of 64 flop/cycle at about 4
GHz [24] and the ClearSpeed CSX600, capable of 192 flop/cycle, at 250MHz [16].
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A number of research projects have also been active for a few years, such as Blue-
Gene/Cyclops (64 flop/cycle at 500 MHz) [5] and TRIPS (targeting 5 Tflops in a 35 nm
VLSI implementation) [36].

In this paper, we explore whether aggressive on-chip multiprocessing is a viable av-
enue for supercomputing in the domain of Quantum Chromo Dynamics (QCD). QCD
is the quantum field theory of the strong interaction explaining the structure of the
hadrons, a family of particles including the proton and the neutron, as composites of
“elementary” entities known as quarks, which interact by exchanging “colored” gluons.
While widely believed to be the correct theory of the strong interaction, QCD is almost
intractable computationally and it is regarded as a computational grand challenge [18].
Several specialized QCD computers have been designed, built, and successfully oper-
ated over the last two decades (see [28] for an extensive coverage). A sample of such
machines includes the sequel of APE computers, developed in Europe [4,8,33,34,35],
the CP-PACS computer, developed in Japan mainly for QCD simulations [23], and sev-
eral similar efforts in the United States starting by the pioneering GF11 supercomputer
[9] and continuing with the QCDSP [27] and QCDOC [15] projects.

Asymptotically, QCD computations are constrained by chip I/O bandwidth. In fact,
the four dimensional nature of QCD lattices leads to communication requirements that
scale with the (3/4)-th power of the computation, whereas in a (planar) chip I/O band-
width only scales with the (1/2)-th power of the area. Suitable adaptations of arguments
developed in [29,19] show that, if chip area were to grow arbitrarily large, only a van-
ishing fraction of it would be occupied by effectively utilized functional units1. In this
paper, we investigate whether and when, with the evolving VLSI technology, increas-
ing chip size (in square feature sizes) will yield diminishing returns2. We reach the
following encouraging conclusions regarding QCD machines:

– Current (90 nm) VLSI technology is far from the asymptotic chip I/O bottleneck,
which will not be severe even for a feature size of 20 nm, to become feasible
around 2017 according to the International Technology Roadmap for Semiconduc-
tors (ITRS, 2004 update).

– It is currently feasible to realize QCD machines with a few thousands nodes, each
containing a processing chip with 8-16 MByte of on-chip (embedded DRAM)
memory and achieving 100-150 flop/cycle.

– A uniformly scalable machine organization can harness the technological potential
becoming available as feature size shrinks down to 20 nm, presumably over the
next 12 years. At 20 nm, a few Kflop/cycle will be achievable on one chip.

Even at modest frequencies, say 20% of state of art, the above figures appear attractive3.
The reminder of this paper is organized as follows. In Section 2, we introduce the

notion of information exchange of a computation, modeled by a function I(n, m). This
is the number of bits that a subsystem equipped with m bits of memory exchanges with

1 Three dimensional integration would postpone, but not escape the same conclusion.
2 Beyond this point, further increases of computational power may still be achievable, by in-

creasing clock frequency and by assembling systems with larger numbers of chips.
3 ITRS on-chip local clock rates are 5.2 GHz for 2005, 39.7 GHz for 2016, and 53.2 GHz for

2018.
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the rest of the system when handling a subcomputaton of size n. We also consider the
number w(n) of operations for the same subcomputation. In terms of these quantities,
we derive the optimal split of the available area between memory and functional units.
In Section 3, we develop a careful study of I(n, m) for the computation of the Dirac op-
erator, which takes nearly 90% of running time for a typical QCD simulation. The main
contribution of this section is the identification of schedules that reduce I(n, m). The
analysis precisely determines constant factors to enable finite-horizon considerations,
in addition to asymptotic ones. In Section 4, we evaluate the potential of QCD machines
realizable in current and future technologies, reaching the conclusions outlined above.

2 Methodology for Memory-Communication-Processing Tradeoffs

We focus on the space of multiprocessor machines realized as networks of nodes, in-
terconnected according to a suitable topology. Each node consists of a processing chip,
equipped with some on-chip memory and directly connected both to a local off-chip
memory and to the processing chips of the neighbouring nodes, in the given topology.

The key result of this section is a characterization of the optimal partition of the
node area between memory and functional units, in terms of the computational require-
ments of the target application, the number of nodes of the multiprocessor, and the area
of the processing chip at a node. We begin by introducing a number of quantities related
to machine, to technology, and target computation.

Machine Parameters. We characterize the machine through the following quantities:
the number P of processing nodes; the number F of operations per cycle that can be
executed at a node; the number m of on-chip memory bits; and the bandwidth b, in bits
per cycle, between the processing chip and the rest of the system (both incoming and
outgoing). This bandwidth is partitioned as b = blc + bnb where blc is the bandwidth
with the local off-chip memory and bnb is the aggregate bandwidth between the chip
and its neighbors.

Technology Parameters. We consider the following parameters of the underlying VLSI
technology(whosevaluesand their scalingwithVLSIfeaturesizewillbediscussed inSec-
tion 4): the area A of the processing chip; the area AFof one functional unit, pipelinable at
one operation per cycle (this parameter clearly depends also on the adopted logic design);
and the area Am required for the storage of one memory bit on the processing chip.

Computation Requirements. The target computation is characterized by the following
quantities, some of which assume a specific mapping onto the machine under consider-
ation (an accurate analysis of these quantities for QCD computations will be developed
in Section 3): the input size N (in QCD, the number of lattice points); the input size per
node n = N/P ; the word length Lw, in bits; the total work or number of operations
W (N); the work per node w(n) = nW (N)/N (assuming, as reasonable, even dis-
tribution of work among the processing nodes); and the information exchange in bits,
I(n, m), between the processing chip and the rest of the system. The latter quantity can
be decomposed as I(n, m) = Ilc(n, m) + Inb(n, m), where the two terms account for
exchanges with the off-chip memory and near neighbors, respectively.
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Under ideal conditions (i.e., all resources fully used at all times) execution time is

T id(n, m) = max{w(n)/F, I(n, m)/b} . (1)

In order to minimize T id we would like to increase both F and m, the latter be-
cause more storage on the processing chip will reduce the exchange with local off-chip
memory, hence I(n, m). Given the total area budget A, the question then is how to best
partition it between memory and functional units. In summary, we have the following
optimization problem:

min max{w(n)/F, I(n, m)/b} (2)

s.t. AFF + Amm ≤ ηA , (3)

where η is the fraction of the chip area actually used for functional units and memory (as
opposed to control logic, instruction caches, intra-chip communication, etc.) Estimates
of η require further assumptions about chip organization; in Section 4, we provide such
estimates for QCD. It is straightforward to argue that, at the optimal point for (2, 3),
the two terms in the objective function (2) must be equal, and constraint (3) must be
satisfied with equality, so that:

w(n)/F = I(n, m)/b , (4)

AFF + Amm = ηA . (5)

Combining the two above equations yields

AFw(n)b/I(n, m) + Amm = ηA . (6)

If the functions w(n) and I(n, m) are known for the computation, given n and A,
this equation determines a value m∗(n, A) for m. Eq. (4) then provides the number of
functional units as F ∗(n, A) = (ηA −Amm∗(n, A))/AF. Computation time becomes
T id∗(n, A) = w(n)/F ∗(n, A). The values of n and A, which are arbitrary in the pre-
ceding analysis, could be chosen to optimize a suitable cost-performance function.

Remarks on Information Exchange. Information exchange plays a pivotal role in the
methodology outlined above. The analysis of communication has often been developed
by quantifying the information exchanged across a suitable partition of the system into
two complementary subsystems, such as two subsets of nodes in a network (see, e.g.,
[38,31,11]). Communication also arises within hierarchical memory systems; in this
context, of particular interest is information exchanged across levels of the hierarchy,
as reflected e.g., in the notions of I/O complexity [21] and access complexity [10].

Our information exchange I(n, m) measures simultaneously effects due to distri-
bution of data across different nodes and across different memory levels, since the chip
boundary acts as a separator for both the network and the memory system. Correspond-
ingly, the techniques for minimizing the information exchange combine those tradition-
ally used when optimizing the mapping of a given computation onto a fixed-topology
network [25] with those used when optimizing the performance on a memory hierarchy
[2,7,3]. Interactions between network and memory-hierarchy communication arise nat-
urally in machines where speed of light is an active constraint [12]. A close relationship
between network proximity and temporal locality has been exposed in [20].
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3 Memory-Communication-Processing Tradeoffs for LQCD

In this section, we apply the methodology developed in Section 2 to lattice QCD
(LQCD), a discretized version of QCD, currently the most amenable for non-perturbat-
ive computations. After a short introduction of the needed concepts and notations, we
analyze the information-exchange of the Dirac operator, the core module within LQCD.

3.1 The LQCD Computation

The Lattice. In LQCD, space-time is discretized and represented as a a four-
dimensional toroidal graph, whose arcs are the domain of the gauge field and whose ver-
tices are the domain of the particle field. More formally, for X ≥ 0, let Z(X) denote the
cyclic group {0, 1, . . . , X − 1} w.r.t. addition modulo X . For N = (N1, N2, N3, N4),
let Z(N) = Z(N1)⊗Z(N2)⊗Z(N3)⊗Z(N4) where⊗ denotes the direct product op-
eration between groups. Also, let Vd = {µ̂1, µ̂2, µ̂3, µ̂4}, where µ̂i denotes the 4-tuple
with the i-th component equal to 1 and the other components equal to 0. We are inter-
ested in modeling a four-dimensional toroidal space-time lattice defined as the directed
graph L(N) = (Z(N), E(N)), where E(N) = {(x, x ± µ̂) : x ∈ Z(N), µ̂ ∈ V4}.
For N = N1N2N3N4, it is |Z(N)| = N and |E(N)| = 8N .

The Gauge Field. Recall that SU3 denotes the special unitary (Lie) group of the
3 × 3 unitary matrices with determinant equal to one. (A matrix U is unitary when
U † = U−1, i.e., when its transpose conjugate is also its inverse.) A gauge field is a map
U : E(N) → SU3 which associates an SU3 matrix with each arc of the lattice, with
the property that U(x, x+ µ̂) = (U(x+ µ̂, x))−1 = (U(x+ µ̂, x))†, for any x ∈ Z(N)
and ±µ̂ ∈ V4.

The Fermion Field. A (pseudo) fermion field is a map Ψ : Z(N) → C3×4 which
associates a 3 × 4 complex matrix with each vertex of the toroidal lattice. In LQCD,
the row index ranges over color eigenstates, while the column index ranges over spin
eigenstates. It is useful to regard each 3×4 complex matrix as a 12-component complex
vector.

The Dirac Operator. The Dirac operator provides the dynamical description of a given
quark and depends both upon the gauge field and on a parameter K related to the mass
of the quark being modeled by the operator. Mathematically, the Dirac operator is a
(sparse) linear function which maps a fermion field into another fermion field.

Definition 1. Given a real scalar quantity K and a gauge field configuration U , the
Dirac operator DK,U : C12N → C12N is the linear operator on the space of fermion
fields defined by the relation

Φ(x) = [DK,UΨ ](x) = KΨ(x) +
∑

±µ̂∈V4

U(x, x + µ̂)Ψ(x + µ̂)Γµ̂ , (7)

for each x ∈ Z(N), where the Γµ̂’s are the 4 × 4 Dirac matrices, a key feature of
which is that in each row/column all entries are 0, except for one which belongs to
{1, i,−1,−i}.
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An LQCD computation is based on a Montecarlo-Metropolis approach that gener-
ates a random walk in the space of gauge field configurations. The key kernel of the
computation is the inversion of the Dirac operator which is typically obtained through
its iterated application according to Eq. (7) starting from an initial fermion field. In cur-
rent simulations, this operation accounts for nearly 90% of the overall simulation time.

3.2 Computation Requirements of the Dirac Operator

In this subsection, we determine the requirements of the computation of the Dirac oper-
ator Φ = DK,UΨ , defined by Eq. (7). We assume that a complex number is represented
by two words, hence each 3×4 matrix Φ(x) or Ψ(x) occupies 24 words, while each 3×3
matrix U(x, x + µ̂) occupies 18 words. To evaluate the total work W (N), measured in
flop (floating point operations), required by the operator, we consider the computation of
Φ(x) for a lattice point x, taking into account that the multiplications by matrices Γµ̂ do
not contribute any flop, since they essentially amount to permutations and sign changes.
Each of the 8 U(x, x+ µ̂)Ψ(x+ µ̂) products accounts for 3×3×4 = 36 complex multi-
plications (cmul) and 24 complex additions (cadd). Further 8× 12 cadd are required by
the summation, which yields a total equivalent to 8 × 36 = 288 complex multiply and
add (cmadd). Since each cmadd requires 8 flop and 24 more flop are needed to compute
KΨ , we conclude that the computation of Φ(x) requires χ = 2328 flop, hence

W (N) = χN = 2328N . (8)

For concreteness, we assume that the Dirac operator is implemented on a P -node
3D-torus, which is a typical topology for today’s supercomputers (a similar analysis
could be carried out for other topologies). We partition the lattice evenly among P
processing nodes so that each node is in charge of a sublattice of size n = k × k ×
k×N4, with k = (N/(N4P ))1/3. For convenience, we order dimensions so that N4 =
min{N1, N2, N3, N4}. We assume that at the beginning of the computation a node
stores the Ψ and U fields restricted to lattice points and incident arcs of its assigned
sublattice. Since the matrices U(x, y) and U(y, x) associated with the two arcs between
points x and y are one the transpose conjugate of the other, we can store only one
instance if both x and y are assigned to the node. At the end of the computation the
node will also store the Φ fields restricted to its sublattice points. It is easy to see that
all of the data residing at the node add up to σk3N4Lw bits, with σ = 120.

The following technical result, whose proof, omitted here for brevity, will be pro-
vided in the full version of this extended abstract, establishes the existence of efficient
schedules tailored to various values of the on-chip memory size m:

Theorem 1. With the above notation, there is a schedule for the computation of
the Dirac operator which executes in time T (n, m) = max{w(n)/F, (Ilc(n, m) +
Inb(n, m))/b} where Inb(n, m) = (ιn/k)Lw, and Ilc(n, m) exhibits the following de-
pendence upon m:

1. for m = σnLw = 120nLw (large memory), Ilc(n, m) = 0;
2. for m = (96k3 + 432k2 + o(k2))Lw (medium memory), Ilc(n, m) = σnLw;
3. for m = (96k2s+288ks+O(1))Lw with 1 ≤ s ≤ k (small memory), Ilc(n, m) =

((σ + 66/s)n + 132k2)Lw;
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Clearly, Ilc(n, m), hence its contribution to running time, increases as m decreases. In
particular, once m goes substantially below the threshold of σnLw, one can see that, if
the machine is balanced in the sense that the two terms in the expression for T (n, m)
are equal, then less than w(n)Lw/Ilc(n, m) = χ/σ < 20 flop per word exchanged
with the local off-chip memory can be sustained. Considerably larger values are instead
achievable when m ≥ σnLw, since in this case there is no need to transfer the fields
back and forth between the processing chip and the off-chip memory, at each iterative
application of the Dirac operator.

4 Performance Potential of Future QCD Machines

Based on the resource tradeoff equations derived in the previous sections, we now eval-
uate the performance potential of future QCD machines. We introduce a number of
assumptions on technology parameters, formulated in terms of VLSI feature size λ, to
allow for scaling considerations.

Technology Assumptions. We let A = (�λ)2 denote the die area, assuming, for sim-
plicity, a square of sidelength �, in units of λ. Referring to an area range of 81-324
mm2, we see that � ∈ [1 ÷ 2] · 105 is representative of today’s 90 nm scenario, while
� ∈ [4.5÷9] ·105 would represent the 20 nm scenario forecast for 2017. We express the
area taken by one bit of storage as Am = αmλ2, estimating αm = 50, for embedded
DRAM. We express the area of a floating-point functional unit as AF = αFλ2. Clearly,
αF = αF(Lw), that is, the area does depend upon the wordlength of the operands. For
the case study below, where Lw = 64, we generously estimate αF(64) = 108, so that
a number of registers and some auxiliary logic is also accounted for (see, e.g., [17,26]).
Asymptotically, αF(Lw) = θ(L2

w), due to the A = θ(L2
w/T 2) complexity of a VLSI

multiplier (see [1,14] for lower bounds and [13] for upper bounds). However, since in
our context αF(Lw) is actually an average area between adder, multiplier, and register
file, and since relatively small values of Lw are under consideration, we can expect the
actual behavior being between linear and quadratic. Finally, we assume a chip band-
width proportional to the perimeter, i.e., b = β4�. We estimate β = 1/3000, which is
conservative at λ = 90 nm (for � = 2 · 105, b = 266, compared to the ITRS figure of
1800 I/O signals per chip) and somewhat conservative at λ = 20 nm (for � = 9 · 105,
b = 1200, compared to the ITRS figure of 3000).

Input Assumptions. Consider a lattice of size N = kP1×kP2×kP3×N4 to be mapped
onto a P1 × P2 × P3 three-dimensional torus of P = P1P2P3 nodes, each processing
a k × k × k × N4 sublattice of n = k3N4 points. Since (a) N = 644 is a rather large
size processed on today’s teraflop machines, (b) the overall computation requirements
of a QCD simulation (including O(N3/4) Dirac computations) grow approximately as
O(N7/4), and (c) a thousandfold improvement can be expected during the horizon we
are investigating, it is reasonable to assume for lattice size a range 644 − 128 · 2563,
throughout which one can always choose to completely map within a node an entire
dimension of size (approximately) N4 = 128.
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Machines in the Large Memory Regimen. In this regimen, where all fields are stored
on chip, we have: n = N4k

3, w(n) = χn with χ = 2328 (from Eq. (8)), m = Lwσn,
with σ = 120 and Lw = 64, and I(n, m) = Lwιn/k, with ι = 288, from Theo-
rem 1. Then, Eq. (4) gives the number of functional units as F = w(n)b/I(n, m) =
χn4β�/(Lwι(n/k)) = (97/576000)�k. Assuming for now η = 1, Eq. (5) can be
rewritten in the λ-invariant form αFF + αmm = �2, whence, after plugging in the
technology parameters and the above relation for F , we have:

αFF + αmm = γ�k + δN4k
3 = �2 , (9)

where γ = 97 · 105/576 and δ = 384 · 103. Assuming N4 = 128, Table 1 shows the
numeric solutions of the above equations for a sample of values of chip sidelength �.
We can make a few observations:

– Current technology (� = 105, 2 · 105) would already enable hundreds of flop/cycle.
– Projected 2017 technology (� = 4 · 105, 8 · 105) holds the promise of thousands of

flop/cycle.
– The fraction αFF/�2 of the die area utilized for functional units is substantial in the

range being considered for �, although it does decrease with �. Indeed, one could de-
rive from Eq. (9) that this fraction vanishes asymptotically as (γ/(δN4)2/3)�−1/3.

Machines in the Medium Memory Regimen. Consider now the case of medium
memory. From Theorem 1 we have I(n, m) = (ι(n/k) + σn)Lw and m �
(96k3 + 432k2)Lw. Hence, F = (97/(576 + 240k))10−3�k and �2 = (97/(576 +
240k))105�k + 32 · 102(96k3 + 432k2).

As we can see from Table 1, for � ≤ 25000, the medium-memory regimen
achieves a better floating point performance than the large-memory regimen. The
reason is that, when m is below a certain threshold, the node sublattice approaches a
1-dimensional array of N4 points, with an unfavourable computation/communication
ratio. As m and n increase with �, this situation is quickly reversed, since αFF/�2

vanishes as (97 · 104)/(24�). We also observe from the table that the growth rate of
n as a function of � is much smaller for large memory than for medium memory,
so the latter regimen affords implementations with smaller numbers of nodes P = N/n.

Table 1. QCD chip parameters (Lw = 64 bits): sidelength 
 (units of λ); b: I/O bandwidth
(bits/cycle); n = k3N4: number of sublattice points processed (N4 = 128); m: on-chip memory
(bits); F : flop/cycle; αFF/
2: fraction of area devoted to FP units

Large Memory Regimen Medium Memory Regimen

/105 b n m/106 F αFF/
2 n m/106 F αFF/
2

0.25 33 2.57 · 102 1.9 5 0.84 5.26 · 103 0.5 6 0.95
0.50 67 1.54 · 103 11 19 0.76 2.47 · 105 15 17 0.68
1.00 133 8.48 · 103 62 67 0.67 2.24 · 106 120 37 0.37
2.00 267 4.36 · 104 319 233 0.58 1.23 · 107 616 77 0.19
4.00 533 2.12 · 105 1549 788 0.49 5.68 · 107 2752 157 0.10
8.00 1067 9.82 · 105 7194 2630 0.41 2.45 · 108 11601 317 0.05
16.0 2133 4.41 · 106 32298 8677 0.34 1.02 · 109 47609 639 0.03
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Wordlength. While Table 1 shows the parameters for Lw = 64, values for different
wordlengths can be easily obtained from our equations, given the appropriate value
for αF(Lw). Simple arguments on the structure of the equations show that, for a fixed
�, when the wordlength is halved, then F is slightly more than doubled if αF grows
linearly with Lw, while F is slightly less than quadrupled if αF grows quadratically
with Lw. Thus, operating with the smallest wordlength that guarantees the numerical
properties of the QCD algorithms, probably somewhere between 32 and 64 bits, may
lead to nonnegligible savings with respect to the case for 64 bits.

4.1 Chip Organization

In the preceding analysis, by setting η = 1 in Eq. (5), we have ignored the area require-
ments due to control structures and intra-chip data and instruction transfers. To show
how these requirements can be kept small (within 10%, corresponding to η ≥ 0.9), we
sketch a chip organization for machines tailored to the large-memory regimen and to
suitable chip size, say � ≥ 105.

Letting p2 = F/8, we consider a chip organized as a p× p two-dimensional mesh
of small processing elements (SPEs). Each SPE is endowed with m/p2 bits of local
off-chip memory and with 8 floating point units (which naturally exploit the 8 flop of
the complex multiply-and-add operation, very abundant in QCD codes).

Controller. We envisage a SIMD organization with a single centralized structure in
charge of flow control broadcasting control words to all SPEs. Without entering into
details, we estimate its complexity to be similar to that of one functional unit and its
layout to fit in an �c× �c region, with �c = 104. A region of the same shape and size can
be also budgeted for a program memory (2 Mbit of embedded DRAM). Thus, controller
and program memory can be accommodated in a centrally placed (say) vertical layout
strip of width �c = 104.

Control Distribution. To distribute control words, and to support various reduction op-
erations, we make provision for a binary tree rooted at the controller, with p2 leaves at
the SPEs, and with edge bandwidth bt = 128 (in bit/cycle). Adopting an H-layout [37],
the tree requires (p− 1)bt <

√
F/8bt bandwidth, both vertically and horizontally.

Data Transfers. For the parameter ranges we are considering, the node’s sublattice can
be mapped so that neighboring lattice points are assigned either to the same SPE or
to two near-neighbor SPEs. Inter-node data can then be routed by p row busses and p
column busses, with overall bandwidth b/2, both in the vertical and in the horizontal
direction.

In order to translate the bandwidth requirements into area occupancy, we need to
estimate the width 1/β0 (in units of λ) of a connection carrying one bit/cycle. Based on
an exercise carried out on currently available 130 nm technology, we set 1/β0 = 5.

In summary, we obtain an �h × �v layout, where �v = � + (1/β0)(
√

F/8bt + b/2)
and �h = �v + �c. Considering that F < �2/αF, αF = 108, b = 4β�, 1/β0 = 5,
β =1/3000, bt =128, �c = 104, and l ≥ 105, we can derive that �v =(1 + ε)�, with ε=
(bt/
√

8αF +2β)/β0 ≤ 0.026, whence η=�2/�h�v =[(1+ ε2)+ (1+ ε)�c/�)]−1≥0.9.
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Table 2. Relevant parameters of current processors (see Section 4.2 for the definition of the
ratio ξ). In the table, ξLM and ξMM refer, respectively, to the large and to the medium memory
regimens.

apeNEXT BG/L Cell CSX600 ITANIUM2 QCDOC
frequency 200Mhz 700Mhz 3.2Ghz 250Mhz 1.6Ghz 500Mhz

λ 180nm 130nm 90nm 130nm 90nm 130nm
Lw 64 32 32/64 64 64 64
F 8 4 64/16 192 4 2
m 32kb 32Mb 20Mb 4.5Mb 72Mb 32Mb
blc 128 62.85 64 102.4 x 41.6
bnb 48 24 192 256 32 − x 21.8
ξLM n.a. 6.07 2.27/3.03 0.17 4.04 4.13
ξMM 0.76 9.53 0.61/1.21 0.16 2.20 6.30

4.2 Current Processors

It might be instructive to place some recent processors in the (blc, bnb, m, F ) space.
Ideally, given blc, bnb and m, the number of flop/cycle that could be sustained for the
Dirac computation is F ∗ = w(n)/ max(Ilc(n, m)/blc, Inb(n, m)/bnb). Thus, the ratio
ξ = f∗/F can be viewed as a measure of how well the machine is balanced (for QCD).
If ξ = 1, then the balance is perfect. If ξ < 1, the bandwidth and memory resources are
sufficient to sustain only a fraction ξ of the available performance. If ξ > 1, the band-
width and memory resources would be sufficient to sustain a multiple ξ of the available
performance. Note however that ξ is only a measure of balance of one of the archi-
tectural parameters (blc, bnb, m, F ), once the remaining ones have been fixed, based
on some criteria other than our methodology: ξ alone does not capture how suitable a
given architecture is for QCD computing. Six processors [35,6,24,16,22,15] are listed
in Table 2, with relevant features and the corresponding ξ metric, for both the large and
the medium memory regimens. Many observations could be made, keeping in mind
that it would not be appropriate to consider ξ as a figure of merit for the corresponding
design, which is likely to have been optimized for different technologies (e.g., SRAM
vs DRAM) and for applications different from QCD or, in the case of apeNEXT and
QCDOC, for different memory regimens as well as for different codes (which do not
necessarily use a schedule that minimizes the information exchange). We leave most
of these observations to the interested reader, except for noting that we start to see the
appearance of compute-intensive architectures and that at least in one case (the Cell
processor, especially in single precision) the design parameters are remarkably close to
the design space that we have identified in the previous subsections.

5 Conclusions

In this paper, we have developed an approach to analyze tradeoffs between bandwidth,
memory and processing for a given computation, providing quantitative guidelines to
evaluate or design a machine for such a computation. By this approach, we have shown
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that, broadly speaking, chips where a substantial fraction of the silicon is used for func-
tional units could deliver from hundreds to thousands of flops per cycle on QCD com-
putations, over the next decade.

The models of this paper only provide for a first-order analysis of the resource trade-
offs. More accurate models and analyses would obviously be needed to provide sound
guidance in an actual design. In particular, wire length and corresponding delays be-
come increasingly critical as feature size shrinks. In the chip organization sketched in
Section 4.1, while near-neighbour connections should not pose a serious problem, the
long wires of the tree for control distribution require further attention (pipelining the
instruction stream might be sufficient for QCD codes, which have few control depen-
dences; multiple controllers on the same chip can be another avenue). A careful analysis
of these issues is a prerequisite to any credible estimate of achievable clock frequencies.
Power consumption is another increasingly relevant issue, completely neglected in this
preliminary study. Here, we simply observe that as static power accounts for an in-
creasing fraction of energy consumption, as soon as area is converted into transistor a
price is paid. Therefore, architectures as the one we have outlined, which maximize the
percentage of area that does useful processing, become increasingly attractive from the
power perspective.

At a broader level, the proposed approach and its refinements could be used to study
other domains that can potentially take advantage of on-chip supercomputing.
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Abstract. This paper proposes a novel low-power 32bit×32bit multi-
plier with pipelined block-wise shutdown scheme. When it idles, it turns
off supply voltage to reduce both dynamic and static power. It shutdowns
and wakes up sequentially along with pipeline stage to avoid power line
noise. In idle mode, the proposed multiplier consumes 0.013mW and
0.006mW in 0.13µm and 0.09µm technologies, respectively, and it re-
duces power consumption to 0.07%∼0.08% of active mode. As fabrication
technology becomes small, power efficiency degrades in the conventional
clock gating scheme, but the proposed multiplier does not. The low-
power design methodology in this paper can be easily adopted in most
functional blocks with pipeline architecture.

1 Introduction

Recently, power consideration has become an important issue in VLSI design,
especially for portable and battery-powered systems. In deep submicron fabri-
cation technologies, leakage current increases exponentially according to device
scaling [1]. Fig. 1 shows the trends of supply voltage, threshold voltage, dynamic
power, and static power along with the progress of fabrication technology. As
shown in Fig. 1, the leakage power may dominate total power in near future [2].

Shutting down some functional blocks in the chip is a promising approach
to reduce both dynamic power and static power [3, 4, 5], where the supply volt-
age is cut off when the functional block idles. In the hardware implementation,
multi-threshold voltage CMOS (MTCMOS) [2, 6, 7, 8, 9, 10] has been proposed
and extensively investigated. However, severe power line noise due to the large
current surge often causes system malfunction when the functional block is quite
large [11], since large number of logic gates switch simultaneously during wakeup
process. Recently, block-wise shutdown [11] was proposed to mitigate the power
line noise. Many large-size functional blocks such as multiplier and arithmetic
logic unit (ALU) employ pipeline scheme to increase the performance. When the
supply voltage of the shutdown block is recovered sequentially along with the
� This work was supported by the Korean Research Foundation Grant. (KRF-2004-

042-D00152).
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Fig. 1. Trends of supply voltage, threshold voltage, dynamic power, and static power

pipeline stages, the number of simultaneous switching gates is greatly reduced.
Thus the power line noise significantly decreases [11].

In this paper, we propose a low-power 32bit×32bit multiplier with pipelined
block-wise shutdown. It was designed, fabricated, and verified by chip implemen-
tation, and the power reduction was evaluated by simulation.

2 Low-Power Multiplier Design

Fig. 2 shows the proposed low-power multiplier architecture. It exploits modified
Booth algorithm to reduce hardware complexity. It has three pipeline stages for
high performance. To reduce the power line noise, partitioning of pipeline stage
is determined by minimizing the number of maximum simultaneous switching
gates. Note that the power line noise increases as the number of simultaneous
switching gates increases. First stage consists of partial product blocks which
generate partial product of multiplicand. Second stage consists of two 8-to-4
compressors. Third stage consists of one 8-to-4 compressor, two 4-to-2 compres-
sors, and a final adder. The proposed multiplier was described in Verilog HDL,
and it was fabricated in standard cell library. The gate counts of first, second,
and third pipeline stages are about 9800, 7800, and 4800 gates, respectively.

Fig. 3 shows the supply voltage of the proposed low-power multiplier with
shutdown circuitry. In the shutdown and wake-up processes, supply voltage of
the whole circuit is cut off and recovered sequentially along with pipeline stage.
At the same time, only one pipeline stage is shutdown and wakes up, and the
number of simultaneous switching gates reduces. Thus, the power line noise is
mitigated significantly.

In the conventional block-wise shutdown schemes, pipeline registers of each
stage are connected to a high VT line, and these registers are never shutdown.
Thus the intermediate computation values are preserved and the block can wake
up immediately. However, these pipeline registers still consume static power
since their supply voltages are not cut off. In the proposed multiplier, the pipeline
registers occupy about 40% of total gate count. Thus, we included all the pipeline
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registers in the shutdown blocks to reduce static power, and all logic gates and
pipeline registers are cut off during shutdown. Each pipeline stage has its own
block power ring, and the supply voltages of all logic gates and pipeline registers
are connected to it. Power is delivered in the flow as: external power supply →
cut-off switch → block power ring → logic gates and pipeline registers. Cut-off
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Fig. 4. Pipelined turning on and off the current switches

Fig. 5. Waveforms of control signals in the cut-off controller

Fig. 6. P&R result using the standard cell library

controller turns on and off cut-off switches in a pipelined manner as shown in
Fig. 4 when the multiplier enters into or exits from sleep mode. When sleep
signal is activated from outside of the multiplier, the cut-off controller generates
pipelined control signals as illustrated in Fig. 5.

The detailed design process is as follows. First, each pipeline stage is described
in Verilog HDL as separate blocks. These stages are synthesized into gate level.
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Fig. 7. PMOS cut-off switch

Each synthesized pipeline stage is placed separately, and the result is registered
as a macro cell in the P&R design library. These macro cells are placed manu-
ally, since auto-placement generates single common power line. The macro cells
should be placed so as to minimize interconnection length. Also they should be
placed to effectively distribute heat dissipation. During auto-routing, top-level
file preserving macro cell hierarchy reads macro cell design information from the
P&R design library. The resulting P&R pattern is shown in Fig. 6.

In the proposed low-power multiplier, four VDD lines are used, i.e. global
VDD line (VDDG) and stage VDD lines (VDDS1, VDDS2, VDDS3). VDDG supplied
power to the cut-off controller. It also delivers external power to VDDSn (n =
1,2,3) via cut-off switches, where n is the stage number. All logic gates and
pipeline registers in the pipeline stage acquire their power from VDDSn. VDDSn

is independently cut off and recovered by cut-off switches. In idle mode, cut-off
switches are sequentially open, and the corresponding pipeline stage is shutdown.
No cut-off switches are connected to GND lines to reduce the number of cut-off
switches. GND line of the cut-off controller and those of all the pipeline stages
are connected with each other.

Cut-off switches are large MOS transistors. To fully supply power to each
pipeline stage, it should have very wide channels to deliver large current. To
increase channel width, MOS transistors have many fingers as shown in Fig. 7.
PMOS transistor is used as cut-off switch, since there is no voltage drop to deliver
VDD in saturation mode. Its size should be optimized based on the trade-off
between area overhead and wake-up speed.

3 Simulation Results

In deep submicron fabrication technologies below 0.13µm, static power due to
leakage current dominates total power consumption. Therefore, it is essential
to calculate both dynamic and static power to evaluate power efficiency of the
proposed multiplier. In this paper, 0.13µm and 0.09µm standard cell library
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Fig. 8. Screen shot of power simulation using Synopsys Prime Power

technologies are used in the power simulation. These technologies provide both
dynamic and static power simulation.

We designed the proposed multiplier with Verilog HDL description. We syn-
thesized two versions, 0.13µm and 0.09µm, from the identical Verilog HDL de-
scription. Synopsys Design Compiler supported by IC Design Education Center
is used in the synthesis. It also extracts gate level netlist and delay informa-
tion which are dumped into Verilog-format netlist (NETLIST) file and standard
delay format (SDF) file, respectively. Mentor Graphics Modelsim generates two
random 32bit input vectors as multiplicands, and performs behavioral simula-
tion of the proposed multiplier. Then it dumps internal signal transition during
behavioral simulation into value change dump (VCD) file. Power consumption of
the proposed multiplier was simulated by Synopsys Prime Power. It reads power
models in the standard cell library, and then calculates both dynamic and static
power consumption using NETLIST, SDF, and VCD files. Fig. 8 shows a screen
shot of power simulation using Synopsys Prime Power.

In the simulation, we assumed that the proposed multiplier runs at 333MHz.
Supply voltage is assumed to be 1.08V in 0.13µm technology and 0.9V in 0.09µm
technology, respectively. We carried out two low-power methods. The conven-
tional clock gating [12] inserts some clock control logics in the clock driver, and
disables clock transition when the block idles. Dynamic power consumption is
zero in clock gating, but static power consumption cannot be reduced. On the
contrary, the proposed block-wise shutdown [12] cuts off the supply voltage when
the block idles, and both dynamic power and static power become zero.

Fig. 9 shows the power consumption of the proposed multiplier in active
mode. In 0.13µm technology, combinational logics consume 5.156mW (29.46%),
and pipeline registers consume 11.772mW (67.00%). Static power consumption
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is 0.620mW (3.54%). Consequently, static power is negligible in 0.13µm tech-
nology. In 0.09µm technology, the situation is quite different. Combinational
logics consume 1.023mW (13.14%), and pipeline registers consume 5.396mW
(69.31%). Static power consumption is 1.366mW (17.55%). As a result, static
power is quite comparable to dynamic power in 0.09µm technology. Note that
static power increases significantly as fabrication technology becomes small.

Fig. 10 shows power reduction efficiency of the proposed multiplier. In idle
mode, two low-power methods, i.e. conventional clock gating [12] and proposed
block-wise shutdown [11], are compared. In 0.13µm technology, the proposed
multiplier consumes 17.503mW (100%), 0.633mW (3.62%), 0.013mW (0.07%)
in active mode, idle mode with clock gating, and idle mode with block-wise
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shutdown, respectively. In 0.09µm technology, it consumes 7.785mW (100%),
1.372mW (17.62%), 0.006mW (0.08%) in active mode, idle mode with clock
gating, and idle mode with block-wise shutdown, respectively.

In active mode, the proposed multiplier consumes both dynamic and static
power. In idle mode with clock gating, dynamic power is greatly reduced, while
static power is never reduced. Dynamic power is not zero, since input vector
signal transition induces gate capacitance charging and discharging. In idle mode
with block-wise shutdown, it consumes only dynamic power of cut-off controller,
static power of cut-off controller, and dynamic power for gate capacitor charging
and discharging. As shown in Fig. 10, block-wise shutdown is more effective than
clock gating in power reduction. Furthermore, clock gating inserts control gates
into clock distribution network, which requires very careful and complicated
analog circuit design. Note that power efficiency of clock gating degrades as
fabrication technology becomes small, while that of block-wise shutdown does
not depend on fabrication technology.

4 Conclusion

In this paper, we proposed a low-power 32bit×32 bit multiplier with pipelined
block-wise shutdown scheme. Using MTCMOS technology, it shutdowns supply
voltage to reduce both dynamic and static power in idle mode. It has three
pipeline stages for high speed operation. Supply voltage is cut off along with
pipeline stage to reduce power line noise during wake up process. Partitioning of
pipeline stage is determined by equalizing the number of gates in each stage in
order to reduce the number of maximum simultaneous switching gates, because
power line noise is proportional to it. Supply voltage of each stage is cut off
by large PMOS switch. Channel width is determined by considering the power
consumption of each pipeline stage. Cut-off controller generates pipelined control
signals to cut off these PMOS switches in sequential manner. The proposed
multiplier is described in Verilog HDL and fabricated in standard cell library.
Total gate count is about 22400 gates including cut-off controller.

Static power consumption increases significantly in deep submicron fabrica-
tion technology beyond 0.13µm. We carried out power simulation in 0.13µm and
0.09µm technologies. In 0.13µm technology, the proposed multiplier consumes
17.503mW in active mode and 0.013mW in idle mode. In 0.09µm technology,
it consumes 7.785mW in active mode and 0.006mW in idle mode. Thus, it re-
duces power consumption to 0.07%∼0.08% in idle mode, while the conventional
clock gating scheme reduces it to 3.62%∼17.62%. Power efficiency of the con-
ventional clock gating scheme severely degrades as fabrication technology be-
comes small, while that of the proposed multiplier is hardly affected. This comes
from the fact that the proposed multiplier significantly reduces static power due
to leakage while the conventional clock gating cannot. The low-power design
methodology in the proposed multiplier can be easily adopted in most functional
blocks with pipeline architecture such as arithmetic logic unit, filter and systolic
array.
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Abstract: The performance of user-level messaging in PIM (Processing-In-
Memory) to PIM communication is modeled and analyzed for the DIVA (Data 
IntensiVe Architecture) system. Six benchmarks have been used for this 
purpose, two from each category, namely single message transfer, parallel 
transfer and collective communication, as described for the PMB (Pallas MPI 
Benchmarks). The benchmarks used are PingPong, PingPing, SendReceive, 
Exchange, Barrier synchronization and AllToAll personalized exchange. The 
main significance of this work lies in the evaluation of an implementation of 
system-wide support for memory-to-memory and memory-to-host communi-
cation via a parcel buffer (used as a network interface). Another remarkable 
feature of this evaluation lies in presenting an optimal algorithm for Barrier 
synchronization and an optimal algorithm, with full channel utilization, for 
AllToAll personalized exchange for the bi-directional ring configuration of up 
to 8 DIVA PIMs in the memory system of a Hewlett-Packard’s zx6000 server. 
The algorithms presented can be scaled for higher number of PIM chips with a 
little degradation in performance over the optimal solution. Our analysis shows 
that the currently employed communication mechanism can be used very 
efficiently for collective communication operations, and it also exposes the 
bottlenecks in the current design for future improvements.  

1   Introduction 

The user-level messaging performance of high-end architectures has always been a 
topic of interest to the hardware and software designers of clusters of SMP or PC 
nodes, and engineering and scientific communities related to the high-performance 
computing field. Much work has been done on evaluating performance of many 
commercial interconnects such as Myrinet, Quadrics and Infiniband [1], for 
middleware layers such as MPI (Message Passing Interface) and vendor-supplied 
communication primitives [2], and more recently of networks on chips [3]. Evaluating 
user-level messaging performance has also become crucial for PIM systems such as 
DIVA1 [4], which aims to mitigate the processor-memory speed gap. DIVA targets 
                                                           
1 This research was supported by DARPA contracts F30602-98-2-0180 and F33615-03-C-4105. 
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two important classes of bandwidth-limited applications: multimedia and irregular 
applications, including sparse-matrix and pointer computations.  DIVA accelerates 
both classes of applications by performing computation directly in memory, requiring 
novel underlying hardware structures [5][6][7].  

PIM systems like DIVA have unique communication requirements because of the 
dense packing requirements of the memory systems and the need to provide uniform 
communication mechanism among heterogeneous components (PIM node processors 
and host processor) [4]. So, PIM systems like DIVA rely upon relatively lightweight 
communication protocols [8] and network [9] to provide effective memory-to-
memory and memory-to-host communication. To further standardize the process of 
performance comparison of various high-end architectures, a set of well-defined MPI 
benchmarks, known as PMB (Pallas MPI Benchmarks) [10], has been developed. 
This paper reports an evaluation for six of these benchmarks executing on a DIVA 
PIM system. Instead of using MPI primitives for this purpose, native communication 
primitives have been developed, as increasing PIM user-level messaging performance 
requires judicious use of underlying system architecture and interconnection network 
capabilities by the software. The benchmark results obtained can be considered as the 
optimum performance data by the potential developers of middleware layers for 
DIVA, ranging from explicit message-passing to shared-memory models because of 
the flexibility provided by the DIVA communication mechanism. The results are also 
of significance to potential PIM users and other PIM system architects.  

Another significance of this work is in the quantification of the performance 
metrics in the implementation of system-wide support for memory-to-memory 
communication via a parcel buffer for the first time. A parcel is similar to an active 
message [11] as it is a relatively lightweight communication mechanism containing a 
reference to a function to be invoked when the parcel is received. Parcels are 
distinguished from active messages in that the destination of a parcel is an object in 
memory, not a specific processor. For more DIVA architectural and communication 
mechanism details, please refer to [4][8][9]. 

Another importance of this evaluation lies in presenting optimal algorithms for 
collective communication routines, namely Barrier synchronization and AllToAll 
personalized exchange for the bi-directional ring configuration of up to 8 DIVA 
PIMs. The allowable network size is of 2,4 or 8 PIMs. The number of PIMs is limited 
by the current capacity of the zx6000’s memory system. An efficient implementation 
of the AllToAll personalized exchange benchmark is an important achievement, as it 
is one of the most complicated and time-consuming communication operations in 
high performance computing.  

In this benchmark, a personalized (or different) message is sent to every node in 
the network by every other node. Usually one of two types of algorithms is used to 
perform this operation – Direct or Indirect. Direct algorithms involve the transfer of 
all messages in several contention free phases directly from source node to the 
destination node, without involving any intermediate nodes [12]. Indirect algorithms 
involve the intermediate nodes in the message transfer, and a message combination 
step is added before the combined message is forwarded to the destination node. The 
indirect algorithms perform better for the cases where message length is small or 
communication startup time is large compared to the link transmission time [12]. This 
is because of the reduction in the number of phases required for indirect algorithms. 
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Many algorithms are available for wormhole routed torus networks [12][13][14], 
which can be tailored for implementation in the DIVA PIM system environment. 
However, the deficiencies of these algorithms due to their indirect nature [12][13] or 
the underlying assumptions (like use of only one virtual channel by [14]) motivated 
the development of the presented algorithm, which is of Direct type because of the 
reasons discussed in section 2.6. 

Section 2 describes the different benchmarks analyzed, algorithms and procedure 
used, and gives expressions for the performance metrics; section 3 presents the plots 
of the performance metrics with variation in message length and system size, as 
applicable, and explains the results; finally, section 4 concludes this paper with some 
suggestions for potential improvements in the design. 

2   Benchmarks – Implementation Algorithms and Analysis  

The performance of six benchmarks, namely PingPong, PingPing, SendReceive, 
Exchange, Barrier synchronization and AllToAll personalized exchange, is analyzed 
for the above described PIM communication mechanism. Two benchmarks from each 
category, namely single message transfer, parallel transfer and collective 
communication (as specified in [10]) are chosen. For PingPong, PingPing, 
SendReceive, and Exchange, both the timing expressions and throughput calculations 
are given. For barrier synchronization and AlltoAll personalized exchange only 
timing expressions are given. These calculations are in accordance with the rules 
specified by [10].  

2.1   PingPong 

This benchmark measures the efficiency of a single message transfer between two 
processes (in this case two PIM nodes). A single message is sent from one node to 
another node and received back. The simplicity of bi-directional connection of two 
PIM nodes, for this purpose, is apparent in [9]. 

Send and Receive communication primitives have been implemented at the 
assembly level. The processor clock cycles (Cycleproc) taken by each native 
communication primitive have been used in the performance analysis. [5][6][7] 
explain DIVA PIM processing logic in detail. The clock cycles taken for these 
primitives is fairly deterministic, as the DIVA instruction set is very generic and uses 
only memory operations (Load and Store) for accessing the network interface (PBuf). 
The parcel payload size is 32 bytes, so any message greater than 32 bytes can divided 
into multiple parcels and transferred using one pair of Send and Receive. This can be 
done in 32m  Sends and Receives, where m is message length in bytes. 

The bottleneck in this communication mechanism is the boundary between the 
PBuf and 352-bit packet serializer (send bridge). The serializer is held for 11 PiRC 
clock cycles (CyclePiRC) to convert a packet into eleven 32-bit flits, and it takes an 
additional 6 Cycleproc of handshaking to move the next packet into the serializer and 
start its serialization. In this implementation of DIVA, CyclePiRC is twice that of 
Cycleproc, and thus this bottleneck takes 28 Cycleproc. The time taken by Send and 
Receive operation (25 Cycleproc each) is evident for one packet send, but the time 
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taken by other Send commands overlaps with the above described bottleneck as 
another parcel can be written into the PBuf while the serializer is transferring the 
previous parcel. So, throughput for PingPong is dictated by the serializer bottleneck. 

Below is a timing expression for the time taken (∆t) by an m-byte message transfer 
from one PIM node to another and back to the first node. 

∆t  = 2(56 + 28 32m ) Cycleproc 
 (1) 

Based on standard throughput calculations for PingPong [10], the throughput (Γ) is 
given by the expression below for an m-byte message transfer in (∆t/2) seconds.  

   Γ = m/ (∆t/2) = 2m/ ∆t (2) 

2.2   PingPing 

This benchmark also belongs to the single message transfer category. The importance 
here is on the outgoing message being obstructed by the incoming message. A single 
message is sent from each node to the other node concurrently. Unlike PingPong, the 
message is not expected to be returned to the sender. 

 

Fig. 1. Algorithm for PingPing 

Fig. 1 shows the algorithm for one node. The progression of two simultaneous 
sends at the two PIM nodes (because of bi-directional channels) is used here to 
overcome the above bottleneck and hide the latency of the communication network. 
The idea simply makes use of the idle time available or latency of the network 
(wasted in PingPong waiting for the packet) for other Send operations on each PIM 
node before the packet arrives from the other node. A simple analysis of the DIVA 
communication mechanism revealed that using 3 continuous Send operations, 
followed by 3 continuous Receive operations, can best overcome the serializer 
bottleneck and hide the latency of the network, and the resulting time taken (∆t) 
depends totally on the execution of Send and Receive commands. The approach here 
is to defer the Receive operation until the maximum number of packets can be 
received without any delay due to the serializer bottleneck (because they are buffered 
at the receiving node). The time is used for sending other packets otherwise. 
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The timing expression for PingPing is given below.  

   ∆t     = [50 /3m/32  + (28 k + 56) q ] Cycleproc 

 k = 3 % m/32  and, 

                                                                                   ≠
== 0 k   if        1 

0k  if        0 q       

(3) 

The throughput (Γ) is given below for an m-byte message transfer per ∆t seconds. 
Please notice that throughput is not scaled by a factor of 2 (actual transfer rate is 2m 
bytes per ∆t seconds) because PingPing is a single message transfer benchmark. 

   Γ      = m/ ∆t    (4) 

2.3   SendReceive 

This benchmark belongs to the parallel message transfer category. The benchmarks 
belonging to this category aim to measure performance under global load, and 
performance is measured for the simultaneous execution of processes at different 
nodes. In a SendReceive configuration, each node n sends a message to its neighbor 
PIM node (n+1) mod N and receives a message from another neighbor node (n-1) 
mod N.  The algorithm for the SendReceive is similar to algorithm provided in fig. 1, 
except for the fact that each PIM node n sends a message to its neighbor node (n+1) 
mod N and receives a message from another neighbor (n-1) mod N.  

The timing expression for SendReceive remains essentially similar to that of 
PingPing, with one difference: the time taken (∆t) now depends on the maximum 
length message to be transferred among any pair of nodes.  

∆t     = [50 /3)/32max(m n  + (28 k + 56) q ] Cycleproc   (5) 

Throughput (Γ) is calculated taking into account the number of messages (NMsg) 
injected and received by a particular node [10]. 

   Γ      = NMsg m/ ∆t = 2m/∆t (6) 

2.4   Exchange 

This benchmark also belongs to the parallel message transfer category. In an 
Exchange configuration, each PIM node n sends and receives a message to and from 
its neighbor nodes (n+1) mod N and (n-1) mod N.  This can be viewed as two phases 
of SendReceive. In the first phase, each PIM node n sends a message to its neighbor 
node (n+1) mod N and receives a message from another neighbor (n-1) mod N. In the 
second phase, each node n sends a message to node (n-1) mod N and receives a 
message from another node (n+1) mod N. The timing expression is given below.  

∆t  = {[50 /3)/32max(m n,0  + (28 k0 + 56) q0 ] 

                       + [50 /3)/32max(m n,1  + (28 k1 + 56) q1 ]} Cycleproc 

    (7) 
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For throughput (Γ) calculations, NMsg is 4 because each node sends a message to 
both of its neighbors and receives a message from both. 

   Γ      = NMsg m/ ∆t = 4m/∆t (8) 

2.5   Barrier Synchronization 

This benchmark belongs to the collective communication category, where a message 
is communicated among a group of processes simultaneously. Barrier 
Synchronization is one of the most important operations required in high performance 
parallel computing. Various solutions have been presented thus far to solve this 
problem efficiently, either by providing hardware support [15], implementing 
algorithms in software [16][17] or hybrid approaches [18][19][20]. The DIVA 
communication mechanism provides no hardware support for collective 
communication. Thus, an efficient algorithm is required to implement this important 
operation. Although one of many available algorithms [16][17] can be tailored for the 
DIVA platform for this purpose, a unique algorithm is desirable to make efficient use 
of the hardware resources available in a PIM environment.  

 

Fig. 2. 8-node network explaining the concept of Virtual Rings 

DIVA PIM nodes are connected in a bi-directional ring configuration in a memory 
system. The concept of a Virtual Ring is introduced for collective communication 
algorithms. A Virtual Ring is defined as the complete traversal on a particular virtual 
channel (VC) of a physical ring (in a particular direction, i.e. +ve or –ve). Thus, there 
can be a maximum of four Virtual Rings in a DIVA system. VRing0, VRing1, 
VRing2 and VRing3 are defined as the traversal on VC A, VC A, VC B, and VC B 
virtual channels of +ve, -ve, +ve and –ve direction physical rings respectively (fig. 2). 
The nodes are labeled, as n, in an incremental manner from 0 to N-1 (where N is the 
total number of nodes in the ring). 

The presented algorithm reduces the required barrier message transfer stages 
(phases) to log2N by forming a balanced binary tree. The number of phases (P) is 
optimum because a message can be distributed optimally among N nodes (without 
any multicast or broadcast capability) by forming a balanced binary tree. Thus, 

P  = log2 N       (9) 

In each phase p, a node n sends barrier message Barrier to the destination node (or 
Send node), S(n,p), given by the expression below.  
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Where, N1 = {0, 2, …, N-2} & N2 = {1,3, …, N-1} 

   (10) 

Here, a barrier message Barrier consists of a single packet (256 bit payload). The 
barrier message received needs to be combined with the local barrier message and 
treated as a local barrier message for further phases. In other words, a message 
combination step is needed before the algorithm can begin the next phase at a particular 
node. The result is called the Combined Synchronization Signature. Further, to detect 
the completion of a required barrier message in a particular phase an Expected Phase 
Signature (again 256 bit wide) for each phase p is maintained at every node n.  

The out of order arrival of packets at a particular node must also be addressed, 
since different nodes may start the barrier operation at different times. Barrier 
messages from nodes expected in later phases can arrive and be buffered at the PBuf 
and received by the current node in any order. This issue is resolved by checking 
whether the current phase is completed (i.e. whether expected barrier message has 
already been received) before entering into the Receive operation. Otherwise, a 
process will wait for the packet forever that has already been received before. These 
issues led to a modification of the Receive command for barrier synchronization. The 
Send command remains the same as for the previous operations. 

Below is the expression for the virtual ring R(n, p) to be used by node n in phase p.   

                         R(n, 0)  = n mod NVRings 

R(n, p)   = R(n, 0)    ∀p:p ∈ {1,.., P-1} 
(11) 

The ring R(n, p) used does not change with phase p. This means that contention for 
links is not an issue for this algorithm, even if execution of Barrier Send and Receive 
operations by different nodes gets out of synchronization. The channel utilization is 
full in the first phase. After that channels are available between two nodes, but not 
required by the algorithm. However, every virtual ring is used in all phases as 
messages are sent on minimal paths, which are disjoint in a particular phase. 

The timing expression for the lower bound (when every node starts the barrier 
operation at the same time) on the time taken to reach complete synchronization is 
given below. This expression basically accumulates the single message transfer time 
in each phase, which is similar to the PingPong timing expression (except Receive 
takes 39 cycles). The calculations required for the destination node and ring to be 
used in each phase can be computed by the kernel in the initialization phase for a user 
program, which in turn initializes the route cache [8] so that user-level object 
addresses may be translated appropriately. 

 ∆tlower_bound = [96 P + 2N (1 - (1/2)P ) ] Cycleproc (12) 

The timing expression for the upper bound is also given below. Here, Tn is defined 
as the start time of barrier operation on node n. This worst case arises when all 
potential senders (in different phases) of Barrier to node n, which started barrier 
operation at min {Tn},  start the barrier operation at a time max {Tn}.  

 ∆tupper_bound =  ∆tlower_bound + max { Tn } - min { Tn } (13) 
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2.6   AllToAll Personalized Exchange 

This benchmark also belongs to the collective communication category, as discussed 
above. The presented algorithm is of the Direct type. This type of algorithm was 
preferred for DIVA, since the communication startup time and latency can be 
completely hidden (for up to 8 hop distance) by using the previously presented method 
of 3 continuous Sends and Receives (section 2.2), with only message transfer 
dominating. Although DIVA tries to reduce communication by sending pointers, 
functions and arguments only, messages lengths can be large for applications where 
data use is not localized. Moreover, the message combination and forwarding step, used 
in Indirect algorithms, would have been simply overhead because the same message 
could have been sent to the destination node directly instead of some intermediate node.  

This algorithm achieves a lower bound on the number of phases P possible for the 
communication of all messages with full utilization of all channels and in terms of 
messages required to be sent by one node. A total of N(N-1) (every node sends to 
each node except itself) messages are required to be sent over (NVC x NDirections) -

channels, which is equivalent to NVRings. Here, NVC is the number of virtual channels, 
NDirections is the number of directions in the ring, and product of the former two gives, 
NVRings, the total number of virtual rings in the network. Messages are exchanged (3 
continuous Sends and Receives method), rather than only sent, in each phase. This 
further reduces the number of phases by a half (factor of 2 in the denominator). These 
messages can be exchanged on any of the NVRings rings, following non-minimal paths 
also. The result is the expression below. 

P     = [N(N-1)] / 2 NVC NDirections 

                                     = [N(N-1)] / 2 NVRings 
(14) 

The above value of P is equal to N-1 for [N=8, NVRings = 4], [N=4, NVRings = 2] and 
[N=2, NVRings = 1]. Here, NVRings changes with N because required number of virtual 
rings decreases with N. 

In each phase p, a node n sends a message the destination node, S(n,p).  

=
=∈∀
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=
1 - Nn:n                  1)-(N mod (3p)

n 1)-(N mod 1)-p -n  - (N if & Nn:n                                 1-N
n 1)-(N mod 1)-p -n  - (N if & Nn:n  1)-(N mod 1)-p -n  - (N

 S 1

1

p)(n,

Where, N1     = {0, 1, 2, …, N-2} 

(15) 

Below is the expression for the virtual ring R(n, p), to be used by node n in phase p.  
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    Where, N1    = {0, 1, …, N/2-1},  N2     = {N/2,N/2+1, …, N-2}   &   N3     = { N-1} 



 Performance Analysis of User-Level PIM Communication in the DIVA System 415 

 

Contention for the virtual rings (or links) at the  source nodes will arise for this 
algorithm if message lengths used by different nodes are unequal in one phase. In 
such a case, it would be desirable for some nodes to start their next phase early, and 
thus increase the traffic in the network (because of fair flow control in DIVA [9]), but 
this would lead to contention. This contention problem will not harm the 
functionality, but will increase the time taken by the algorithm because message 
transfer times in the allocated phases are ideally overlapped (instead of cumulative) 
with other message transfers. Thus, synchronization between phases is desired for 
AllToAll direct algorithms [12][14] for better performance. This synchronization can 
be achieved statically by a compiler by padding small messages with dummy 
messages, to make the message lengths consistent. Alternatively, a barrier command 
can be used after each phase. Obviously, there is a tradeoff between using a barrier 
operation for synchronization and simply allowing the AllToAll operation to proceed 
asynchronously.  If the time overhead due to a barrier operation is larger than the 
penalty due to asynchronous treatment of differing message lengths, then the latter 
method is preferred.  

The channel utilization is full in all phases, as messages are sent on the non-
minimal disjoint paths in a particular phase. The expression for the time taken to 
perform a complete personalized exchange on a synchronous run of the algorithm is 
given below. This expression accumulates the single message transfer time in each 
phase, which is the PingPing time for the largest message. 

∆t    = 
−

=

1P

0p

[50 /3)/32max(m pn, + (28 kp + 56) qp ] Cycleproc (17) 

3   Performance Results and Analysis 

The timing expressions for five of the benchmarks are plotted with respect to 
variation in the message length (fig. 3). The processor speed of 140 MHz (Cycleproc of 
7.14ns) is chosen for this purpose, corresponding to the actual speed achievable for 
DIVA-II PIM chips assembled in DIMM boards and integrated in the memory system 
of a Hewlett-Packard Itanium2-based zx6000 server. The message length is varied 
from 1 byte to 4096 bytes in powers of 2, i.e. 2i

 for i=0 to 12. Barrier synchronization 
is not shown in this graph because it is defined only for a single message length of 32 
bytes. The throughput expressions are plotted for the single and parallel message 
transfer category benchmarks in fig. 4, as throughput is not reported for the collective 
communication category. 

As seen in fig. 3, PingPong time is double that of PingPing time for message lengths 
up to 64 bytes, but then the difference grows with increase in the message length. This 
is because of the communication latency hiding technique used for PingPing, which 
results in reasonable time savings for large message lengths. The PingPong throughput 
(fig. 4) is equal to the PingPing throughput for up to two sends, and then it decreases 
because of the above reason. Throughput, in general, increases initially and then tends 
to saturate for higher message lengths. Because the impact of communication latency 
involved in the timing expressions of all benchmarks (for non-multiple of 3 message 
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lengths in PingPing based expressions) becomes lesser for larger message lengths, 
throughput reaches the capacity limit of the underlying network. The time required for 
SendReceive is the same as that for PingPing, but throughput is double because total 
message turnover count is double (it belongs to the parallel message transfer category). 
The time taken by Exchange is twice that of SendReceive, but throughput is the same 
because total message turnover count is also double. 

Fig. 5 shows the plots for the time needed for the Barrier operation (lower bound) 
and AllToAll communication with variation in the total number of PIM nodes, i.e. for 
 

 

Fig. 3. Time taken for different message lengths (except for Barrier) 

 

Fig. 4. Throughput achieved for different message lengths 

 

Fig. 5. Time taken by Barrier and AllToAll for different number of nodes 
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N=2,4, and 8, connected in a bi-directional ring configuration, as is the case for 
DIVA. Barrier takes more time for N=2 than AllToAll, because the Barrier Receive 
command takes more clock cycles due to synchronization signature matching for each 
phase. Barrier is implemented as an Indirect algorithm, but this does not imply that an 
Indirect algorithm will work better for AllToAll, as discussed in section 2.6. 

DIVA PIMs have been assembled into DIMM boards (see fig. 8 in [8]) and 
inserted into the memory system of a Hewlett-Packard Itanium2-based zx6000 
server2. Instrumented measurement experiment was conducted for PingPong 
benchmark for a 32-byte message transfer to validate the analysis. This experiment 
tested the path of parcel flow from and to the user space through the pbuf and PiRC.  
The analysis was found to be in perfect agreement with the measurement on the 
hardware system for this case. This experiment also verified the analyzed clock cycles 
taken by Send and Receive communication primitives. This indicates that analyzed 
performance results for other benchmarks should also be in close agreement with 
measurement on the hardware system. 

The results cannot be fairly compared with those provided in [10] for MPI 
implementations on specific machines. Our analysis assumes the DIVA specific 
optimized implementations of communication primitives, and hence, a comparison 
with the results of generic MPI implementations is not appropriate. Given that DIVA 
is a unique architecture using PIMs, it is difficult to draw fair comparisons with 
general-purpose architectures, especially when considering the limited silicon area 
used for implementing DIVA as opposed to full-scale multiprocessors. Also, there are 
currently no other PIM communication results for comparison. It is simply noted that 
DIVA achieves sub-microsecond user-level messaging, including software overheads, 
in contention-free cases and also performs reasonably well for collective 
communication using lightweight network structures and protocols [8][9]. For more 
details on how other architectures perform for these communication operations, the 
interested reader can refer to [10] and other survey literature.  

4   Conclusion and Possible Improvements  

Every design, in spite of the best efforts of the designer, has some scope of improvement, 
and such is the case with DIVA. First, if a dedicated pbuf bus is used, pbuf load and store 
operations would take only one clock cycle, as they would not require arbitration through 
a memory controller. Secondly, RDMA capability, which has become standard in most 
state-of-the-art interconnection networks, is desirable, so that processor intervention is not 
needed in the normal case. At a minimum, a remote memory write capability would free 
the receiving node processor from waiting for Receive data (polling mode) or context 
switching costs (interrupt mode). Thirdly, the interaction between the send part of the pbuf 
and serializer, which is the bottleneck in the current design, can be greatly improved. 
Fourthly, providing two serializers and doubling the FIFO space in the send part of the 
pbuf would result in greater per-node throughput in many cases. Finally, providing some 
hardware support for collective communication and using a hybrid approach will 
definitely help systems containing larger number of PIM chips. 

                                                           
2 We thank Tim Barrett for providing DIVA PIM testing platform on zx6000 server. 



418 S.D. Mediratta and J. Draper 

 

To summarize, user-level messaging performance in PIM to PIM communication is 
modeled and analyzed for the DIVA system in this paper. The benchmarks used for this 
purpose are PingPong, PingPing, SendReceive, Exchange, Barrier synchronization and 
AllToAll personalized exchange. A significant part of this evaluation lies in the 
formulation of optimal algorithms for Barrier synchronization and AllToAll 
personalized exchange for the bi-directional ring configuration of upto 8 DIVA PIMs in 
the memory system of a HP zx6000 server. The expressions for timing and throughput, 
as applicable, are derived for the above benchmarks, and results are thoroughly 
analyzed to provide insight. The results show that the currently employed 
communication mechanism can be used very efficiently, for collective communication 
operations also.  
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Abstract. We present an output-queued switch architecture with cross-point
buffering that has improved performance for both point-to-point communication
and hardware accelerated collective communication. In the past, output queu-
ing architectures have been less popular as they require more internal speedup
and buffering. However, with current technology it is possible to build output-
queued switches with a relatively large number of ports. We demonstrate that our
output-queued architecture performs well for point-to-point messages, specially
in a fat-tree topology. We also show that output-queued architectures facilitate
efficient implementations of multicasts and reductions. We present performance
of multicasts and reductions on individual switches and a network of switches
interconnected in a fat-tree topology. We also present simulation results based on
synthetic workloads that emulate a molecular dynamics application.

1 Introduction

Communication interconnect performance is critical for several parallel applications.
We present an output queued architecture with crosspoint buffering to achieve higher
performance for point-to-point and collective communication operations. As output-
queued switches do not suffer from head-of-line blocking, they can achieve a high uti-
lization for point-to-point communication. In the past, output-queued architectures have
been less popular because they require higher internal bandwidth and more memory.
But with current ASIC technology, it is possible to build crosspoint-buffered output-
queued switches. A brief intuition showing the feasibility of output-queued switches
(even with a large number of ports) is presented in the next section.

Traditionally, collective operations, such as multicasts and reductions, have been op-
timized through processor level schemes, which send several point-to-point messages.
Processor based collective optimization schemes have several problems. For short mes-
sages, completion time is dominated by CPU and network interface controller (NIC)
overheads of sending messages. Large messages sent by the processors participating
in the collective may contend for the same communication channels [1]. Good collec-
tive performance also requires that all intermediate processors immediately process and
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forward the incoming message. Performance is affected if one of the intermediate pro-
cessors is running an operating system daemon [2], which can delay the collective op-
eration. Moreover, with message driven execution [3] and asynchronous collectives [4]
it is possible that the remote processor is busy doing other work and cannot process the
message immediately, delaying broadcast completion.

For the above reasons, hardware support for collective operations is desirable. One
of the approaches studied in literature implements collectives in the network inter-
face [5]. However, performance of such NIC optimizations can be limited as several
point-to-point messages are still exchanged. Instead, if multicasts and reductions are
supported in the switching network, they can be finished in one network phase. On par-
allel systems with thousands of nodes, switch collectives will make a significant differ-
ence. Some current clustering interconnects such as Quadrics QsNet [6] and Mellanox
InfiniBand [7] have multicast support in their switches. But multicast performance is
restrictive as these switches have input-queued architectures [8]. Input queuing archi-
tectures require complex centralized arbitration to achieve high utilization, and are not
a natural match for multicast [9,10,8]. Therefore, we use an output-queued switch ar-
chitecture with cross-point buffering to improve hardware multicast performance. Pop-
ular interconnects today do not have reduction support in their switch architectures.
However, we present schemes to perform network reductions efficiently and show their
scalability to a large number of switch ports.

To support collectives in the network, a topology-specific spanning tree must be
built over the network. In this paper, we assume a fat-tree topology [11], which is used
by several popular interconnects like Quadrics QsNet [6], InfiniBand [7], and IBM
SP networks. Fat-tree networks have high bisection bandwidth and can be scaled to
thousands of nodes. We present schemes to build collective spanning trees on fat-tree
networks, and assess the performance of collectives using those spanning trees. Our
scheme conserves routing table entries, as only one tree is needed to multicast data to a
group with any leaf node as the source.

We show that our output queued architecture has good performance for both mul-
ticasts and reductions through several benchmarks that simulate independent switches
and networks of switches. We also present the network throughput and latency when
several collectives happen simultaneously, as needed by applications like NAMD [12]
and CPAIMD [13].

2 Router Architecture

Several input and output-queued architectures have been proposed for high performance
interconnect switches. Input queuing (IQ) schemes allow simpler data flow but require
centralized arbitration to achieve high utilization. IQ routers also suffer from head of
line blocking which restricts their throughput. Using multiple virtual channels and smart
buffer management improves the performance of input-queued routers [14,15]. Virtual
output queuing [10] (VOQ), where each input queue has reserved buffer space for every
output queue, can fully utilize the switch. Virtual output queuing also has a centralized
arbiter and uses heuristics to select packets when there are conflicts for output ports. It
requires O(K2) buffer space, where K is the number of ports.
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We believe that switch design should have efficient support for multicasts and reduc-
tions (also referred to as combines in this paper). IQ and VOQ do not handle multicasts
efficiently as they need centralized arbitration [9,8]. VOQ can achieve full utilization
for multicast if every input port has (2K − 1) queues [9,8] in a KXK switch, one for
every possible subset of output ports. As this requires a tremendous amount of memory,
VOQ multicast scheduling algorithms use heuristics.

Two schemes have been proposed to handle multicasts in IQ routers [8,9,10]. In
no-fanout-splitting (fanout is the number of multicast destination ports), a multicast
packet is only sent if all destination ports are available in that arbitration cycle. Here
the crossbar is used only once, but several arbitration cycles may be required to send
the packet and free the input buffer for that packet. No-fanout-splitting is good for
multicasts with small fanouts. In the fanout-splitting scheme, the packet is sent to all
output ports that are available in that arbitration cycle, making the multicast packet use
the crossbar for several cycles. The maximum achievable utilization for multicast is
presented in [8], which is far from full utilization for many traffic patterns. IQ multicast
schemes can also have deadlocks in a network of switches.

In this paper, we show the effectiveness of output queuing for both point-to-point
communication and hardware collectives. Packets in output queuing are buffered on the
output ports of a switch before being sent out. Hence, output queuing does not have the
head-of-line blocking resulting in higher switch utilization. Output queuing also has
distributed arbitration where each output decides which packet to send independent of
other outputs. Figure 1(a) shows an output-queued router with buffers at the outputs.

Popular output-queued routers in the past have used shared buffers between out-
put ports [14]. Such shared buffer schemes have limited scalability with respect to link
bandwidth and number of ports. We use crosspoint buffering in our router architecture
to make the router support high bandwidth links efficiently. Cross-point buffering guar-
antees that there is a reserved buffer for each pair of input and output ports. A graphic
description of cross-point buffering is shown by Figure 1(b), where each input port
has some reserved memory on every output port. Hence the total buffering required is
O(K2). Packets arriving on input ports are immediately sent to the crosspoint deter-
mined by the destination output queue. Our architecture with cross point buffering is
similar to the SAFC scheme presented in [15]. But [15] only presents the point-to-point
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performance on one switch with limited buffer space. We are also concerned with mul-
ticast and reduction performance on one switch, and on networks of switches.

Feasibility of Output-Queued Architecture: Output-queued architectures are less com-
monly used as they require more memory and internal speedup to let input ports talk
to several output ports simultaneously. However, with current ASIC technology it is
possible to build output-queued switches. Suppose we plan to build an InfiniBand 4X
switch with a bandwidth of 10Gbps (1.25 GB/s) per port. We would also like to support
20m cables or 200ns of round trip time (RTT) . Hence, we would need atleast 250 bytes
of memory at each crosspoint. It is usually good to have two to four RTTs of buffer
space for good switch performance. For an 8 port switch the total memory requirement
is about 64KB which is easily available in modern ASICs. For a 32 port switch we need
512KB to 1MB of buffer space. With current ASIC technology 512 KB is feasible and
1MB may still be possible.

We use virtual cut through routing and credit based flow control [16] between
switches. In all the schemes we present, packets are only sent out by any source switch
S1 if buffer space for the entire packet is guaranteed on all the output ports of the down-
stream switch S2. With crosspoint buffering, this implies that all cross-points in S2, for
the input port on which S1 is connected to S2, should have buffer space available for
this packet. We have considered three flow control schemes :

Scheme I : This is the simplest of all the schemes. In this scheme, each switch S1
keeps one counter for every S1 output port connected to some downstream switch S2.
This counter is initially set to the number of buffers at a cross point of S2. When S1
sends a packet to S2, it decrements the counter corresponding to S2. When S2 sends this
packet from S1 out, it sends credits for that packet back to S1, to receive more packets.
This scheme is inefficient because packets from S1 may go to different crosspoints on
S2, so the counter should not be decremented for each packet send.

Scheme II : In this scheme, each switch S1 keeps track of the buffer space available
in the next switch S2 through a credit counter. As in Scheme I, the credit counter at
each S1 output port is initialized to the size of crosspoint buffer at the corresponding
downstream switch S2, and is decremented when a packet is sent out. However unlike
Scheme I, S2 sends back a min of the buffer space available on all cross-points. On
receiving this min buffer space, S1 resets the counter to min. This scheme has better
efficiency when packets from S1 go to different output ports of S2. But, the min is time-
warped as there is an RTT delay for it to be received by S1. So, for this scheme to work,
S2 must reserve RTT additional space that would be used when the time-warped min
results in an overflow.

Scheme III : In this scheme, each S1 output port has a copy of the routing table of the
down-stream switch S2. The S1 output port also maintains K counters for each down-
stream switch S2. This enables S1 to locally compute the min buffer space available on
all crosspoints of S2 corresponding to the input port connected to S1. Each counter is
incremented when packets are sent to the corresponding crosspoint in S2. Periodically,
S2 sends the status of S1’s packets in all its ports, which is used by S1 to update its
counters corresponding to S2.
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Of the three schemes, Scheme III would perform best as it correctly updates coun-
ters and avoids the time-warp problem of Scheme II. But, we do not use this scheme
as it is quite complex, requires additional routing memory and may not be feasible to
implement in modern ASICs. Scheme II leads to unusable RTT (or a packet) of buffer
space, and as our experiments use a small buffer space (2 packets to 4 packets), we
use Scheme I in all our simulations. We show that Scheme I performs well despite its
simplicity. We also show in the next few sections that, independent of the flow control
scheme chosen, multicasts and reductions are efficient and easy to implement in such
an output-queued architecture.

Multicast: the credit based flow control scheme we use ensures that when any packet
is sent out buffer space is available on all cross-points corresponding to this input port.
For every multicast, buffer space will be available on every output port for the entire
packet, thus, making each multicast deadlock-free [17]. On arrival, the multicast packet
is immediately sent to all the ports determined by the routing table entry for the packet’s
destination address. The multicast packet only uses the crossbar once, resulting in better
switch throughput for the multicast. With Scheme I, flow-control credits for this mul-
ticast packet are only sent back after all multicast packets on all the destination ports
have been sent out. With Scheme II and Scheme III, the min is computed considering all
destinations of the multicast. Hence the multicast operation can achieve full throughput
and also avoid deadlocks which were possible with input queuing schemes.

Reduction: our design also supports the Combine operation which can be used to sup-
port reductions and barriers in hardware. We extend the barrier combine unit presented
in [18] to perform reductions. The combine unit receives packets from the crossbar out-
put and performs reductions. Every reduction has access to local state. For example, in
the global sum operation the local state can store the current partial sum. For a global
array sum, the local state could be an array of floating point numbers. This local state
is updated by the combine unit whenever a reduction packet arrives. After all reduction
packets have been processed, the combine unit sends a reduction packet back into the
crossbar to be sent to the parent switch in the spanning tree.
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The combine unit connects from the output port through a feedback to an input port
in the switch, as demonstrated in Figure 2(a). The combine unit behaves like any other
output port in the switch. Reduction packets arriving on input ports of the switch are
buffered at the output port connected to the combine unit before being processed. As the
combine unit behaves like any other output port in the switch, the flow control schemes
Scheme I, Scheme II and Scheme III work here too.

The architecture of the combine unit is shown in Figure 2(b). It can take a few
cycles to receive reduction packets, as the entire packet is needed to detect errors. (We
do not explicitly simulate errors but we do model the delays.) The header of the packet is
stored in the control register. The combine logic uses the address in the packet header to
lookup the routing table for the combine state of the current reduction. In the following
cycles, the ALU computes and updates the local state based on the data from the packet.

For short reductions and barriers, it may be possible to pipeline packet arrival and
computation to process one packet every cycle [18]. But for larger reductions involving
several data points, the combine unit may stall on each combine operation. In switches
with a large number of ports, a single combine unit will become a point of contention.
As ASIC speeds are much slower than custom designed CPU speeds, this may hamper
the overall efficiency of the global reduction operation. Thus, affecting scalability of
parallel applications on such a network.

Figure 3(a) shows the switch architecture with r combine units. The combine units
are organized as a tree with r−1 leaves and one parent (Figure 3(b)). The leaves process
the reduction packets from a subset of ports and pass their partial result to the root of the
tree. Such a hierarchical design scales to more number of ports as several combines at
the leaves can happen simultaneously. In Section 4, we show that even with r << K we
can achieve good performance. Hence, the reduction units are only a small additional
overhead.

3 Building a Collective Spanning Tree

Spanning trees are essential to support collectives in the network hardware. These span-
ning trees can be directed trees where packets only travel in one direction on each hop.
For example, a broadcast can be achieved by sending the packet from the source along
a directed spanning tree. If the network time to do a broadcast does not depend on the
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root of the spanning tree, we can also build undirected spanning trees for broadcasts.
Fat-tree networks can make use of such undirected trees for collectives. Here any leaf of
the tree can do a broadcast with the same overhead. Our switch design has support for
undirected spanning trees, as do InfiniBand switches. Such undirected trees save routing
table memory as any leaf can send multicast messages. With directed trees [18] each
sender would require a separate tree. In an InfiniBand network, the subnet manager can
be requested by the application to build such trees.

The routing table has a bit vector of destination ports for each collective address, as
opposed to a parent port and a list of child ports in a directed spanning tree. For a mul-
ticast operation, packets are sent to all ports except the port on which the packet arrived
on. We implement combines as follows: suppose a routing table destination bit-vector
has k outputs set, then the combine manager would process k-1 reduction packets and
send the current partial result to the remaining port on which it did not receive a packet.
Both multicasts and combines use the same routing table entries. The tag in the packet
determines whether the operation is a multicast, barrier, reduction etc.

Fat-tree Networks: Fat-trees are generalizations of k-ary n-trees [11]. Figure 4 shows
a 4-ary 2-tree network. Routing in a k-ary n-tree has two phases, (i) the upward phase
where a packet is sent to any of the lowest common ancestors of the source and the
destination, (ii) the downward phase where the packet is routed from this ancestor to
the destination through a fixed path. This scheme can be extended to build collective
spanning trees as follows:

buildTree(id, up, destlist, swlist, tlist)
id : the switch id of the current switch, up : boolean flag that shows direction
destlist : list of processor destinations, swlist : list of previous switches
tlist : list of treeInfos (each treeInfo is list of parent and child output ports)

begin
swlist.insert(id);
if(!inHighestLevel(id, destlist) && up) { //Need to go further up

parent = leastLoadedParent(id);
buildTree(parent,destlist,swlist,tlist, true)

}
for count : 0 -> numPorts/2 - 1 //Going down in the fat-tree

if(child[count] routesto destlist) {
tlist[my_pos].insert(count);
buildTree(child[count],destlist,swlist,tlist, false);

}
end

The tree is constructed by finding a lightly loaded LCA (lowest common ancestor)
between the source and every destination. The sub-routine leastLoadedParent() can be
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used to find lightly loaded parents while moving up. The load of the switch is deter-
mined by the number of multicast trees passing through that switch. If the current node
is an LCA for one or more destinations, the algorithm recursively finds downward paths
to the destinations. This algorithm minimizes contention on the upward path of the
packet and also balances the routing memory required for each collective operation.

4 Network Simulation

We simulated switches with the above architecture using POSE [19], which is a parallel
event driven simulation language. We simulated 8 port and 32 port routers in a fat-tree
topology with adaptive routing. Table 1 shows the parameters of our simulation. These
parameters are derived from InfiniBand 4X interconnects. We first present the through-
put and packet latency of point-to-point communication using the well known commu-
nication patterns [11] transpose, bit reversal, complement and uniform. We simulated a
256 node fat-tree network with 8 port and 32 port output queuing switches. With 8-port
switches, we used 4 packet buffers as we can easily support them with current technol-
ogy. For 32-port switches, we present results with both 2 packet and 4 packet buffers at
the crosspoint. In the plots, load-factor is the ratio of the mean arrival rate and the ar-
rival rate that saturates a link. Here, each node sends packets with a Poisson distribution
that has a mean arrival rate proportional to the load-factor. Figures 5(a) and 5(b) show
the throughput and response times with 8 port switches, while figures 6(a) and 6(b)
show the performance of 32 port switches. Performance is good for all the above cases.
In fact, with 32 ports and 4 packet buffers at each crosspoint, the network has high
utilization comparable to a 256-way crossbar.

Table 1. Simulation Parameters

Speed Packet Channel Delay Switch Delay ASIC NIC Send Ovhd. NIC Recv. Ovhd.
10 Gbps 256 bytes 20 ns 90ns 250 Mhz 1300 ns 1300 ns
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Fig. 6. Results for 32 port switches
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With 32 port switches, the fat-tree has 32 switches organized in two levels. Since
the complement traffic pattern is contention free [11,20], its throughput is 100% at full
load. The other communication patterns uniform, transpose and reversal also have a good
throughput of about 93%. This high throughput is due to output queuing, adaptive rout-
ing [21] in fat-trees and the fact that there are only two levels of switches or three points
of contention for each packet in the entire network. Response times are also good for
both 8 and 32 port switches (only shown for 8 port switches) with 4 packet buffers, and
only blow up for load factors greater than 0.9. Our output queuing routers perform better
than the results presented in [11] for input-queued routers, for all four permutations.

Multicast Performance: Our simulation results show that the response time saturates at
a load-factor of 0.25, for un-correlated multicast packets with average fanout of 4 on all
ports of an 8 port switch. When only two ports transmit multicast packets, the response
time saturates at a load factor of 0.85. These results are better than the performance
of virtual output-queued routers [9], where the saturation points where 0.22 and 0.65
respectively. Figure 7(a) shows the multicast latency for a 256 node fat-tree network.
Here each node sends a multicast packet to a random set of destinations with an average
fanout of 8. It can be seen that the latency is stable for load-factors under 0.125, showing
the effectiveness of our scheme on a network of switches.
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Reduction Performance: The simulated performance of global integer-array reduc-
tion is shown in Figure 7(b) for a fat-tree network. Observe that the network with 8 port
switches performs better than a network with 32 port switches for message sizes greater
than 64 bytes (16 integers or more). The 32 port performance is affected by the stalls in
the reduction pipeline for large packets (Section 2). Multiple combine units enhance the
performance of 32 port switches. We simulated the tree based hierarchical scheme pre-
sented in Section 2. Here, each leaf in the tree (Figure 3(b)) combines application data
from a subset of ports in the switch. We take advantage of the fact that reductions on a
fat-tree network require only one upper-level port and atmost K/2 lower-level ports. So,
in our reduction simulation we used 3 combine units, one for the parent of the tree and
two for combining application data from K/4 lower-level ports in each switch. Reduc-
tion completion time with 32 port switches and 3 combine units (Figure 7(b)) shows
that even a small number of additional reduction units can achieve good performance
for reductions with large messages.

Synthetic MD Benchmark: We present the performance of a synthetic benchmark that
emulates our molecular dynamics application NAMD. Several processors in NAMD si-
multaneously multicast atom coordinates to a small subset of processors, which com-
pute forces on those atoms and return results back to the source processor. The size
of this subset typically varies between 13 and 40. In the synthetic benchmark, P/16
processors multicast data to random destinations with an average fanout of 16. So on
256 nodes, 16 nodes send multicast messages with an average fanout of 16. Here fanout
represents the number of destination nodes of a multicast. The network simulator has
a subnet manager component that builds multicast trees before each multicast. The ap-
plication component of the simulator requests the subnet manager to build trees before
each new multicast. In NAMD, each multicast is persistent between load-balancing
phases and can use the same set of trees. To simulate this behavior with random mul-
ticast destinations, we made the tree build operations happen in zero time. Thus the
plots effectively show the behavior of several un-correlated multicasts happening si-
multaneously in the network. Figures 8(a) and 8(b) show the performance of this syn-
thetic benchmark with hardware multicast and multicast with point-to-point messages
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on 256 nodes with average fanout of 16. The figures clearly show the advantage of hard-
ware multicast. As the network with 8 ports has more levels and hence more points of
contention, hardware multicast has more performance gains. On parallel systems with
thousands of nodes, even with 32 port switches there will be several levels and hence,
more contention for switch outputs. We believe that performance gains of hardware
collectives on large systems using 32 port switches is indicated by Figure 8(b).

5 Summary and Future Work

In this paper, we presented the advantages of output queuing for supporting hardware
collectives in parallel system interconnects. We showed that an output-queued router
with crosspoint buffering achieves better performance with multicast than some of the
related work presented in literature. Multicast is quite easy to implement in our router
and it avoids deadlocks and other problems faced by input queued routers.

We showed that output queuing also has impressive performance with permutations
on fat-tree networks. We are able to achieve almost full network throughput for common
permutations with 32 port switches and 4 packet buffers. Large radix crossbars enable
us to build fat-tree networks with fewer levels, minimizing network contention. Thus,
we show the need to build large radix routers. We also presented schemes to support
reductions in switches. We extend a barrier scheme presented in literature to support
reductions. We show that the scheme with only one barrier unit does not scale for large
packet reductions. We then presented a hierarchical scheme that scales to high radix
routers and large reductions. A performance comparison of the two schemes is also
presented in the paper. We also described an algorithm to build spanning trees on fat-
tree networks. This greedy algorithm uses heuristics that aim at minimizing contention
on the upward path of packets and also the routing memory required for the collectives.
We also presented the performance of several simultaneous multicasts used by NAMD.

We plan to study output queuing switch with input flow-control buffers. For In-
finiBand 4X, buffer space at cross-points may not be a serious issue. However with
higher bandwidth networks the RTT would become several packets, requiring input
flow-control buffers. Having such an input buffer will reduce total buffer space but may
increase the hardware logic, which might be an interesting trade-off to study.
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Abstract. CPE-based IPsec VPNs have been widely used to provide
secure private communication across the Internet. As the bandwidth
of WAN links keeps growing, the bottleneck in a typical deployment
of CPE-based IPsec VPNs has moved from the last-mile connections
to the customer-edge security gateways. In this paper, we propose a
clustering scheme to scale the throughput as required by CPE-based
IPsec VPNs. The proposed scheme groups multiple security gateways
into a cluster using a transparent self-dispatching technique and allows
as many gateways to be added as necessary until the resulting through-
put is again limited by the bandwidth of the last-mile connections. It also
includes a flow-migration mechanism to keep the load of the gateways
balanced. The results of the performance evaluation confirm that the
clustering technique and the traffic-redistribution mechanism together
create a transparent, adaptive, and highly scalable solution for building
high-performance IPsec VPNs.

1 Introduction

As the Internet becomes the most widely used transport for information delivery,
it is logical for people to move away from traditional private networks consisting
of dedicated circuits and turn to VPNs, or leveraging the Internet for private
communication, for the reason of cost savings and convenience [1]. In order
to maintain data security during the transmission of private information over
the public Internet, the technologies used to implement VPNs usually make
use of various encryption and authentication techniques based on cryptographic
operations in such a way that the so-called tunnels are established before data
transmission and the data flowing through the tunnels is protected. A commonly
referred to example is the tunnel mode defined in the IPsec standard [2].

Among all approaches, Customer Premise Equipment-based (CPE-based)
VPNs are one of the most popular. Fig. 1 shows a VPN between two organiza-
tions and the location of the tunnels. With CPE-based VPNs, private commu-
nication among coalition members can be achieved without requiring Internet
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Fig. 1. Tunnels in a typical CPE-based VPN terminate on the respective security
gateways residing in the both sides of the VPN

backbone (e.g., service providers) to offer special services other than network
connectivity. Besides, as the IPsec protocol becomes a globally recognized stan-
dard in the industry, almost all CPE-based VPNs in the modern times run the
IPsec protocol [3] and are potentially interoperable.

Despite the advantages such as interoperability and transparency (i.e., hosts
behind the gateways are not required to implement the IPsec protocol), the
centralized processing model limits the scalability of CPE-based IPsec VPNs.
Since each security gateway serves as the endpoints of some tunnels, it has to
deal with the aggregated traffic passing through the tunnels rather than just
the traffic sent to and received from a single host. Worse yet, cryptographic
operations are usually computation-intensive and are likely to consume a large
amount of processing power even if only a small volume of traffic is being pro-
cessed [4][5][6].

The drawback of poor scalability did not cause significant problems until
recently in that the performance of a VPN was generally limited by the slowest
link, which was one of the last-mile connections. Under such circumstances,
security gateways implemented in low-cost RISC architectures with software
encryption/decryption were adequate to the job. However, as broadband services
like Fiber To The Home/Fiber To The Building (FTTH/FTTB) [7] become more
and more popular, the bandwidth between a network and Internet backbone may
grow beyond tens or even hundreds of Mbps in the near future. Since the original
bottleneck is removed, the security gateways now become the new bottleneck.

In this paper, we propose a clustering scheme to scale the throughput of
CPE-based IPsec VPNs. The proposed scheme aggregates the processing power
of multiple security gateways by means of a transparent self-dispatching tech-
nique and hence allows as many gateways to be added as necessary until the
resulting throughput is again limited by the bandwidth of the last-mile connec-
tions. We also create our own flow-migration mechanism to keep the load of the
gateways balanced. The rest of the paper is organized as follows. Section 2 gives
a brief introduction to some important research efforts in this area, especially
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those devoted to improving the performance of security gateways. Section 3 de-
scribes various parts of the proposed scheme in great details, followed by the
performance evaluation presented in Section 4. Section 5 then concludes the
paper by summarizing our achievements.

2 Related Work

For the purpose of improving VPN scalability, researchers and vendors have
created various techniques and different provisioning models. In this section,
we first introduce a relatively new type of VPNs, the network-based IP VPNs,
which gains much market interest, and then discuss hardware-assisted accelera-
tion technologies for IPsec processing.

2.1 Network-Based IP VPNs

In order to prevent customers with high-volume VPN traffic from paying for
expensive security gateways, service providers and equipment vendors proposed
the idea of network-based IP VPNs [8][9]. Instead of requiring each customer to
acquire a separate security gateway, service providers deploy powerful provider-
edge VPN devices that are capable of sustaining a large number of concurrent
tunnels and begin to promote secure data transmission as a new service [10].
Thus, VPN tunnels terminate on provider-edge devices and only regular routers
are needed on the customer edges. Therefore, customers may get rid of the cost
incurred by the deployment and maintenance of specialized security gateways.

The major issue of network-based IP VPNs is the tradeoff between security
and scalability [11]. When customers delegate the responsibility for deploying,
configuring, and maintaining the devices that are endpoints of VPN tunnels, it is
implied that customers must trust their service providers because data gets en-
crypted after it enters the networks of service providers and service providers may
have a chance to inspect or modify the data to be transferred. (In fact, service
providers will certainly alter the data in order to transform it into the encrypted
form.) Unfortunately, service providers are not always trustworthy, and there
are also customers who want better control over the data entering/leaving their
networks. After all, security is the primary reason why customers are willing
to pay for VPNs in the first place. The proposed scheme does not make such
tradeoff. That is, it improves the scalability of CPE-based IPsec VPNs without
sacrificing the security.

2.2 Hardware-Accelerated IPsec Processing

Software implementation of packet processing functions is often criticized for
their low performance. Therefore, as the IPsec protocol becomes mature, it is
natural for researchers and vendors to invent new hardware that accelerates the
cryptographic primitives used in IPsec processing. Such performance-enhancing
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approach is often classified as the scale-up approach [12] because the primary
focus is to increase the computation power of a single unit.

Various designs of IPsec-acceleration ASICs and architectures have been pro-
posed and evaluated. [13] proposed a cryptographic coprocessor specialized for
AES processing with a maximum throughput of 3.43 Gbps, and [14] described
the design of a hardware accelerator which supported many algorithms specified
in the IPsec standard, including AES, 3DES, HMAC-MD5 and HMAC-SHA1.
[15] compared different hardware architectures for high-performance VPN de-
vices and estimated the total cost of each. [16] presented the benchmarking re-
sults of a security-gateway implementation over the IXP425 network processor
developed by Intel Corporation, and [17] evaluated the performance of several
commercial products, some of which were also implemented on the IXP425 net-
work processors. [18] discussed another security-gateway implementation using
Intel IXP1200 network processor, a more powerful one in the family.

Although specialized hardware can be created to improve the performance of
certain cryptographic primitive to a great extent, the ASIC-design approaches
are also infamous for their inflexibility. If the protocol evolves or a flaw in the de-
sign is found after the production of certain ASIC, the revision of the ASIC will
have to restart an entire silicon spin, which is both time-consuming and costly.
Alternatively, the emerging technology of network processors [19] attempts to
overcome the limitation of inflexibility by introducing highly programmable
hardware and seems to have successfully drawn much attention. However, as the
flexibility increases, the complexity of programming also raises. Besides, vendors
have created a wide variety of incompatible programming models, resulting in
long learning curves of system integration even for experienced professionals.

In contrast to the scale-up approach, our scheme follows the scale-out ap-
proach [12], in which multiple units cooperate to allow higher throughput of
IPsec processing, and does not suffer the limitations mentioned above. In addi-
tion, it does not interfere with hardware acceleration and hence can be combined
with the scale-up approach to achieve even higher performance.

3 The Proposed Scheme

In this section, we start by introducing the reference system architecture and
then discuss two important aspects, the techniques for transparently dispatch-
ing outbound VPN traffic and the mechanisms for traffic redistribution. Subse-
quently, we describe the proposed scheme in detail.

3.1 System Architecture

Fig. 2 shows a part of a CPE-based VPN from the perspective of the site that
interests us. It corresponds to the left half of Fig. 1 with the difference that
the single security gateway on which VPN tunnels terminate is replaced by a
cluster of multiple security gateways. The cluster is constructed by surrounding
all member gateways with two Ethernet switches and adding a third network
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Fig. 2. The cluster is constructed by surrounding multiple security gateways with
switches so that it can replace a single security gateway without changing the net-
work topology external to the cluster

interface to each gateway for interconnection. (The third interfaces, the switch
used for interconnection, and the cables are not explicitly shown in Fig. 2.) The
construction of the cluster is so designed that it can be inserted into the exact
location in which the original security gateway resides.

As shown in Fig. 2, there are N security gateways in the cluster. We assume
that there are also N security gateways in the remote cluster (i.e., the other side
of the VPN). Furthermore, for each tunnel terminating on the original gateways
in Fig. 1, there is a counterpart between each pair of the ith gateway in the
local cluster and the ith gateway in the remote cluster, where 1 ≤ i ≤ N . That
is, outbound VPN traffic sent from the ith gateway in one cluster is always
destined for the ith gateway in the other cluster. The purpose of making these
assumptions is merely to keep the following description away from irrelevant
complications. The assumptions can be easily relaxed with minor adjustments.

3.2 Traffic-Dispatching Techniques

In a typical site-to-site scenario of CPE-based IPsec VPNs, when a host has
a packet to send to the other side of the VPN, it first looks up IPG, the IP
address of the security gateway, in its routing table. Then the host determines
MACG, the layer-2 MAC address corresponding to IPG, by excercising the
ARP protocol. After the host gets MACG, it encapsulates the packet with a
properly constructed frame and places the frame on the wire.

Since each host generally follows the procedure described above, two tech-
niques can be used to distribute the traffic generated by a group of hosts over
multiple security gateways. First, we may assign different IPG’s to individual
hosts by manipulating their routing-table entries so that the frames sent from
the hosts will be destined for different gateways by default. Second, we may im-
plement customized ARP processing modules on the security gateways so that
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individual hosts will receive different values of MACG for the same IPG. Note
that both techniques make the frames self-dispatched and eliminate the need for
centralized dispatchers.

A major disadvantage of the first technique is the lack of transparency. This
actually defeats the purpose of making a cluster. On the contrary, when the
second technique is adopted, the clustered security gateways share the same
IP address, IPG, on the LAN side (i.e. on the network interfaces connected to
SWLAN, which is the left switch within the cluster in Fig. 2) and present the
consistent image of a single but more powerful gateway to the hosts. the second
technique also limits any customization within the cluster and hence does not
require the hosts to change their original behavior. In addition, since most hosts
implement ARP processing in a soft-state fashion, the second technique will
have less trouble when the bindings between IPG to various MACG’s need to
be altered. Therefore, the proposed scheme adopts the second traffic-dispatching
technique. Section 4.2 demonstrates the effectiveness of this choice.

The two traffic-dispatching techniques mentioned above have their corre-
sponding traffic-redistribution mechanisms. When the first technique is used, it
is possible for the security gateways to indirectly update the routing tables of
the hosts via ICMP Redirect messages from time to time. However, such traffic-
redistribution mechanism requires cooperation from the hosts and is less feasible.
As for the second traffic-dispatching technique, we can change the behavior of
the customized ARP processing modules on the security gateways to always re-
plying with the MAC address of the least-loaded gateway when responding to
ARP requests. The major drawback of this mechanism is its slow response to
the variation of the traffic pattern in that it acts passively and the effective-
ness depends on the timeout value of the ARP-cache entries stored in individual
hosts. Since both mechanisms are not good enough, we decide to create a third
mechanism, which is described as follows.

3.3 Clustering with Traffic Redistribution

As shown in Fig. 2, the cluster of the security gateways also plays the role of
the edge router. Therefore, in the phase of initial setup, the Ethernet interfaces
connected to SWLAN are configured to share IPG as their common IP address,
and those interfaces connected to SWWAN are configured to have distinct public
IP addresses. The routing table and the VPN software of each gateway are
configured to set up VPN tunnels in the way mentioned in Section 3.1. Once
properly configured, each of the security gateways is able to process VPN traffic
to and from the tunnels and also route non-VPN traffic to and from the Internet.
Some final steps of the initial setup are depicted in the following algorithm.

Algorithm 1. Additional preparation work in the phase of initial setup

1. Generate V, a set of K virtual MAC addresses, where K is a sufficiently large
number, compared with the number of Ethernet interfaces in the LAN in
which the cluster resides. Each address must be unique in the same segment.
(Locally administered Ethernet addresses are good choices.)
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2. Choose h, a hash function that takes m, a MAC address, as the input and
maps it to v, an element in V. That is,

h : M → V, where M = {m | m ∈ Z, 0 ≤ m ≤ 248 − 1}.

3. Equally partition V into subsets V1, V2, V3, · · ·, VN , where N is the number
of security gateways in the cluster.

Succeeding the phase of initial setup, each security gateways in the cluster
runs the following four algorithms.

Algorithm 2. Frame processing

1. Define a flow, noted as Fm, to be the set of all Ethernet frames sharing a
common destination MAC address, m.

2. In the outbound direction: For each element v in Vi, modify the frame-
processing module running on Gi, the ith security gateway, 1 ≤ i ≤ N , to
additionally accept and process the Ethernet frames (i.e., to pass the received
frames to upper-layer VPN software) belonging to Fv. Gi is referred to as
the responsible owner of Fv.

3. In the inbound direction: Modify the frame-processing module running
on Gi in such a way that every frame sent to a destination MAC address m
in the LAN will always have h(m) as its source MAC address.

Algorithm 3. Port-learning trigger

1. For each element v in Vi, set up a timer routine on Gi to periodically
transmit unsolicited Ethernet frames with source MAC address being v to
refresh the forwarding table of SWLAN so that flooding can be avoided.

Algorithm 4. ARP Processing

1. Upon receiving an ARP request with respect to IPG, each Gi extracts the
source MAC address m from the request and computes x = h(m).

2. If x ∈ Vi (i.e., Gi is the responsible owner of Fx), Gi sends back an ARP
reply with the answer being x. Otherwise, Gi ignores the ARP request.

The above three algorithms together create the illusion of a super gateway
device with many built-in Ethernet interfaces. With carefully selected K and h,
each host in the LAN can be viewed as being directly connected to an individual
Ethernet interface of the emulated super gateway device. These algorithms take
advantage of the self-learning procedure implemented in every transparent bridge
[20][21] and successfully realize fully decentralized traffic distribution. The details
of traffic redistribution are described as follows.

Algorithm 5. Flow migration

1. Define the predecessor of Gi, which is denoted by p(Gi), to be Gi−1 when
2 ≤ i ≤ N and GN when i = 1. Define the successor of Gi, which is denoted
by s(Gi), to be Gi+1 when 1 ≤ i ≤ N − 1 and G1 when i = N .
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2. For every TL seconds, Gi sends its load information to p(Gi) through the
Ethernet interface designated for inter-gateway communication.

3. For every TM seconds, Gi makes a flow-migration decision based on the load
information it has. If the load of Gi is larger than the load of s(Gi) and the
difference is greater than a threshold value LD, then Gi randomly generates
a subset W (with a fixed size) of Vi and notifies s(Gi) about its selection
through the Ethernet interface designated for inter-gateway communication.
Otherwise, Gi does nothing and waits until the next round.

4. Upon receiving a notification message from p(Gi), Gi extracts W from the
message and, for each element w in W, Gi inserts it into Vi (i.e., Gi becomes
the new responsible owner for Fw) and also sends an acknowledging Ethernet
frame (with source MAC address being w) back to p(Gi) via SWLAN.

5. Upon receiving an acknowledging frame from s(Gi), Gi extracts the source
MAC address w, which is actually one of the elements previously picked by
Gi itself, from the frame and remove w from Vi.

As depicted in Algorithm 5, traffic redistribution is accomplished by reassign-
ing the flows to new responsible owners. The acknowledging frame sent in step 4
serves dual purposes. In addition to informing p(Gi) that Gi has completed the
processing of the flow migration regarding w, the acknowledging frame also up-
dates the forwarding table of SWLAN so that SWLAN will forward later frames
destined for w through the port to which Gi is connected instead of the original
port to which p(Gi) is connected. Again, Algorithm 5 relies on the self-learning
behavior of SWLAN.

4 Performance Evaluation

We implement the proposed scheme as collaborating kernel modules running
with Linux kernel (version 2.4.29). Openswan (version 1.0.9) is chosen to be the
VPN software. The environment and the results of tests are presented as follows.

4.1 Test Environment

Fig. 3 shows the network diagram of the test environment. We use the world-
recognized test equipment, SmartBits, from Spirent Communications, Inc., to
generate a large volume of traffic in each test. In the lower half of Fig. 3, each
unit is an x86 machine equipped with an Intel Xeon 2.4 GHz processor. The
three machines on the left and the three machines on the right comprise two
clusters, respectively, and the machine in the middle is configured as a router
that simulates the Internet backbone. The PC in Fig. 3 runs the SmartBits
control application, SmartFlow (version 3.0), on top of Microsoft Windows XP.

4.2 The Effectiveness of Clustering

In this test, we use SmartBits to simulate 224 individual hosts on each side of
the VPN. Every simulated host has a distinct IP address and a unique MAC
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Fig. 3. SmartBits is used to generate a large volume of traffic that passes through the
clusters of the security gateways in both directions

address, and will keep sending packets to its counterpart residing in the other
side of the VPN once the test starts. The IP addresses and the MAC addresses of
the simulated hosts on the left side of the VPN occupy the continuous ranges of
192.168.203.24–247 and 00:00:03:00:00:18–F7, respectively, and the IP addresses
and the MAC addresses of the simulated hosts on the right side of the VPN
occupy the continuous ranges of 192.168.204.24–247 and 00:00:04:00:00:18–F7,
respectively. The endpoint pairs of the tunnels are (192.168.103.1, 192.168.104.1),
(192.168.103.2, 192.168.104.2), and (192.168.103.3, 192.168.104.3), respectively.

Since the traffic pattern is fixed over time, we temporarily disable the traffic-
redistribution functionality (i.e., Algorithm 5) and focus on the scalability of the
chosen traffic-dispatching technique. We set K = 256 and make V consist of all
MAC addresses in the range of 02:88:88:88:88:00–FF. We also choose h to be

h(m) = 0x028888888800 | (m % K), where | is the bitwise-or operator and
% is the modulo operator.

Then we measure the zero-loss throughput under the combinations of three dif-
ferent cluster sizes, two different frame sizes, and two popular types of IPsec
ESP tunnels. Fig. 4 shows the results.

The numbers and the bars in Fig. 4 show the effectiveness of the chosen
traffic-dispatching scheme. The proposed scheme consistently exhibits high scal-
ability under all combinations. Taking the first group, 3DES-SHA1 tunnels with
input frame size being 64 bytes, as an example. When the cluster size increases
from 1 to 2, the zero-loss throughput is doubled. As we put three gateways into
each cluster, the zero-loss throughput becomes 2.98 times, almost tripled.

4.3 The Effectiveness of Traffic Redistribution

Two parameters used in this test are different from those used in the previous
test. First, the traffic-redistribution functionality is enabled. Second, the MAC
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Fig. 5. Test results show that the overall throughput keeps growing to its maximum
as the traffic is getting more and more evenly distributed

addresses of the simulated hosts on the two sides of the VPN are now the two
arithmetic sequences 00:00:03:00:18:00, 00:00:03:00:19:00, 00:00:03:00:1A:00, · · ·,
00:00:03:00:F7:00 and 00:00:04:00:18:00, 00:00:04:00:19:00, 00:00:04:00:1A:00,
· · ·, 00:00:04:00:F7:00, respectively. Using these addresses with the chosen h
makes the first security gateway in each cluster become the initial responsible
owner of all flows when the test starts.

This time we use 3DES-SHA1 tunnels, a value of 3 for N , a value of 1.33 for
TL, a value of 4 for TM , a value of 10% for LD, and a value of 4 for the size of
W. We also take a snapshot every 30 seconds during the test. When the test
starts, we instruct SmartBits to generate bidirectional 100 Mbps of traffic in the
form of 1,408-byte frames for 300 seconds. The test results are shown in Fig. 5.

In Fig. 5, the bars designate the measured throughput of the bidirectional
VPN traffic in the snapshots taken every 30 seconds. The values of the bars
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can be found on the left vertical axis in the figure. For example, the value of
the rightmost bar in Fig. 5 is 100 Mbps. That means the two clusters forming
the VPN are able to process 100 Mbps of left-to-right VPN traffic and another
100 Mbps of right-to-left VPN traffic at the same time. The four lines in the
figure represent the ratio of frame loss and the CPU load of individual gateways
in the left cluster, respectively. The values of the data points in the lines can be
found on the right vertical axis in the figure.

The bars show a climbing trend of overall throughput and, around the 180th
second, the throughput reaches its maximum of 100 Mbps, which is exactly
the same as the offered traffic. The lines representing the CPU load provide an
evident trace of the progression of traffic redistribution. As soon as a sufficient
number of flows have been reassigned and the CPU load of the first gateway
drops below 100%, there becomes no frame loss at all.

5 Conclusions

In this paper, we propose a scale-out scheme for constructing high-performance
CPE-based IPsec VPNs via clustering and traffic distribution. The demand for
higher-throughput security-gateway clusters arises because of two factors. First,
as the bandwidth of WAN links keeps growing rapidly, the last-mile connections
are now no longer the bottleneck. After the original bottleneck is removed, the
edge devices in IPsec VPNs become the new bottleneck. Second, scale-up ap-
proaches will quickly hit various physical, electrical, and electronic limitations,
and have the disadvantages of inflexibility as well as high software complexity.

The proposed scheme groups a number of security gateways together to form
a clustering solution so that each cluster is capable of processing a large volume
of VPN traffic. High throughput is the result of both aggregating the process-
ing capability of multiple gateways and redistributing the outbound VPN traffic
when the load of the gateways becomes unbalanced. Aggregation of the process-
ing power is realized by a transparent self-dispatching technique that requires
no dispatchers, and traffic redistribution is accomplished by flow migration. The
proposed scheme is adaptive, scalable, and transparent. It responds to the vari-
ation of the traffic pattern promptly, and the throughput grows linearly as the
number of security gateways in the cluster increases. All customization is limited
within the clusters and no change to any other components outside the clusters
is needed. In addition, the proposed scheme does not suffer the limitations of the
scale-up approaches and can be combined with hardware-accelerated solutions
to achieve even higher performance.
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Abstract. Multistage Interconnection Networks (MINs) provide the re-
quired switching infrastructure for many shared-memory multiprocessor
systems and telecommunication networks. The concept of Supernetworks
is evolving in response to emerging computation and communication in-
tensive applications. Supernetworks exploit parallelism in both comput-
ing resources and communication infrastructures by interconnecting sev-
eral computing clusters via high-bandwidth communication links. Wave-
length Division Multiplexing (WDM) technology provides the commu-
nication infrastructure for Supernetowrks by dividing the bandwidth of
a single fiber into numerous channels that can be used independently.
In this paper, we investigate several architectures for WDM MINs that
enhance the Supernetworks switching infrastructure. Our objective is to
propose a new architecture and to evaluate its hardware complexity by
comparing it to other WDM MINs architectures.

1 Introduction

Computing applications appearing on the horizon are not only computation
intensive, but also communication intensive (e.g. genomic and visualization ap-
plications). The concept of Supernetworks is evolving as a solution to meet the
challenges brought fourth by such applications. In Supernetworks, several dis-
tributed clusters are connected through multiple dedicated optical channels (See
Figure 1). Supernetworks exploit parallelism not only in the computing resources,
but also in the communication infrastructures [14].

Supernetworks can exploit parallelism in the communication infrastructure by
using Wavelength Division Multiplexing (WDM) technology [14]. WDM technol-
ogy exploits the tremendous bandwidth embedded in a single fiber by dividing
this bandwidth into several channels (wavelengths) that can be used indepen-
dently. To fully utilize the potential of WDM technology, advances in optical
switch architectures are required to provide a high-performance wavelength gran-
ularity switching that is cost-effective.

Over the last few decades, considerable research efforts have been focused on
developing photonic switch architectures, or Optical Cross-connects (OXCs). An
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Fig. 1. A generic architecture for Supernetworks

OXC provides the basic functionality of connecting signals from input ports to
the desired output ports. In WDM networks, signals may need to be switched in
both space and wavelength domains in order to establish the required connection.
For example, two signals on the same wavelength from two different input fibers
may need to be switched to the same output fiber. In such a case, Wavelength
Converters (WCs) are used to covert one of the signals to a different wavelength.

The main challenge in designing OXCs is to provide the required switching
functionality with minimum hardware components. Unfortunately, however, as
the number of wavelengths per fiber increases, larger space switches as well more
WCs are needed; leading to high-cost OXC designs. Multistage Interconnection
Network (MIN) are used to economically realize large space switches [12] [17]. In
general, a MIN interconnects a set of N input ports to a set of M outputs ports
using several stages of fixed-size switching modules. Most research on MINs have
focused on the design and development of pure space MINs, where signals are
only switched in the space domain [8] [21].

In this paper, we investigate WDM MINs that are capable of switching sig-
nals both in space and wavelength domains. Our objective is to propose a new
architecture and to evaluate its hardware complexity by comparing it to other
WDM MINs architectures. The new design transform the classical pure space
N−stage Planar network [16] to a space-wavelength Planar network.

The reminder of the paper is organized as following. Section 2 discusses differ-
ent design approaches for WDM MINs. The WDM Planar architecture and the
analysis of its hardware complexity are presented in Section 3. Section 4 reviews
some existing WDM MINs architectures. A comparison of architectures is given
in Section 5; Conclusions are presented in Section 6.

2 Designing a WDM MIN

In this section, we briefly review some existing design approaches for WDM
MINs. Then we describe the underlying design principle of the proposed WDM
Planer architecture.
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2.1 Existing Design Approaches

A straightforward approach to switch signals in both space and wavelength do-
mains is to use a classical space MIN and with one or more stages of WCs
before and/or after the space switch. Several architectures following this design
approach have been proposed in the literature, e.g. [19] [9] [13] [20]. Most WDM
architectures make use of Full-range WCs (or FWCs), e.g. [19]. FWCs are ca-
pable of converting any input wavelength to any output wavelength. With large
number of wavelengths, however, implementing FWCs may become impractical
or economically infeasible.

To avoid this problem, architectures with Limited-range WCs (LWCs) have
received more attention over the last few years [11] [20]. Unlike FWCs, LWCs
provide conversion between a sub-set of wavelengths. However, architectures
with LWCs may require more complex routing algorithms; making them less
attractive for packet/burst switching networks.

To reduce the cost of WDM switches, some approaches suggested the share
of a pool of WCs (FWCs or LWCs) within the switch [9] [13]. However, besides
their increased complexity, these architectures, in general, may have limited in-
terconnection capabilities [22].

Another design approach to realize WDM MINs is the wave-mixing architec-
tures [1][5]. Wave-mixing architectures make use of bulk wavelength converters,
based on optical nonlinearities, to simultaneously convert several signals [1].
Wavelength conversion occurs between the switching stages. Even though wave-
mixing architectures can reduce the overall number of WCs; however, up to
O(logW ) extra stages of WCs may be added to the MIN [1]. The extra stages
of WCs not only increase hardware complexity, but also increase the length of
the signal path, which in turn can increase signal attenuation and accumulated
cross-talk noise.

2.2 Wavelegnth Exchanging Cross-Connect — WEX

Our objective is to develop an architecture that can switch signals in space and
wavelength while reducing the following factors:(1) the number of switch stages;
(2) the total number of hardware components; and (3) the cost of wavelength
conversion. To achieve this, the proposed architecture employs Wavelength Ex-
change Optical Crossbars (WOCs, for short) [6]. WOC integrates space and
wavelength domains in a way that signals can be switched in both domains si-
multaneously and seamlessly. Switch architectures that use WOCs as building
blocks are called Wavelength exchanging cross-connect (WEX) [6].

A WOC has two input ports, two output ports, and a control signal (See Fig-
ure 2). The input to an WOC is two signals S1 at wavelength λ1, and S2 at wave-
length λ2. When the control signal is OFF ; an input signal to the WOC appears
at an output port with the same wavelength. This functionality is equivalent
to the bar state in a traditional crossbar switch. Conversely, when the control
signal is ON, the WOC performs both switching and conversion simultaneously.
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(a)

Control Signal = OFF

WOC

Control Signal = ON

WOC

(b)

λ 1 2λ

Fig. 2. The WOC and its different configurations: (a) Bar state (b) Simultaneous
switching and wavelength conversion

WOCs can be realized using the wavelength exchanging phenomenon, where
the power of two signals at different wavelengths can be simultaneously ex-
changed [18]. Wavelength exchanging has been theoretically and experimentally
demonstrated using Four Wave Mixing (FWM) [10] [18], and the 2-D periodic
χ(2) nonlinear photonic crystals [3].

The new architecture have the following main advantages:

1. Space switching and wavelength conversion are performed simultaneously,
and hence, eliminating the need for separate wavelength conversion devices.
This leads to a switch architecture that has a smaller total number of com-
ponents as well smaller number of components in a signal path;

2. Scalability occurs in an orderly fashion, and hence, systematic methods to
construct architectures with an arbitrary number of wavelengths can be de-
veloped; and

3. Wavelength conversion is performed between two predefined and fixed wave-
lengths. This not only can reduce the wavelength conversion cost, but also
it reduces the switch configuration time and complexity.

3 The WDM N−Stage Planar Network

Figure 3 shows the 8-Stage Planar network [15] [16]. The N×N Planar net-
work requires N stages of SEs. In the following, we present some notations and
definitions, give a systematic method for developing a WDM N−Stage Planar
network, and analyze its hardware complexity.

3.1 Definitions and Notations

We denote a WDM switch with F input fibers and F output fibers, where each
fiber carries W wavelengths as Wλ(F × F ) . The set of fibers F are denoted
as {f1, f2, ..., fF }, and the set of wavelengths W are denoted as {λ1, λ2, ..., λW }.
The dimension of (Wλ)F × F switch is denoted by N × N , where N = FW .
Without the lose of generality, we assume both F and W are powers of 2.

A signal on wavelength λw in fiber j is denoted as λ
fj
w . We refer to a 2 × 2

switching element inside the architecture as a switch element (SE). The input
stage of an architecture is the first stage of the architecture, and the output stage
is the last stage.

An element in the architecture refers to either a SE or a WOC. We use the
notation (a, b) to denote the label of an element in the switch that has two inputs
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at wavelengths λa and λb. For space switches, the two inputs must be at the same
wavelength, i.e., a = b, so for presentation simplicity, the label (k, k) for a 2× 2
space switch is simply denoted by a label k unless otherwise is specified.

3.2 The Construction of a W λ(F × F ) WDM Planar Network

Figure 4 shows the 4λ(2 × 2) WDM Planar network. It can be noted from the
structure of the Planar network (Figure 3) that stages with odd numbers (with
the input stage being number 1) have larger number of elements compared to
stages with even numbers. Thus, in order to reduce the number of WOCs, ele-
ments of the input stage must be SEs. This can be simply achieved by connected
every two same wavelengths form input fibers to the same input switch as shown
in Figure Figure 4.

We generalized the above design approach to develop the method shown in
Figure 5. This method can be used to systematically develop a WDM Planar
network with an arbitrary number of wavelengths and fibers. The method can
be applied to construct a 2λ(4× 4) Planar network as shown in Figure 6.

3.3 Hardware Complexity

The total number of components can provide a good estimation of the hardware
complexity of the architecture. The following lemma gives the total number of
space switches and WOCs in an Wλ(F × F ) WDM Planar architecture.

Lemma 1. A Wλ(F × F ) WDM Planar architecture contains (N/2)(W − 1)
WOCs and (N/2)(N −W ) space switches.

Fig. 3. The 8−Stage Planar architecture
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Fig. 4. The 4λ(2 × 2) WDM Planar architecture
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Construct − PLANAR(W, F ):

1. Construct a WF × WF Planar network.
2. Label elements in the first two stages as follows:

(a) Label every F/2 space switches in the input stage with label l, l =
1, 2, ..., W . Repeat labels until all input switches are labeled.

(b) Construct a set G = {g1, g2, ..., gN/2} input stage switches’ labels,
in order.

(c) Assign an element i in the second stage a label L(i) = (i, i + 1),
i = 1, 2, ..., (N/2) − 1.

(d) if an element has a label (a, b), and a = b:
Replace this element with a space switch.

else
Replace element with a WOC with label (a, b).

3. Repeat the labels of the first two stages (WF/2) − 1 times.

Fig. 5. The Construct − P lanar(W, F ) method
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Fig. 6. The (2λ)4 × 4 WDM Planar architecture

Proof. From the construction of the WDM Planar network, similar wavelengths
from each pair of input fibers are connected to the same switch in the input stage.
Consider a single wavelength λi; there are F/2 consecutive switches in the input
stage that have input signals at λi. Therefore, in the second stage, there should
be (F/2) − 1 space switches with input signals at λi. For W wavelengths, the
second stage should contain a total of W [(F/2)− 1] space switches. Therefore,
the total number of WOCs in the second stage is (WF/2) − 1 − W [(F/2) −
1] = W − 1 WOCs. From the recursive structure of the network, there are N/2
stages with the same structure of the second state, thus, there are (N/2)(W −
1) WOCs in the architecture . Since the Planar network has (N/2)(N − 1)
elements; thus, there are (N/2)(N − 1)− (N/2)(W − 1) = (N/2)(N −W ) space
switches. �

4 Architectures for Comparison

In this section, we review some existing WEX architectures that we use in Section
6 for evaluating the hardware complexity of the proposed Planer WDM network.
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4.1 The WDM Crossbar Network

Figure 7- a shows the classical optical crossbar switch [15]. The SEs of the switch
can be 2× 2 Directional Coupler switches, or Semiconductor Optical Amplifiers
(SOAs). To allow the switching of signals at multiple wavelengths, any SE with
two input signals at different wavelengths must be replaced with a WOC (see
Figure 7- b). It may be noted that, a Wλ(F × F ) WDM crossbar, contains
(N/2)(W − 1) WOCs, and (N/2)(2N −W + 1) space switches [7].

4.2 The WDM Benes Network

Benes network [2] is known as one of the most efficient MINs due to its small num-
ber of switching elements and its low insertion loss. One possible design to realize
a 2λ(2×2) WDM Benes network is the one shown in Figure 8-a [6]. To construct
the 2λ(2×2) WDM Benes, we start with a 4×4 space Benes network, and replace
the two SEs in the middle stage with a pair of WOCs. From the connectivity
pattern between the input and middle stage, it can be seen that both WOCs
have the label (1, 2). It is worth noting that, other constrcutions for the 2λ(2×2)
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WDM Benes can be obtained by changing the connectivity pattern of the wave-
lengths to the input stage switches [6]. It can be shown that a Wλ(F×F ) Benes
architecture contains WF space switches and (WF/2)(2log(WF )− 3) WOCs.

4.3 The WDM Clos Architecture

Let N = rn, a 3-stage N ×N Clos network [4], denoted by Clos(m, n, r), has r
switches of size n ×m at the first stage; m switches of size r × r in the second
stage; and r switches of size m × n in the third stage. Clos network is strictly
nonblocking if m ≥ 2n− 1 and it is rearrangeable nonblocking if m ≥ n.

One possible design to develop a WDM Clos network is to connect similar
wavelengths from all input fibers to the same switch in the input stage [7]. In
such a design, the first and third stages of the architecture contain pure space
switches. The middle stage, however, contains m WDM crossbar switches (see
Section 5.1). The total number of WOCs is determined by the middle stage of
the switch. It can be seen that a Wλ(F × F ) WDM Clos with m = n contains
(mW/2)(4F + W + 1) space switches and (mW/2)(W − 1) WOCs [7].

5 Comparison of Architectures

In this section, we compare the total number of SEs and WOCs for different
WDM MIN networks discussed in Sections 3 and 4. Figures 9-a and 9-b, respec-
tively, compare the total number of SEs and WOCs of different architectures for
F = 8 and W = 2, 4, 8, and 32. For the Clos network, we chosen m = F = 8.

As shown in the figures, for small number of wavelengths (W ≤ 8), Benes net-
work requires more WOCs compared to all other architectures. Moreover, the
cost of the Planar network seems to be very close to that of the Clos network
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in terms of the number of SEs and WOCs. When the number of wavelengths
increases(W > 8), Benes network requires the least number of components com-
pared to all other architectures.

In general, it can be concluded that, for networks with large number of wave-
lengths, Benes network can provide a cost-effective design in terms of the number
of SEs and WOCs. It is worth noting that, although Benes network requires less
number of elements compared to Planar network, however, Benes network con-
tains large number of waveguide crossovers as opposed to the Planar network
which contains no waveguide crossovers. Crossover can potentially complicate
the implementation of the switch in integrated optics. Moreover, the repetitive
multistage interconnection design of the Planar network can reduce its imple-
mentation cost compared to other architectures.

6 Conclusions

In this paper, we developed a new WDM MIN that transforms the pure space
N−stage Planar network to a WDM Planar network that is capable of switching
signals in both space and wavelength domains. The new design requires the same
number of stages as in the pure space Planar network. In addition, wavelength
conversion in the proposed design is performed between two fixed and predefined
wavelengths, which eliminates the need for the expensive FWCs and simplifies
the configuration of the switch.
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Abstract. The use of traditional TCP, in its present form, for reliable
transport over Ad hoc Wireless Networks (AWNs) leads to a significant
degradation in the network performance. This is primarily due to the
congestion window (cwnd) updation and congestion control mechanisms
employed by TCP and its inability to distinguish congestion losses from
wireless losses. In order to provide an efficient reliable transport over
AWNs, we propose Learning-TCP, a novel learning automata based reli-
able transport protocol, which efficiently adjusts the cwnd size and thus
reduces the packet losses. The key idea behind Learning-TCP is that,
it dynamically adapts to the changing network conditions and appropri-
ately updates the cwnd size by observing the arrival of acknowledgment
(ACK) and duplicate ACK (DUPACK) packets. Learning-TCP, unlike
other existing proposals for reliable transport over AWNs, does not re-
quire any explicit feedback, such as congestion and link failure notifi-
cations, from the network. We provide extensive simulation studies of
Learning-TCP under varying network conditions, that show increased
throughput (9-18%) and reduced packet loss (42-55%) compared to that
of TCP.

1 Introduction

Ad hoc Wireless Networks (AWNs) are formed dynamically by a collection of
mobile wireless nodes in the absence of any fixed infrastructure. Communication
between any two nodes that are not within the radio range of each other takes
place in a multi-hop fashion, with other nodes acting as routers. The AWNs
are typically characterized by unpredictable and unrestricted mobility of the
nodes and the absence of a centralized administration. The AWNs are consid-
ered as resource constrained networks because of the limited bandwidth on the
network and limited processing and battery powers at the mobile nodes. These
networks are very useful in military, emergency rescue operations, where the
existing infrastructure may be unreliable or even unavailable, and also in com-
mercial applications, such as on-the-fly conferences and electronic classrooms.
Extensive research work on ad hoc wireless networking has been carried out on
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issues, such as medium access and routing [1] and [2]. In our paper, we focus on
the issues related to reliable and adaptive data transport over AWNs.

Transmission Control Protocol (TCP) is the de-facto protocol used for reli-
able transport over the Internet. However, using TCP in its present form for the
AWNs, degrades the performance of the networks, in terms of increase in the
packet loss and reduction in the average network throughput. The reasons are
as follows. TCP uses a deterministic cwnd updating mechanism that increases
cwnd on receipt of an ACK packet and decreases the cwnd on receiving three
successive DUPACK packets or upon the occurrence of an RTO. This deter-
ministic approach may often lead to the occurrence of congestion situations in
the network which further results in a high packet loss. The high packet loss
affects AWNs severely as they are highly constrained by the bandwidth and the
battery power. Another reason is the TCP’s inability to distinguish congestion
losses from the wireless losses, as a result of which TCP invokes the congestion
control mechanism for both types of the losses. Hence, in order to use TCP in
AWNs, an efficient mechanism must be provided with TCP for updating the
cwnd based on the network conditions and distinguishing the congestion losses
from wireless losses in order to take the appropriate action for each type of loss.

In order to provide an efficient reliable transport over AWNs, in this paper,
we propose Learning-TCP, a novel cwnd updating mechanism that aims at min-
imizing the losses due to congestion. Learning-TCP works without the explicit
feedback from the network and uses learning automata [8] to learn the net-
work behavior. Our work is motivated by the advantages of learning automata
over that of conventional mechanisms, such as machine learning and fuzzy logic
techniques. Learning automata based solutions learn the network state better
and faster and do not require modeling of the network. Unlike other techniques,
learning automata require simple algorithms for updating probabilities of vari-
ous actions, and the amount of information to be maintained and the number
of computations to be done are significantly low.

The learning automata consists of a learning automaton which provides a
simple model for adaptive decision making with unknown random environments.
The learning automaton interacts with the environment by selecting an action
from a set of actions. When a specific action is performed, the environment
provides either a favorable or an unfavorable response. The selection of action
could be either deterministic or stochastic. In the latter case, probabilities are
maintained for each possible action to be taken, which are updated with the
reception of each response from the environment. The objective in the design of
the learning automaton is to determine how the previous actions and responses
should affect the choice of the current action to be taken, and to improve or
optimize some predefined objective function.

The models of learning automata can be classified based on the number of
actions in the action set. The Finite Action-set Learning Automata (FALA) is
one such model which contains the finite number of actions and each action
corresponds to a range of responses provided by the environment. In FALA,
the number of actions need to be finite. However, such discretization may not
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be possible in all the situations as the discretization may be too coarse for the
problem, and a finer discretization may result in a large number of actions; these
large number of actions may increase the time to update the action probabilities
and also complicate the process of decision making.

A natural choice in such a case, would be to use the Continuous Action-
set Learning Automaton (CALA) [9] which has an infinite number of actions.
The basic idea is that, the CALA selects an action x at each time instant n,
where x is a real number chosen from a normal distribution with mean µ(n) and
standard deviation σ(n). For this purpose, the CALA maintains µ(n) and σ(n)
of the probability distribution and it updates these values at each time instant
based on the reinforcement received from the environment. The details about
the updating function used in CALA are provided in Section 3. For a detailed
description of learning automata, readers are referred to [8] and [9].

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 provides the design and functional details of Learning-TCP.
Section 4 presents the simulation results and analysis of the results. Finally,
Section 5 summarizes our work.

2 Related Work

Several proposals ([3]-[7]) have been made in order to address problems related to
the reliable transport over AWNs. These proposals, follow different approaches
for providing reliable transport over AWNs, and can be classified broadly into
two categories – network dependent and network independent approaches. Fig. 1
gives a detailed classification of these proposals. The proposals [3], [4], [5], and
[6] are network dependent as they rely on explicit feedback information from the
network, such as congestion, link failure, and available bandwidth notifications,
in order to work efficiently. However, network dependent proposals may perform
poorly when the feedback information from network is unavailable or unreliable,
which is more common in the AWNs. Hence, network independent approaches
are gaining research focus. The proposal [7], which belongs to this category, does
not require any feedback from the network. Instead, it performs loss classification
and takes appropriate actions, using fuzzy logic based approach. Here, the fuzzy
engine monitors the rate of change of RTT and the number of hops (obtained
from the routing protocol) in the TCP session and detects congestion when
RTT increases n times successively, in which every increment is larger than a
given α (where n and α are predefined). The channel error losses are detected
when the mean RTT is small. The path break errors are determined in a more
deterministic way - on the occurrence of an RTO.

There are several TCP variants, such as TCP Vegas and TCP Westwood that
focus on the updating the cwnd in wired/wireless environment. These proposals
follow a deterministic approach for updating the cwnd. However, to the best of
our knowledge, there exists no proposal for AWNs that focuses on the updation
of the cwnd by following a probabilistic approach and without relying on the
explicit network feedback.
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3 Design and Implementation of Learning-TCP

Learning-TCP uses a learning automata based approach to adapt to the network
conditions and updates the cwnd size, accordingly. Almost all the proposals made
for reliable transport over AWNs are dependent on the explicit network feedback
and moreover, they focus on distinguishing congestion and wireless losses in order
to take an appropriate action for each type of loss. However, Learning-TCP is
different from these proposals in three ways. Firstly, it does not rely on explicit
network feedback and secondly, the focus is to learn the network conditions and
accordingly update the cwnd size. Finally, the learning and controlling methods
used by Learning-TCP are probabilistic rather than deterministic.

Fig. 2 shows the relationship between various components of Learning-TCP
and the interactions of Learning-TCP with the environment. Learning-TCP is
compatible with TCP as it does not modify the semantics and header format of
TCP, but changes the cwnd updating mechanism. In order to learn the network
state and appropriately adjust cwnd, a learning automaton that implements
CALA is placed at each node that works along with TCP.

As shown in the figure, the learning automaton learns the network conditions
by observing the inter arrival times (IATs), where IAT denotes the time difference
between the arrival times of any two successive TCP acks1. Henceforth, in this
paper, we use network response to represent the IATs of the TCP packets. This
network response is transformed into a performance index that ranges between
[0,1]. The notation β(n) is used to represent the performance index at any time
step n. β(n) = 1 indicates the highest reward, and β(n) = 0 indicates a penalty.
Using the β(n), the probability updating algorithm, which is discussed in Section
3.2, updates the action probability distribution. Then, the learning automaton
selects an action that is essentially an amount of increment or decrement in
the cwnd size, using its current action probability distribution. Learning-TCP
handles DUPACKs in the same way as they are handled by TCP. However, in all
the cases, the cwnd updations are done only through the learning mechanism.

1 Throughout this paper, the term ack refers to both ACK and DUPACK packets.
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3.1 Obtaining the Network Conditions

In order to obtain the network conditions, the automaton maintains a window
called time window, which contains the N most recent IATs of the TCP acks and
calculates the average (mean) and standard deviation (sdev) of these N values.
It is often possible that an ack with a very high IAT causes a large (or sud-
den) increase in the mean, which may adversely affect the learning mechanism.
These fluctuations may be due to the poor channel conditions in the reverse
path (from receiver to sender, the case when acks take different path), in which
case Learning-TCP may wrongly interpret these conditions as congestion on the
forward path. In order to prevent these fluctuations, an IAT is added directly to
the time window and further considered in the mean calculation, only if the IAT
is in range [mean-sdev, mean+sdev]; otherwise the IAT is appropriately reset to
the nearest bound and added to the time window. This updated value is used in
future mean calculations. As the IATs are always bounded, the effect of a very
low (or high) IAT on the learning mechanism is minimized.

Upon receiving a TCP ack from IP at any time step n, using mean and current
IAT, as shown in Eq. 1, the learning automaton captures the network state into
a parameter called time ratio. The time ratio has an upper bound of 1 and a
lower bound of δ which takes the value −2. We assume that the maximum time
interval between any two consecutive events to be three times the mean, and
hence the value for δ is −2. Any ack that arrives later than three times that
of the current mean, is considered as a late ack and the time ratio is taken as
−2. The time ratio obtains a value close to 1 when the current IAT is negligible
compared to the mean, in which case, the ack is called an early ack.

time ratio =
mean− current IAT

mean
(1)

γ =
time ratio− δ

1− δ
(2)

As shown in Eq. 2, the normalized network response from time ratio is stored
as the parameter γ. Depending on the state of automaton, Increase-state or
Decrease-state (as described in Section 3.3), the automaton takes the perfor-
mance index β(n) as γ or 1 − γ. Using the performance index β(n) and the
continuous action updating algorithm, the automaton updates the µ(n) and
σ(n) of the action probability distribution. Section 3.3 provides more details
about the interpretation of the network response, the states of automaton, and
the expected behavior of the automaton for varying network conditions.

3.2 The Continuous Action Updating Algorithm

In this section, we provide an account of the updating algorithm used in the Con-
tinuous Action Learning Automata (CALA). In CALA, the number of actions
are infinite. The action probability distribution is assumed to follow a normal
distribution. The CALA is becoming popular as the functions for updating the
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action probability distribution are simple and it does not require the discretiza-
tion of the action set. Eqs. 3 and 4 correspond to the updating functions for µ(n)
and σ(n) of the action probability distribution at any time step n, respectively.
In our problem, µ(n) and σ(n) represent the mean and deviation of an effective
amount of update in the cwnd size.

µ(n + 1) = µ(n) + λ
βx(n) ×MSS

φ(σ(n))
x(n) − µ(n)

φ(σ(n))
(3)

σ(n+1)=σ(n)+λ
βx(n) ×MSS

φ(σ(n))

[(
x(n)− µ(n)

φ(σ(n))

)2

− 1

]
−λ×K × (σ(n)− σL)

MSS

(4)
where, φ(σ) = σL for σ ≤ σL (or) φ(σ) = σ for σ > σL > 0, x(n) is the action
taken at any time step n, λ is the learning parameter controlling the step size (0
< λ < 1), K is a large positive constant, σL is the lower bound on σ, and MSS
represents the maximum size of a TCP segment in bytes.

The idea behind the updating function is as follows. It essentially shifts µ(n)
towards x(n) for an action x(n) (amount of increment or decrement at time step
n). When the feedback is better (β(n) close to 1), the change in µ(n) is higher,
compared to when the feedback is poor (β(n) close to 0). The updating function
increases σ(n) in the following two cases: when |x(n)−µ(n)| > σ(n) and obtains
a better response from the environment or |x(n) − µ(n)| < σ(n) and obtains a
poor response from the environment; in all other cases σ(n) is decreased. There
is a reduction term in Eq. 4, the purpose of which is to gradually decrease σ(n)
towards σL, so that the automaton slowly moves towards a stable state.

3.3 Discussion About Learning-TCP

Here, we provide the details on the interpretation of the network response, the
states of automaton, and expected behavior for automaton in different network
conditions.

When the network is lightly loaded, the ack packets sent by the TCP receiver
arrive at the TCP sender at faster rate (i.e. with low IAT) than when the load in
the network is high. These packets are called early acks. The early acks, which
result in a value close to one for γ computed from Eq. 2, give an indication
that the network is currently lightly loaded and the cwnd should be increased
at a high rate, to make use of the network resources efficiently and to improve
the throughput. The high value for γ shifts the µ value towards a higher value.
We choose initial values for µ(0) to be 1 Byte and σ(0) to be 1 MSS number
of Bytes. When µ is reaching higher values, the probability for selecting actions
that increase the cwnd size increases. When the automaton continuously receives
late acks, the µ value is reduced to a low value (zero or even lesser). This causes
the automaton to select the actions that reduce the current cwnd size.

In all the cases, the rate of increase or decrease in the µ value depends on
the learning parameter (λ) and the degree of favorable response (γ) obtained
from the network. In all our simulations, we have fixed the λ value as 0.1. The
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selection of the learning parameter is a trade-off between the accuracy and speed
of adaptability. The lower values of λ improve the accuracy of learning. They
avoid the unnecessary reduction in µ because of the accidental losses occurring
on the lightly network. Higher values of λ cause the automaton to adapt to the
changes in the network rapidly. However, in this case the accuracy is low.

We assume two states, increase and decrease, for the automaton. When x(n)−
µ(n) > 0, the automaton is said to be in the increase state. Otherwise it is in the
decrease state. The network response, γ is treated differently depending on the
state of the automaton. When the automaton is in increase state, an early ack
corresponds to a positive feedback (γ close to 1). This is because when an early
ack is received, an action which increases the cwnd should be preferred. Hence,
we directly take the network response as performance index (β = γ) when the
automaton is in increase state. When the automaton is in the decrease state,
a late ack (γ close to 0) indicates a positive feedback and we use β = (1 − γ).
This is because when a late ack is received, an action which decreases the cwnd
should be preferred.

4 Simulation Results

We have carried out extensive simulations using GloMoSim for measuring the
performance of our protocol and compared our results with that of TCP-reno.
The various parameters used in our simulation are listed in Table 1. The metrics
used for comparison are average packet loss, network throughput, and average
cwnd size (average over number of cwnd updations).

Figs. 3 and 4 present the packet losses of TCP and Learning-TCP for 5 and
15 simultaneous flows, for different mobility values. We observe a significant and
consistent reduction in the packet loss of Learning-TCP over that of TCP. We
observe that both TCP and Learning-TCP show an increase in the packet loss
with increasing mobility. However, Learning-TCP shows a significantly lower
packet loss for different mobility values compared to that of TCP. The reduction
in the packet loss ranges between 45% and 55% for 5 flows, and between 42%
and 48% for 15 flows. The reason for the poor performance of TCP is the deter-
ministic approach used for updating the cwnd. TCP strictly increases the cwnd
even when the ack packets are received with high delays (late acks). Moreover,
in the slow-start phase, TCP increases the cwnd by 1 MSS for every ACK packet
it receives. Though this aggressive (or exponential) increase helps TCP to probe

Table 1. Simulation Parameters Used in GloMoSim

Description Value
Simulation area/Node placement 1000m × 1000m/Random

Transmission power/range 5dBm/195m
Application/Routing/MAC protocols FTP/AODV/802.11b with 2Mbps

Mobility model/Pause time Random way-point/zero seconds
Number of nodes/Simultaneous flows 100/5,10, and 15
Per flow data transfer/Mobility Range 1.1Mbytes/[0-16]m/s

Number of different seeds 25 and confidence interval 95%
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and fill to the maximum network capacity at a fast rate, it leads to heavy loss,
when the network reaches a highly congested state. In contrast, the updating
function of Learning-TCP follows a proactive approach to counter congestion
in the network. Upon receipt of a late ack, the learning automaton favors the
actions that decrease the cwnd. As a result, Learning-TCP experiences lower
packet loss when the network is congested. This directly reduces the possibility
of congestion, and in turn minimizes the number of retransmissions. Due to lower
congestion in the network, the control overhead generated by the false route er-
ror messages (RERR) may also be minimized. Note that on detecting link break
with down-stream node, an intermediate node generates RERR, which leads to
route re-establishment. However, some of these may be false as they are gen-
erated even during the congestion. This is due to the fact that the intermediate
nodes are incapable of distinguishing congestion from link breaks. Learning-TCP
helps the network to recover quickly from congestion, since all the nodes which
experience higher delays are most likely to perform similar decrease actions.
Hence, the congestion recovery can be done faster with fewer congestion losses.
Thus, the channel utilization and energy consumption at the nodes improve.

Figs. 5 and 6 show corresponding throughput and average cwnd size for the
same setup. For both 5 and 15 flow scenarios, we observe a consistent improve-
ment in the throughput of Learning-TCP over TCP and a higher cwnd for
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TCP across all the mobilities than for Learning-TCP. The improvement in the
throughput of Learning-TCP over that of TCP ranges between 9% and 18% for
5 flows, and between 13% and 18% for 15 flows. Unlike in TCP, the increments
and decrements in cwnd are not restricted in Learning-TCP. Learning-TCP in-
creases the cwnd by higher amounts (>1 MSS) when it perceives the network
to be lightly loaded. That is, when the load in the network is relatively low, µ
reaches a high value and the cwnd is increased by large amounts. However, when
the inter arrival times of acks are high, the updating algorithm decreases µ.

Figs. 7 and 8 represent the performance of Learning-TCP in the presence of
TCP traffic. For 10 TCP flows alone, 10 Learning-TCP flows alone, and a mixture
of 5 TCP and 5 Learning-TCP flows, we compared the overall packet loss, average
size of cwnd, and throughput. The increase in packet loss with mobility for
Learning-TCP only, is significantly lower. The packet loss for Learning-TCP is
lower than that of a composition of Learning-TCP and TCP flows, which in turn
has lower packet loss compared to TCP flows alone. This implies that Learning-
TCP works well even in the presence of TCP flows.

We also tested Learning-TCP in the presence of UDP (User Datagram Pro-
tocol) traffic. Figs. 9 and 10 correspond to the results in the presence of CBR
(Constant Bit Rate) flows that generate UDP traffic. Each CBR flow gener-
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ates packets of size 512 bytes with packet inter departure time of 100ms. Fig.
9 shows packet loss versus mobility, and Fig. 10 shows throughput and average
cwnd size versus mobility for both Learning-TCP and TCP. There are 5 UDP
flows running in parallel with the 5 TCP or Learning-TCP flows. Learning-TCP
outperforms TCP by showing significant reduction in the packet loss and con-
sistent improvement in the throughput with increasing mobility. The reduction
in packet loss and improvement in throughput for Learning-TCP over TCP, are
in range 45%-49% and 7%-14%, respectively, which confirms that the learning
mechanism works efficiently even in the presence of non-TCP traffic.

In all the simulation studies, we observe a higher cwnd for TCP than for
Learning-TCP. This is mainly due to the aggressive (or exponential) increase
in the cwnd size during the slow-start phase of TCP. Though the exponential
increase results in a high cwnd, it leads to a high packet loss for TCP, which fur-
ther results in a long loss recovery period. Hence, TCP shows a lower throughput
even with the higher cwnd, compared to that of Learning-TCP.

5 Conclusions

In this paper, we proposed a novel Learning-TCP for AWNs, which does not
depend on explicit feedback from the network. Learning-TCP adapts to the net-
work conditions by observing the inter arrival times of ack packets. We used
learning automata because of its unique feature of learning the network state
better and faster by maintaining considerably lesser amount of information and
with negligible computational requirements. Learning-TCP was simulated using
GloMoSim and the simulation results have clearly indicated an efficient cwnd up-
dation that resulted in fewer packet losses and improved throughput. We showed
through extensive simulation studies that Learning-TCP results in the reduction
of packet loss by about 42-55% and an increase in the throughput by about 9-
18% compared to that of TCP, resulting in better network utilization and lower
energy consumption by the nodes, which is vital for resource constrained AWNs.
Moreover, Learning-TCP is compatible with the traditional TCP as it does not
modify the semantics and header format of TCP.
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Abstract. Graph theoretic problems are representative of fundamental
computations in traditional and emerging scientific disciplines like sci-
entific computing and computational biology, as well as applications in
national security. We present our design and implementation of a graph
theory application that supports the kernels from the Scalable Synthetic
Compact Applications (SSCA) benchmark suite, developed under the
DARPA High Productivity Computing Systems (HPCS) program. This
synthetic benchmark consists of four kernels that require irregular access
to a large, directed, weighted multi-graph. We have developed a parallel
implementation of this benchmark in C using the POSIX thread library
for commodity symmetric multiprocessors (SMPs). In this paper, we pri-
marily discuss the data layout choices and algorithmic design issues for
each kernel, and also present execution time and benchmark validation
results.

1 Introduction

One of the main objectives of the DARPA High Productivity Computing Sys-
tems (HPCS) program [1] is to reassess the way we define and measure perfor-
mance, programmability, portability, robustness and ultimately productivity in
the High Performance Computing (HPC) domain. An initiative in this direction
is the formulation of the Scalable Synthetic Compact Applications (SSCA) [2]
benchmark suite. These synthetic benchmarks are envisioned to emerge as com-
plements to current scalable micro-benchmarks and complex real applications to
measure high-end productivity and system performance. Each SSCA benchmark
is composed of multiple related kernels which are chosen to represent workloads
within real HPC applications and is used to evaluate and analyze the ease of
use of the system, memory access patterns, communication and I/O character-
istics. The benchmarks are relatively small to permit productivity testing and
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programming in reasonable time; and scalable in problem representation and
size to allow simulating a run at small scale or executing on a large system
at large scale. They are also described in sufficient detail to drive novel HPC
programming paradigms, as well as architecture development and testing.

SSCA#2 [3] is a graph theoretic problem which is representative of compu-
tations in the fields of national security, scientific computing, and computational
biology. The HPC community currently relies excessively on single-parameter mi-
crobenchmarks like LINPACK [4], which look solely at the floating-point perfor-
mance of the system, given a problem with high degrees of spatial and temporal
locality. Graph theoretic problems tend to exhibit irregular memory accesses,
which leads to difficulty in partitioning data to processors and in poor cache
performance. The growing gap in performance between processor and memory
speeds, the memory wall, makes it challenging for the application programmer
to attain high performance on these codes. The onus is now on the programmer
and the system architect to come up with innovative designs.

Symmetric Multiprocessors (SMPs) with modest shared memory have
emerged as a popular platform for the design of scientific and engineering applica-
tions. SMP clusters are now ubiquitous in high-performance computing, consist-
ing of clusters of multiprocessors nodes (e.g., IBM pSeries, Sun Fire, Compaq
AlphaServer, and SGI Altix) inter-connected with high-speed networks (e.g.,
vendor-supplied, or third party such as Myricom, Quadrics, and InfiniBand).
Current research has shown that it is possible to design algorithms for irregular
and discrete computations [5,6,7] that provide efficient and scalable performance
on SMPs. To analyze SMP performance, we use a complexity model similar to
that of Helman and JáJá [8] which has been shown to provide a good cost model
for shared memory algorithms on current symmetric multiprocessors [5,8,9]. The
model uses two parameters: the problems input size n, and the number p of pro-
cessors. There are two parts to an algorithm’s complexity in this model: ME ,
the maximum number of non-contiguous memory accesses required by any pro-
cessor, and TC , the computation complexity. This model, unlike the idealistic
PRAM, is more realistic in that it penalizes algorithms with non-contiguous
memory accesses that often result in cache misses.

This paper is organized as follows. Sections 3-7 discuss the scalable data
generation stage and each of the four kernels in detail: we present the kernel
specification, the design trade-offs involved in implementation, illustrations of
our data layouts, and relevant algorithms. Section 8 summarizes the execution
time and memory usage results, primarily on the Sun E4500 shared memory
SMP. In the final section, we present our conclusions and plans for future work.

2 Preliminaries

2.1 Definitions

Let G = (V, E) be a directed, weighted multi-graph, where V = {v1, v2, ..., vn}
is the set of vertices, and E = {e1, e2, ..., em} is the set of weighted, directed
edges. An edge ei ∈ E is represented by the tuple 〈u, v, wi〉, where u, v ∈ V ,
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wi is either a positive integer from a bounded universe or a character string of
fixed length, and the edge ei is directed from u to v. There are no self loops in
the SSCA#2 graph, i.e., for any edge ei = 〈u, v, wi〉 ∈ E, we have u �= v. Two
vertices u, v are said to be linked if there exists at least one directed edge from
u to v or v to u. We define a set of vertices C ⊆ V to be a clique, if each pair of
vertices {u, v} ∈ C is linked. This means that a clique has edges between each
pair of vertices, but not necessarily in both directions. A cluster S ⊆ C ⊆ V is
loosely described as a maximal set of highly inter-connected vertices.

2.2 Benchmark Input Parameters

Some user-defined constants are used for the data generation step and subsequent
kernels.

1. totVertices : the number of vertices in the graph. We also use n to represent
the number of vertices, and m the number of directed edges in sections of
the paper.

2. maxCliqueSize : the maximum size of a clique in the graph. Clique sizes are
uniformly distributed in the interval [1, maxCliqueSize].

3. maxParalEdges : the maximum number of parallel edges between two ver-
tices. The number of edges between any two vertices are uniformly dis-
tributed in the interval [1, maxParalEdges ]

4. probUnidirectional : probability that the connections between two vertices
will be unidirectional as opposed to bidirectional

5. probInterClEdges : the probability of inter-clique edges
6. percIntWeights : percentage of edges assigned integer weights
7. maxIntWeight : the maximum integer weight
8. maxStrLen : maximum number of characters in the string weight
9. subGrEdgeLength : maximum edge length in graphs generated by Kernel 3

10. maxClusterSize : maximum cluster size generated by the cuts in Kernel 4

3 Scalable Data Generation

The Scalable Data Generation stage takes user parameters as input and generates
the graph as tuples of vertex pairs and their corresponding weights. The intended
graph has a hierarchical nature, with random-sized cliques, and inter-clique edges
assigned using a random distribution. The edge weights can be integer values or
randomly generated character strings. The scalable data generator need not be
parallelized, and is not timed.

3.1 Implementation

This step’s output should be an edge list with each element of the form 〈u, v,
w〉, where the edge is directed from u to v, and w is a positive integer weight
or a character string. Our implementation returns four one-dimensional array
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constructs: two arrays corresponding to the start and end vertices, and the two
other arrays representing the integer and string weights. Although this stage is
not timed, we parallelize the main steps for practical considerations.

Note that the SSCA#2 graph has some very specific properties. It is essen-
tially a collection of cliques (defined in the earlier section), with the inter-clique
edges assigned using a hierarchical distribution, based on the distance between
the cliques. The fourth kernel deals with extraction of highly inter-connected
clusters from the graph, and we would like the extracted clusters to be as close
as possible to the original cliques. The implementation details of the data gen-
eration stage are discussed in an extended version of this paper [10].

4 Kernel 1: Graph Generation

This kernel constructs the graph from the data generator output tuple list. The
graph can be represented in any manner, but cannot be modified by subsequent
kernels. The number of vertices in the graph is not provided and needs to be
determined in this kernel. It is also suggested that statistics be collected on the
graph to aid verification of subsequent kernels.

4.1 Details

There are many figures of merit for each kernel, including but not limited to
memory use, running time, ease of programming, ease of incrementally improv-
ing, and so forth. Thus, a figure of merit for any implementation would be the
total space usage of the graph data structure. Also, the graph data structure
(or parts of it) cannot be modified or deleted by subsequent kernels. So we need
to choose a data layout which can be created quickly and easily (since Kernel
1 is timed), is space efficient, and is optimized for efficient implementations of
Kernels 2, 3 and 4.

Kernels 2 and 3 operate on the directed graph, but for Kernel 4, the specifi-
cation states that multiple edges, edge directions, and edges weights, are to be
ignored. This complicates the design and implementation – if we plan to use a
separate graph layout for Kernel 4, we need to construct it in Kernel 1, and it
cannot be modified in Kernels 2 and 3. The developer now must design a data
structure and layout which considers all these competing optimization criteria,
and this is the core challenge in the benchmark.

An adjacency matrix representation is easy to implement and well-suited for
dense graphs. In this case, however, the generated graph is sparse and a ma-
trix representation would be very inefficient in memory usage. Another common
method of representing directed and weighted graphs is the adjacency list repre-
sentation. This is easy to implement and also space efficient. However, repeated
memory allocation calls while constructing large graphs, and irregular memory
accesses in the subsequent kernels will hurt performance. For our current im-
plementation, we follow an adjacency list representation, but using the more
cache-friendly adjacency arrays [11] with auxiliary arrays.
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Fig. 1. The data layout for representing the directed graph – Kernel 1

Since multiple edges between two vertices can be ignored for Kernels 3 and
4, we do not store them explicitly, but have another array to keep track of these
edges and to map an edge to its corresponding weight. We first construct the
part of the data structure to store the directed graph information. We use two
arrays of size totVertices to index and access the adjacencies corresponding to
each vertex. The adjacency list (without multiple edges) is stored in a contiguous
memory location, and so is the array storing the multiple edge information. The
data layout used is illustrated in Fig. 1.

Graph construction (for our adjacency array representation) is inherently
sequential, but since we have a sorted edge tuple list, we can extract some par-
allelism. First, the size of the graph can be easily determined by finding the
maximum vertex number in the start vertex or the end vertex list. Assuming
the tuple list is sorted by start vertex, the value can be determined in con-
stant time by reading off the last element in the startVertex array. Otherwise
we can determine the maximum value in parallel in TC = O(m/p + log p) time.
Processors then scan independent sections of the tuple list to determine the out-
degree of each vertex. We have a parallel time overhead of O(p) for bookkeeping
purposes. In the next pass, we allocate memory for the outVertexList and par-
alEdgeList arrays and fill in entries in parallel in O(m′/p + log p) time, where
m′ is the number of unique directed edges (removing the parallel edges).

We construct the implied edge list by scanning the outVertexList in parallel.
For each edge 〈u, v〉, we check if the outVertexList has the edge 〈v, u〉. If not, we
add u to the implied edge list of v. This step has an asymptotic time complexity
of TC = O(m′/p+log p) and involves m′+m/p non-contiguous memory accesses.
We also need to use mutex locks to prevent race conditions, which affects per-
formance. The integer and string weight arrays can be trivially constructed in
constant time, since we retain the vertex ordering in the edge tuples. In sum,
the computational complexity for Kernel 1 is given by TC = O(m/p+log p), and
ME = m′ + 2m/p. The asymptotic space requirements for the storing the tuple
list and the graph data structure are both O(m). The memory requirements in
both these cases are further compared in Section 9.
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5 Kernel 2: Classify Large Sets

The intent of this kernel is to determine vertex pairs with the largest integer
weight and the specified string weight. Two vertex pair lists, SI and SC , are
generated in this step and serve as start sets for graph extraction in Kernel 3.
This kernel is timed.

To determine SI , we first scan the integer weight list in parallel, determine
local maxima, and store the corresponding end vertex. Then, we do an efficient
reduction operation on the p values to determine the maximum weight in O(log p)
time. The corresponding start vertices for the elements in SI can be determined
by a fast binary search in parallel on the outVertexIndex array. The set SC can
be similarly determined. As we have stored the edge weights in a contiguous
block, we have the work equally distributed among all processors. Finding the
maximum weighted edge is the dominant step in this stage and TC = O(m/p +
log p) for this kernel.

6 Kernel 3: Extracting Sub-graphs

Starting from each of the vertex pairs in the sets SI and SC , this kernel produces
sub-graphs which consist of the vertices and edges along all paths of length less
than subGrEdgeLength. The recommended algorithm for graph extraction in the
specification is Breadth First Search.

6.1 Implementation

We use a Breadth First Search (BFS) algorithm starting from the endVertex of
each element in SI and SC , up to a depth of subGrEdgeLength. Now subGrEdge-
Length is typically chosen to be a small number, a constant value in comparison
to the number of graph vertices. We also know that this graph is essentially a
collection of cliques (whose maximum size is bounded), and so a BFS up to a
constant depth would yield a subgraph G′ = (V ′, E′) such that |V ′| � |V |. Even
though the BFS computational complexity is of the same order as the previous
kernels (TC = O(m′)), we can expect this kernel to finish much faster. We have
not implemented a fine-grained parallel BFS yet. Currently, we just distribute
the vertices in SI to the available processors and run BFS in parallel on each of
these, which limits the concurrency to |SI | + |SC |. The queue ADT we use in
this algorithm is implemented using a dynamic array, a linked list and a simple
one-dimensional array. Since the extracted graph is quite small, we find that
all three representations give similar results. Note that linked lists are easy to
implement, space-efficient and could be used for small problem sizes, since we
will not be performing any further operations with the extracted graph.

7 Kernel 4: Graph Clustering

The intent of this kernel is to partition the graph into highly inter-connected
clusters and minimize the number of links between these clusters. Multiple edges,
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edge directions and weights can be ignored. Since exact solutions to this problem
are NP-hard, heuristics are allowed, provided they satisfy the kernel validation
criterion. This kernel should not utilize any auxiliary information collected in
the previous kernels or in the graph generation process.

7.1 Details

This kernel is based on the partitioning problem formulated by Kernighan and
Lin [12], with all the edge costs considered equal. Sangiovanni-Vincentelli, Chert,
and Chua [13,14] have earlier applied this work for solving circuit problems. The
maximal clique problem [15] is a well-studied NP-complete problem, and several
heuristics have been proposed to solve this [16]. Our problem is not as difficult
as the maximal clique problem, because of the manner in which the graph is
generated, and also due to the restriction on the maximum clique size.

We cannot apply popular multi-level graph partitioning tools like Chaco [17]
and METIS [18] to solve this kernel. These tools use a variety of heuristics and are
highly refined, but they are primarily used to partition nearly-regular graphs into
equal-sized blocks, while minimizing edge cut. Graph partitioning results using
Chaco are presented in [10]. The required partitioning in this problem, however,
is highly irregular and cannot be found accurately using these tools.

The specification suggests an algorithm for solving this kernel, which is a
variant of a graph clustering algorithm given by Koester [19]. This sequential
algorithm iteratively forms a sequence of disjoint clusters, which are subgraphs
no larger than maxClusterSize vertices. As each cluster is selected, its vertices
are removed from further consideration. To select the vertices in a cluster, the
algorithm starts with some remaining vertex (which forms the initial one-element
cluster), and its links to any remaining vertices (which form the initial adjacent
set). It then expands the cluster by repeatedly moving an adjacent set vertex to
the cluster, and adding that vertex’s non-cluster links to the adjacent set. The
new vertex is chosen depending on how tightly it and its links are connected
to the existing cluster, and how many links it adds to the adjacent set. The
cluster is complete if the adjacent set is empty. Otherwise when the cluster
reaches maxClusterSize vertices in size, the cluster elements are marked used,
the cluster is added to the cluster list, and size of the adjacent set is added to
the count of interclique links.

The reference implementation uses this algorithm for solving Kernel 4 and
reports good results. The specification suggests statistical validation for assessing
the quality of the clustering algorithm. One recommended empirical measure is
to check if interClusterLinkNum < refcutLinksNum, where refcutLinksNum is
given by intercliqueLinkNum√

(maxClusterSize/maxCliqueSize)
and interCliqueLinkNum refers to

the number of inter-clique vertex pairs connected by at least one directed edge.
Algorithms with interClusterLinkNum within 5% of the value refCutLinksNum
are acceptable. It is also suggested that for small problem sizes, the algorithm
correctness be checked rigorously, and parallel results be verified against serial
results.
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This algorithm is however inherently sequential. Cliques of size less than max-
ClusterSize with inter-clique edges may not be extracted correctly. We propose
a new parallel greedy algorithm (pseudo-code is given in [10]) to extract clusters.
The quality of results is comparable to the reference algorithm, and some results
are presented in the next section.

Our parallel algorithm works as follows. We first sort the vertices in parallel
in the decreasing order of their degree. The parallel radix sort uses a linear-time
counting sort for a constant number of iterations. A shared array vStatus of size n
is maintained to keep track of the status of each vertex – whether it is unassigned
yet, or assigned to a unique cluster. Each processor chooses a vertex from the
top of the queue, colors the vertex and its adjacencies (both the out-vertices and
the implied edges) with a unique number, given by i×current iteration number ,
where i is the processor index. The adjacencies of each vertex in the cluster are
inspected, and if more than a certain threshold of them are similarly colored, it
is accepted. Otherwise it is rejected and the vertex is unmarked. We also update
the edgeCut simultaneously — if we decide that an originally colored vertex does
not belong to the cluster, we add all the inter-clique edges to the cut-set. The
vertex degree is bounded by O(maxClusterSize). The clustering algorithm runs
in linear time in the worst case (a single clique of size O(n)), with ME given by
O(n/p). If maxClusterSize is chosen to be a constant value, TC = ME = O(n/p).

The heuristic correctly extracts nearly all cliques, except for those of very
small sizes (with 3-4 elements), as it is tough to define acceptance thresholds. We
have two choices in such cases: either classify these vertices as clusters of smaller
sizes (say 1 or 2), or add these vertices to existing clusters. The former approach
is a more conservative method of forming clusters and false positives (vertices
wrongly assigned to a cluster) are avoided, but it would also lead to an inflated
number of extracted clusters and inter-cluster edges. We thus have a trade-off
between graph clustering specificity (corresponds to exact clique extraction) and
sensitivity (correlates to minimization of intra-cluster links) in this case. We can
define the threshold values for accepting a vertex into a cluster according to what
our primary optimization criterion is — retaining specificity, or minimizing inter-
clique edges and increasing sensitivity. The suggested validation scheme for this
kernel is to compare the inter-clique links with the inter-cluster links, and so we
optimize for the inter-cluster edges when reporting the results in Section 9.

8 Experimental Results

This section summarizes the experimental results of our SSCA#2 implementa-
tion, tested on the Sun E4500, a uniform-memory-access (UMA) shared mem-
ory parallel machine with 14 UltraSPARC II 400MHz processors and 14 GB of
memory. Each processor has 16 Kbytes of direct-mapped data (L1) cache and 4
Mbytes of external (L2) cache.

We use a binary scaling heuristic SCALE to uniformly express the input pa-
rameter values. The following values have been used for reporting results in this
section: totVertices = 2SCALE , maxCliqueSize = 2(SCALE/3), maxParalEdges
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Fig. 2. Memory Usage (left) and Execution Time (right)

Fig. 3. Execution time of Kernels 1, 2, 3, and 4, on four and eight processors, in the
left and right plots, respectively

= 3, probUnidirectional = 0.3, probInterClEdges = 0.5, percIntWeights = 70,
maxIntWeight = 2SCALE , maxStrLen = SCALE , subGrEdgeLength = SCALE ,
and maxClusterSize = 2(SCALE/3).

Fig. 2 compares memory utilization of the data generator and our graph
layout (described in Section 5). Note that we explicitly store implied edge infor-
mation in Kernel 1, causing the graph data structure to use slightly more memory
than the data generator output. One of the figures of merit of the implemen-
tation is the largest problem size that can be solved on a given architecture.
On the Sun E4500, memory proves to be the bottleneck to scaling. The largest
problem size that can be handled with these parameters is 221 vertices, which
generates 156M edges for the above input parameters. We could further solve a
problem size of 222 vertices, by writing the data generator output to disk.

The running times for multi-processor runs are also given in Fig. 2. The
execution time is dominated by graph generation, which scales reasonably with
the number of processors for various problem sizes. We use a locking scheme to
construct the implied edge list in parallel, which leads to a moderate slowdown
of Kernel 1. There is also limited parallelism in Kernel 3 dependent on the size
of the Kernel 2 start sets.
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Table 1. Kernel 4 – Graph Clustering Results. (intra and inter-clique edges include
parallel edges; a link is defined as a vertex pair connected by at least one directed
edge).

SCALE 12 16 20
No. of Vertices 4096 65536 1048576

No. of intra-clique edges 40850 361114 39511513
No. of inter-clique edges 8472 72365 645787

No. of cliques 486 3990 32167
Avg. clique size 8.42 16.42 32.6

No. of extracted clusters 383 3142 25201
Avg. cluster size 10.69 20.85 41.6

No. of inter-clique links 5230 49907 422292
No. of inter-cluster links 1968 18892 185250

Fig. 3 gives the running times of the four kernels for various problem scales, on
four and eight processors respectively. Note that the number of non-contiguous
memory accesses ME = O(m′) and TC = O(n/p + log p) for Kernel 1, and
so the benchmark execution time is dominanted by graph construction. Since
maxClusterSize = 2SCALE/3, we find a sharp rise in Kernel 1 execution time
for SCALE = 9, 12, 15, and 18, as the number of edges generated in these cases
is comparatively higher than the previous value. The dominant step in Kernel
1 is construction of the implied edge list. Kernel 3 takes the least time, as the
search depth value is very small.

Rigorous verification of full-scale runs is prohibitive, and so the benchmark
specification suggests a statistical validation scheme. Table 1 summarizes val-
idation results for Kernel 4. The number of clusters extracted and the num-
ber of inter-cluster links are reported for three different problem sizes (for a
four-processor run). The quality of the results is chiefly dependent on two in-
put parameters: probUnidirectional and probInterClEdges. We have tested the
correctness of our implementation on small graph sizes. We also find the clus-
tering results to be consistent across multi-processor runs, as we do not use
locking in this kernel. Note that in cases when the graph has a high percentage
of inter-clique edges, we have a trade-off between exact clique extraction and
minimization of inter-cluster edges, as discussed in the previous section.

9 Conclusions

In this paper, we present the design and implementation of the SSCA#2 graph
theory benchmark. This benchmark consists of four kernels with irregular mem-
ory access patterns that chiefly test a system’s memory bandwidth and latency.
Our parallel implementation uses C and POSIX threads and has been tested
on the Sun Enterprise E4500 SMP system. The dominant step in the bench-
mark is the construction of the graph data structure, which limits scaling on the
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Sun E4500. We are currently working on implementations of SSCA#2 on other
shared-memory systems such as the Cray MTA-2 and the Cray XD1.
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Abstract. We examine the problem of scheduling concurrent independent flows
on multiple-disk I/O storage systems. Two models are considered: in the shared
buffer model the memory buffer is shared among all the flows, while in the par-
titioned buffer model each flow has a private buffer. For the parallel disk model
with d > 1 disks it is shown that the problem of minimizing the schedule length
of n > 2 concurrent flows is NP-complete for both buffer models. A randomized
scheduling algorithm for the partitioned buffer model is analyzed and probabilis-
tic bounds on the schedule length are presented. Finally a heuristic based on static
buffer allocation for the shared buffer model is discussed.

1 Introduction

Advances in disk drive and networking technologies and a sharp increase in data-
intensive applications have revolutionized the architecture and usage paradigms of mod-
ern storage systems. Resource management issues have become increasingly important
in data centers that must coordinate the operation of large numbers of concurrent de-
vices and serve hundreds of gigabytes of data per second. Both commercial and scien-
tific workloads require high-bandwidth access to large data sets that reside on shared
storage facilities and are accessed by multiple applications. Shared storage servers are
being increasingly proposed as a cost-effective solution for maintaining data reposito-
ries, which can take advantage of economies of scale and consolidated management.
Sharing a storage server raises two issues: effective use of server resources and fair
scheduling of individual clients. We examined the issue of performance isolation and
providing QoS guarantees to individual clients in [1]. In this paper we address the prob-
lem of efficiently utilizing the resources of a shared storage system when servicing
multiple concurrent flows.

Previous work on reducing latency in parallel I/O systems has dealt with the
scheduling of a single flow to effectively exploit prefetching and caching from mul-
tiple disks; efficient algorithms are now known that maximize disk system through-
put for a single flow (see [2, 3, 4, 5, 6, 7, 8] for example). Our work in this paper is
a generalization of the parallel disk model [9] to the case when we have more than
one concurrent flow simultaneously sharing the I/O system. The problems of sharing
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the parallel disks among multiple concurrent flows have only been recently consid-
ered [10, 11, 12, 13, 14, 1]. All of these works are mostly concerned with different mod-
els of storage virtualization and QoS-based resource allocation.

We consider two models of shared servers. In both models the disk subsystem is
shared by all the flows. The models differ in how the memory buffer is allocated to
the flows: in the shared buffer model all flows share a common buffer, while in the
partitioned buffer each flow has its own private buffer. We show that in both models
the problem of scheduling a set of requests from each flow to minimize the number
of parallel I/O steps is NP-Complete. In contrast the case of a single flow is known to
have efficient polynomial-time scheduling algorithms [2, 4, 5, 6, 7]. We also show that
the congestion-removal techniques of Leighton, Maggs and Rao [15] can be extended
to obtain a randomized scheduling algorithm for the partitioned buffer model with prob-
abilistically bounded schedule length. Finally for the shared buffer model, we present
a heuristic that combines a novel static buffer allocation strategy with the randomized
approach used in the partitioned buffer model.

The off-line scheduling of a single flow to obtain the minimum-length schedule has
been extensively studied [16, 2, 7, 6, 17, 4, 5]. Polynomial time algorithms in the par-
allel disk model [9] and stall model [3] have been obtained in [6, 17, 4, 5] and [7, 2]
respectively. However, the problem of scheduling multiple flows has not been formally
considered previously in either parallel I/O model.

2 I/O Models

When multiple applications share the disk system we look at two related models, one
where the buffer is shared among all the flows, and the other in which the buffer is
statically partitioned among them. In the Shared Disk Partitioned Buffer (SDPB) model,
the disks are shared by all the flows but the buffer is partitioned among them. The most
common scenario for such an organization is where the buffering is done in individual
client nodes and the disks are accessed over a SAN. In the Shared Disk Shared Buffer
(SDSB) model, the buffer is logically shared among all workloads. This may be either
in the form of a centralized storage buffer or made up of distributed shared memory.

There are n independent flows (applications) that are simultaneously accessing the
storage system. Each flow is abstracted by a reference string consisting of the ordered
sequence of blocks that it accesses. Blocks need to be delivered to the application in
the order in which they appear in the reference string. We focus on read-once reference
strings where each block is unique, which model workloads like multimedia stream-
ing. There is a fixed amount of buffer memory that the system uses for prefetching. A
buffered block is consumed as soon as it becomes the first unconsumed block in its
reference string. Each flow knows a subsequence of the reference string beyond its last
access; this subsequence is the lookahead window for the flow. If the lookahead window
includes the entire reference string then the schedule is said to be off-line. We assume
that requests in one lookahead window are serviced before newly arriving requests are
scheduled.

A model of the SDSB configuration is shown in Figure 1. Flow queues hold the
requests in the currently visible portion of the reference strings. The high-level sched-
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f3 D2 D2 D2

D5

D4

D3

D2

D1

Fig. 1. Shared disk and Shared buffer configuration

uler dispatches requests from the flow queues to the disk queues in accordance with the
schedule that it constructs. In every parallel I/O step a number of requests, at most one
request for each disk, are dispatched by to the disk queues. Individual disks service the
requests in their disk queues one at-a-time. The blocks read from the disks are placed in
the memory buffer. In the SDPB model a block can only be placed in the partition be-
longing to the flow; in the SDSB model a common buffer of capacity M blocks is shared
by all the flows. A flow will consume blocks in the order of the reference string from
this buffer. Blocks that are fetched out-of-order of the reference string will be buffered
until required by the flow. Each disk is free to reorder the requests in its disk queue to
optimize physical access times by exploiting spatial locality in the data placement. The
high-level scheduler must ensure that the requests it has dispatched to the disk queues
at any time do not overflow the capacity of the buffer.

If the memory buffer can hold data from all outstanding requests in a lookahead
window, then the scheduling is trivial. The interesting case arises when the number
of requests exceeds the buffer capacity. The scheduler must then determine which of
the requests to dispatch at each step, so as to minimize the total number of I/O steps
required to service all the requests.

We illustrate the scheduling problem by considering a single flow. Even for this
special case the optimal schedule is not straightforward to construct. As an example we
consider a single flow with reference string R = A1 A2 A3 A4 A5 B1 B2 A6 B3 B4 B5 A7 C1

C2 B6 B7. Here, Ai (Bi, Ci) stand for the ith block from disk A (respectively disk B
and disk C). Figure 2(a) shows the schedule created by an intuitive, greedy in-order
prefetching strategy. A greedy prefetching algorithm tries to keep as many disks as
possible busy at each I/O step; in-order fetching means it always chooses a block earlier
in the reference string in preference to one that occurs later. The schedule assumes a
shared buffer of size M = 6 blocks. In step 1 of Figure 2(a), blocks A1, B1 and C1 are
fetched from the three disks respectively. A1 is consumed, and a request for the next
block A2 is made. Since there are four free blocks in the buffer at this time, the system
will prefetch the next block from disks B and C along with A2 in the next I/O step. On
making the reference to A3, the buffer holds 4 blocks; hence it cannot prefetch blocks
from both B and C, but must choose to prefetch from one or the other of the disks.
A greedy in-order prefetching scheduling algorithm will fetch B3 in preference to C3

since it occurs earlier in the reference string. Continuing in this manner, we obtain the
schedule of length 9 to service the entire reference string. In contrast, Figure 2(b) shows
the optimal-length schedule for this reference string consisting of 7 parallel I/O steps.
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IOs→ 1 2 3 4 5 6 7 8 9

Disk A A1 A2 A3 A4 A5 A6 A7 - -
Disk B B1 B2 B3 - - B4 B5 B6 B7
Disk C C1 C2 - - - - - - -

IOs→ 1 2 3 4 5 6 7

Disk A A1 A2 A3 A4 A5 A6 A7

Disk B B1 B2 B3 B4 B5 B6 B7
Disk C - - - - - C1 C2

Fig. 2. (a)Greedy In-order IO schedule. (b)Optimal IO schedule.

When the input includes multiple flows there is an additional dimension to the problem.
Not only does the scheduler need to determine which disks to fetch from in an I/O step,
it also needs to decide which flow should be allocated a disk at each I/O step.

2.1 Scheduling Multiple Flows

The problem of constructing a minimum-length schedule for two or more reference
strings in the SDPB and SDSB models is formally defined below. In the following, the
number of flows is denoted by n, the number of disks is d and the set of disks is denoted
by D = {D1,D2, · · ·Dd}.

Partitioned Buffer: The problem will be denoted by SDPB(n, d, Σ , L). Σ = [m1,m2,
· · ·mn] is a vector specifying buffer allocations where mi is the buffer size of flow fi,
and L is a desired bound on the schedule length. The decision problem is to determine
if there exists a schedule that requires less than or equal to L I/O steps. Note that in a
valid schedule, each reference string consumes blocks in the order specified, but there
is no restriction on the ordering across strings. Furthermore, flow fi can hold at most mi

blocks in the buffer at any time.

Shared Buffer: The problem will be denoted by SDSB(n, d, M, L), where the memory
buffer of size M blocks is shared among all flows, and L is a desired bound on the
schedule length. The decision problem is to determine if there exists a schedule that
requires less than or equal to L I/O steps. Note that in a valid schedule the buffer can
hold at most M blocks at any time.

3 NP-Completeness

In this section, we present the proofs for NP-completeness of the scheduling problems
for the two models. The input length is the sum of lengths of all input reference strings.
Each reference string will be assumed to be fully enumerated by the sequence of blocks
that it accesses, so that a reference string with l requests is assumed to require Ω(l) bits
to represent. That is we do not assume any form of compression of the input reference
string. This assumption does not limit the generality of our model, and reflects the
natural encoding in the application domain.

We will use the following known NP-complete problem, 3-Partition, to show NP-
completeness of our problems.

Definition 1. 3-Partition: Given a multi-set A = {a1,a2, ...,a3w} and a positive integer
B, such that ∀i,1 ≤ i ≤ 3w,B/4 < ai < B/2, and ∑3w

i=1 ai = wB. Does there exists a
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partition of A into w subsets {A1,A2, ...,Aw}, such that each As has exactly 3 elements
and ∑ai∈As ai = B, ∀i,1≤ s≤ w.

Lemma 1. 3-Partition is NP-Complete even when the input is assumed to be of size
wB [18].

Our first result is that the SDPB problem is NP-complete. This result actually fol-
lows by showing the correspondence between the special case of SDPB when each
mi = 1 and the job shop scheduling problem that has been extensively studied in the
literature (see [15, 19, 20]). The proof is omitted due to lack of space. The complexity
of the SDSB problem however does not follow directly from job-shop scheduling or
its variants, and we prove its NP-Completeness from first principles. To specify a refer-
ence string we will use the following notation: r×D j will mean r distinct consecutive
requests to disk D j. The concatenation of two reference strings α and β will be denoted
by α ∗β , and the concatenation of α to itself s times will be denoted by αs.

Theorem 1. SDPB(n, d, Σ , L), n arbitrary, is NP-complete.

Theorem 2. SDSB(n, d, M, L), n arbitrary, is NP-complete.

Proof. It is easy to verify that the problem is in NP.
We reduce 3-Partition to SDSB(n, d, M, L). Given w, B and a multi-set A = {a1,a2,

...,a3w}, we construct an instance of SDSB(n, d, M, L) with n = 3w + 1, M = cB
for some constant c, and L = 2wα , where α = B + M− 1. The reference strings
R1,R2, · · · ,R3w, R3w+1 are defined as follows.

Ri = (ai×D1) ∗ (ai×D2), 1≤ i≤ 3w
R3w+1 = (α×D2) ∗ [((α + M−1)×D1) ∗ ((α + M−1)×D2)]

(w−1)

∗(α + M−1×D1)

For all i, 1≤ i≤ 3w, the schedule for Ri consists of ai fetches from D1 followed by
ai fetches from D2 with some overlap possible between the fetches from the two disks.
The amount of overlap can be no more than M−1. R3w+1 consists of α blocks from D2

followed by a repeating pattern consisting of α + M− 1 blocks from D1 followed by
α +M−1 blocks from D2; this pattern is repeated w−1 times, and is finally followed by
α +M−1 blocks from D1. Individual schedules for Ri are shown in Figure 3. There can
be at most M−1 blocks prefetched at any time. Hence, in order for R3w+1 to complete
within the schedule L = 2αw, the following is necessary: in the interval [(k−1)α, kα],
k = 1,2, · · ·2w, α blocks of R3w+1 must be fetched from D2 if k is odd, and from D1 if k
is even. In order to meet this schedule M−1 blocks of R3w+1 must be prefetched from
the other disk in every interval [(k− 1)α, kα]; these prefetched blocks are shown by
the vertical stripes in the unshaded regions. This implies that there are no free buffers
available for prefetching blocks of Ri, 1 ≤ i ≤ 3w, which must be fetched one block at
a time.

Now we will show that there exists a 3-Partition if and only if a schedule of length L
is possible.
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Fig. 3. Individual schedules for SDSB model
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Fig. 4. A feasible schedule with length 2wα

Case 1: Suppose a partition of A into w subsets {A1,A2,A3, · · · ,Aw} exists, such that
Ak = {Ak1 , Ak2 , Ak3}, ∑3

i=1 aki = B, then the following schedule of length L is certainly
possible.

In Figure 4, for each unshaded region [2(k− 1)α, (2k− 1)α], 1 ≤ k ≤ w, requests
corresponding to Ak, in particular reference strings Rk1 , Rk2 and Rk3 , are scheduled
on D1. The corresponding requests from D2 are scheduled in the unshaded interval
[(2k− 1)α, 2kα]. In the unshaded interval [2(k− 1)α, (2k− 1)α], we fetch the B
blocks belonging to Rk1 , Rk2 , and Rk3 on D1, and prefetch the next set of M−1 blocks
from R3w+1 on D2; their relative ordering within the region is unimportant. Similarly
the unshaded region, [(2k− 1)α,2kα] is used to schedule the B blocks on D1 belong-
ing Rk1 , Rk2 and Rk3 , and on D2 (except for the last unshaded region) prefetch the next
M−1 blocks from R3w+1, as shown in figure 4. Hence if a 3-Partition exists, so does a
schedule with length L.

Case 2: If a schedule of length L = 2wα exists, then we show that set A can be par-
titioned into w desired subsets A1,A2, · · · ,Aw. First observe that in a valid schedule of
length 2wα , R3w+1 needs all the shaded regions in Figure 4, and M−1 of each unshaded
interval (except the last one of D2) for fetching its blocks. Consequently the remaining
reference strings, Ri, 1≤ i≤ 3w, must be scheduled within the unshaded regions; since
in any of these intervals, M−1 of the time is used to prefetch blocks of R3w+1, the blocks
of Ri, 1≤ i≤ 3w, must be fetched in time α− (M−1) = B. The conditions are exactly
the same as in Theorem 1, where the short reference strings needed to be scheduled in
intervals of length B on each disk. Using identical reasoning, we can conclude that the
scheduling of the Ri, 1≤ i≤ 3w, in the unshaded intervals induces a 3-Partition of A .

Note that the sum of lengths of all reference strings is 2wB + 2wα +(2w−2)(M−
1) = 4wB +(4w−2)(M−1) which is polynomially related to wB when M = Θ(B).
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4 Randomized Scheduling

In the previous section we showed that the general problem of scheduling multiple ref-
erence strings with the minimum number of I/O’s is NP-complete for both the SDPB
and SDSB models. In this section we look at the complexity of the optimal scheduling
problem in more favorable situations. In the first situation we show how the funda-
mental result of Leighton, Maggs and Rao [15] for congestion removal in networks
using randomization can be applied to the SDPB scheduling problem. This results in
an algorithm with probabilistically bounded schedule length. For the SDSB problem
we describe a heuristic scheme based on quasi-static memory allocation followed by
congestion removal via randomization.

4.1 SDPB Model

We first consider the SDPB model where each flow has its own independent buffer. For
each flow fi with buffer size mi we use the optimal scheduling algorithm [4, 5] to find
a schedule that minimizes the number of I/O steps required to fetch all the blocks of
fi, when executed in isolation. Let Ti be the number of steps required by the optimal
schedule of fi using buffer mi. Let T = max1≤i≤n Ti be the maximum schedule length
of any of the flows. Note that T is a lower bound on the length of any schedule for the
SDPB problem instance.

At any time step t between 1 and Ti, the schedule for fi indicates which disks will
be active fetching blocks of fi at that time step. If we overlay the schedules of each fi,
1 ≤ i ≤ n, then disk conflicts may occur. That is at time step t, the schedules of two
or more flows may access the same disk Dk. A simple way to handle the congestion
is to simulate each step of the overlay schedule by a number of sub-steps, where only
one block is fetched from any disk in each sub-step. Let c(i, t) indicate the congestion
(number of contending flows) for disk Di at time step t. Let c∗(t) = max1≤i≤d c(i, t)
be the maximum congestion on any disk at time step t. Then the accesses at step t can
be simulated in a conflict-free manner in c∗(t) steps. Hence the entire schedule can be
simulated in Σ1≤t≤T c∗(t) steps. Since in the worst-case c∗(t) can equal d, this gives a
worst-case bound of T d for the length of the schedule using this strategy.

We now present a randomized scheduling method for SDPB with bounded perfor-
mance. The strategy uses the fundamental idea of Leighton, Maggs and Rao [15] who
showed how to remove congestion in a routing network using randomization. The rela-
tion of the network routing problem to shop scheduling problems was shown in [20]. In
the job shop scheduling problem there are d machines and n jobs; each job is made up
of an ordered sequence of operations which must be serviced in order. Each operation
must be assigned to a particular machine depending on the operation. A machine may
work on only one operation at any time step, and each job may be processed by only
one machine at a time. A special case of job shop where each job is processed exactly
once on each machine is known as the flow shop problem.

The routing problem in [15] is a special case of flow-shop scheduling where each
operation requires unit time. In [20] the technique of [15] was generalized to allow
operations to have different and arbitrary lengths, and to allow a job to use the same
machine several times. However, each job could only be processed by one machine at
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any time. It is possible to visualize the SDPB problem considered in this paper within
this framework. Associate flows with jobs, disks with the machines, and each block
of a flow as a unit-time operation of the job. Then the special case when the memory
assigned to each flow is one (mi = 1), corresponds exactly to the job shop scheduling
problem. When mi > 1, SDPB differs from the standard job shop problem in that several
machines (disks) may service the operations (fetch blocks) of the same job (flow) at the
same time step. That is, there is parallelism among the operations of a single job which
is disallowed in the standard job shop scheduling model.

We show below that the techniques of [15, 20] can be extended to apply to this more
general model of SDPB as well. Let N be the total number of blocks in all flows com-
bined. Recall that the length of the optimal schedule for flow fi with memory allocation
mi is denoted by Ti, and that T = max1≤i≤n Ti is the maximum length of the schedule
for any flow. For any buffer size mi the optimal schedule for fi can be constructed using
the algorithm in [4, 5]. Let the total number of blocks fetched from disk Di be Bi, and
let B = max1≤i≤d Bi denote the maximum number of blocks fetched from any disk. Fi-
nally let the length of the optimal schedule for SDPB be T ∗. Then T ∗ ≥ T and T ∗ ≥ B;
so T + B ≤ 2T ∗. We show that with high probability all accesses can be scheduled to
complete in cT ∗ logN steps, for a constant c.

The scheme parallels that in [15, 20]. The schedule for flow f1 begins at time step 1.
The start time for the schedule for each flow fi, i > 1 is staggered by an integer number
of steps randomly chosen between 1 and B. The n schedules with start times between
1 and B when overlaid result in a schedule of length at most T + B. However, there
may be contention for disks at different time steps, depending on how the rectangles
representing the schedules line up. We show below that the worst-case disk conflict is
small with high probability.

Theorem 3. Let N be the total number of blocks in the reference strings. It is possible
to find a schedule for SDPB that with high probability is within a factor c logN of the
optimal length, for a constant c.

Proof. The overlapped schedules obtained by staggering the flows is of length no more
than T +B. We show that with high probability the maximum load on any disk is upper
bounded by O(logN).

Consider an arbitrary time step u and an arbitrary disk s. At most B blocks are can-
didates for scheduling on disk s at time step u. The probability of any of the can-
didate blocks being scheduled in that time step is 1/B, since the random offset of
each flow gives the block a probability 1/B of being scheduled in that slot. Hence
the probability that k or more blocks in are scheduled in this slot is upper bounded
by (BCk)(1/B)k ≤ (eB/k)k(1/B)k = (e/k)k. The probability that k or more blocks are
scheduled in any of the disks at time step u is therefore less than d(e/k)k ≤ N(e/k)k.
If we choose k = 2e logN, then this probability is upper bounded by (1/N2e−1). Now
T ≤ N and B ≤ N, and so we have T + B ≤ 2N. Since there are at most time T + B
steps in the schedule, the probability that the maximum load on a disk at any time step
is greater that k = 2e logN is upper bounded by 2N ∗ (1/N2e−1) < 1/N3. Hence with
high probability each time step in the schedule of length T + B can be simulated con-
tention free in k = O(logN) steps. Since T +B≤ 2T ∗, the overall schedule is of length
cT ∗ logN, for a constant c, with high probability.
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4.2 SDSB Model

For the SDSB model we first statically partition the buffer among the flows so that in
the absence of any disk contention, it minimizes the maximum schedule length of any
flow. We then proceed exactly as in the SDPB model. That is first construct the shortest
schedule for each flow individually based on the storage it has been allocated, and then
stagger their starting times randomly to reduce disk contention. To capture phases of
the workload the buffer can be reparititoned for small disjoint sections of the reference
string.

Let Ti(k), 1 ≤ i ≤ n, denote the length of the optimal schedule of flow fi with
a buffer allocation of k blocks. The buffer allocation is denoted by a vector M =
[m1,m2, · · · ,mn], ∑n

i=1 mi = M, where mi is the amount of buffer allocated to fi. The aim
is to find the vector M that minimizes the completion time of all flows; i.e. minimizes
max{Ti(mi) | ∑i mi = M,1≤ i≤ n,}. A straightforward algorithm will evaluate Ti(k) for
all fi, 1≤ i≤ n, and for all values of k, 1≤ k ≤M. This can be done in Θ(nML) time,
where L is the length of the longest reference string. It then considers all n-partitions
of M, and chooses the partition that minimizes the maximum length schedule. Since
there are Θ(Mn−1) such partitions, the total time required is Θ(nML + nMn−1); this
straightforward algorithm is clearly infeasible in practice. We present a more efficient
algorithm that runs in time Θ(Ln loglogn M).

The algorithm for the case n = 2 is shown in Figure 5. The main idea is as follows.
We compute T1(m) and T2(M−m). If T1(m) is the larger of the two, we allocate more
memory to f1 and less to f2, or vice versa if T2(M−m) is larger. By reallocating the ex-
cess buffer between the two strings, using a binary-search like pattern, we can converge
on the optimal in a logarithmic number of probes.

For n reference strings, we use a recursive version of the above method. Divide the
strings into two sets with n/2 strings in each. Assign m1 buffer blocks to the first set
and m2 buffer blocks to the other partition. Initially, m1 = m2 = M/2. Recursively, find
the best schedule length for each partition using m1 and m2 buffers respectively. If the
first set has the longer schedule length, then move buffers from set 2 to set 1, or vice
versa as necessary, exactly as if there were two strings. Continue the process till one
converges on the best allocation. We will require to do Θ(lg M) probes to each of the
subproblems to find the best allocation. Formally this recursion can be represented as:

l = 1; h = M−1
while (l < h)
Note: Lm

n is the minimum schedule length of flow n using m buffers
m = (l +h)/2; /* Probe mid point of memory range */
d1 = Ll

1 - LM−l
2 ; d2 = Lm

1 - LM−m
2 ;

if (d1 × d2 < 0) h = (m−1)
else if (d1 × d2 > 0) l = (m+1);
else return m

return l;

Fig. 5. O(L logM) algorithm to optimally allocate memory to two flows
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T (n,M)≤ c1 lgM (2 T (n/2,M)) and T (1,M)≤ c2L (1)

Solving the recurrence, we get:

T (n,M)≤ ck
1 · logk M ·2k · T (n/2k,M) = Θ(n L lglg n M) (2)

5 Conclusions

In this paper, we present an analytical model to study scheduling of multiple flows in
a parallel I/O system. We show that obtaining a minimum length schedule in this case
is NP-complete for both the partitioned buffer and shared buffer models. A randomized
algorithm based on the congestion removal technique of [15] was analyzed and the di-
lation in the schedule length for the SDPB model was shown to be bounded by a factor
logarithmic in the number of blocks, with high probability. A heuristic for the SDSB
model was presented based on quasi-static partitioning of the buffer among the flows,
followed by randomized congestion removal. An interesting open issue is the complex-
ity of the problem with a fixed number of reference strings, and a variable number of
disks or buffer size. Another interesting problem is to come up with approximation
algorithms for the SDSB model with guarantees on performance.
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Abstract. A snap-stabilizing protocol, starting from any configuration, always
behaves according to its specification. Here, we present the first snap-stabilizing
protocol for arbitrary rooted networks which detects if a set of nodes is a cutset.
This protocol is based on the depth-first search (DFS) traversal and its prop-
erties. One of the most interesting properties of our protocol is that, despite the
initial configuration, as soon as the protocol is initiated by the root, the result
obtained from the computations will be right. So, after the first execution of the
protocol, the root is able to take a decision: “the input set is a cutset or not”, and
this decision is right.

1 Introduction

In this paper, we present the first snap-stabilizing protocol for detecting if a set of pro-
cessors is a cutset of an arbitrary rooted network. Consider a connected undirected
graph G = (V , E), where V is the set of N nodes and E the set of edges. CS ⊆ V is a
cutset (or a separator) of G if and only if the removal of all nodes of CS disconnects G.
The detection of cutsets is an important issue in many applications such as evaluating
the reliability of networks. Thus, from the fault tolerance point of view, detecting if a
set of processors is a cutset of a network is essential. The concept of self-stabilization
[1] is the most general technique to design a system tolerating arbitrary transient faults.
A self-stabilizing system, regardless of the initial states of the processors and messages
initialy in the links, is guaranteed to converge to the intended behavior in a finite time.
Snap-stabilization was introduced in [2]. A snap-stabilizing protocol guaranteed that
it always behaves according to its specification. In other words, a snap-stabilizing pro-
tocol is also a self-stabilizing protocol which stabilizes in 0 time unit. Obviously, a
snap-stabilizing protocol is optimal in stabilization time.

Related Works. In the graph theory area, researchers are interested to scan all mini-
mal cutsets of a graph. But, Provan and Ball proved that scanning all cutsets of a given
graph in an NP-hard problem [3]. Thus, some heuristics have been designed for arbi-
trary graphs [4] and polynomial complete methods has developped for some particu-
lar class of graphs [5,6]. Several works have been also proposed in distributed (non
self-stabilizing) systems [7,8]. To our best knowledge, nothing about cutsets has been
proposed in self-stabilizing systems until now (so, neither in snap-stabilizing systems).

Contribution. In this paper, we present the first snap-stabilizing protocol for detecting if
a set of processors is a cutset of an arbitrary rooted network. One of the most interesting
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properties of our protocol is that, despite the initial configuration, as soon as the protocol
is initiated by the root, the result obtained from the computations will be right. So, after
the first execution of the protocol, the root is able to take a decision: “the input set is a
cutset or not”, and this decision is right. The presented protocol is the composition of
a distributed cutset test algorithm with a previous snap-stabilizing DFS wave protocol
[9]. The drawback of our solution is high cost memory requirement due to the snap-
stabilizing DFS wave protocol. But, our cutset test algorithm may be composed with
any self-stabilizing DFS wave protocol in order to improve the memory requirement.
However, in this case, the resulting protocol will be self-stabilizing only.

The rest of the paper is organized as follows: in Section 2, we describe the model
in which our protocol is written. In Section 3, we present some useful properties about
cutsets. We describe our protocol in Sections 4. In Section 5, we give a sketch of the
proof of snap-stabilization of our protocol1. Finally, after presenting some complexity
results (Section 6), we make concluding remarks (Section 7).

2 Preliminaries

Network. We consider a network as an undirected connected graph G = (V , E) where
V is a set of processors (|V |= N ) and E is the set of bidirectional communication links.
We consider networks which are asynchronous and rooted, i.e., among the processors,
we distinguish a particular processor called root. We denote the root processor by r. A
communication link (p, q) exists if and only if p and q are neighbors. Every processor p
can distinguish all its links. To simplify the presentation, we refer to a link (p, q) of p as
the label q. We assume that the labels of p, stored in the set Neigp, are locally ordered
by ≺p. We assume that Neigp is a constant and is an input from the system.

Computational Model. In the computation model we use, each processor executes the
same program except r. We consider the local shared memory model of communica-
tion. The program of every processor consists in a set of shared variables (henceforth,
referred to as variables) and a finite set of actions. A processor can only write to its own
variables, and read its own variables and variables owned by the neighboring processors.
Each action is constituted as follows: < label > :: < guard >→< statement > . The
guard of an action in the program of p is a boolean expression involving the variables of
p and its neighbors. The statement of an action of p updates one or more variables of p.
An action can be executed only if its guard is satisfied. We assume that the actions are
atomically executed, meaning, the evaluation of a guard and the execution of the corre-
sponding statement of an action, if executed, are done in one atomic step. The state of a
processor is defined by the value of its variables. The state of a system is the product of
the states of all processors (∈ V ). We will refer to the state of a processor and system as a
(local) state and (global) configuration, respectively. Let C be the set of all possible con-
figurations of the system. An action A is said to be enabled in γ ∈ C at p if the guard of A
is true at p in γ. A processor p is said to be enabled in γ (γ ∈ C) if there exists an enabled
action in the program of p in γ. Let a distributed protocol P be a collection of binary

1 See http://www.laria.u-picardie.fr/$\sim$devismes/tr2005-04.pdf
for a complete proof.
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transition relations denoted by �→, on C. A computation of a protocol P is a maximal
sequence of configurations e = (γ0, γ1, ..., γi, γi+1, ...), such that for i ≥ 0, γi �→ γi+1

(called a single computation step or move) if γi+1 exists, else γi is a terminal configura-
tion. Maximality means that the sequence is either finite (and no action of P is enabled
in the terminal configuration) or infinite. All computations considered in this paper are
assumed to be maximal. In a step of computation, first, all processors check the guards
of their actions. Then, some enabled processors are chosen by a daemon. Finally, the
“elected” processors execute one or more of their enabled actions. There exists several
kinds of daemon. Here, we assume an unfair distributed daemon. The unfairness means
that the daemon can forever prevent a processor to execute an action except if it is the
only enabled processor. The distributed daemon implies that, during a computation step,
if one or more processors are enabled, the daemon chooses at least one (possibly more)
of these enabled processors to execute an action. We consider that any processor p exe-
cuted a disabling action in the computation step γi �→ γi+1 if p was enabled in γi and not
enabled in γi+1, but did not execute any action between these two configurations. (The
disabling action represents the following situation: at least one neighbor of p changes its
state between γi and γi+1, and this change effectively made the guard of all actions of p
false.) In order to compute the time complexity, we use the definition of round [10]. This
definition captures the execution rate of the slowest processor. Given a computation e,
the first round of e (let us call it e′) is the minimal prefix of e containing the execution of
one action (an action of the protocol or the disabling action) of every enabled processor
from the first configuration. Let e′′ be the suffix of e such that e = e′e′′. The second
round of e is the first round of e′′, and so on.

Snap-Stabilizing Systems. The concept of Snap-stabilization was first introduced in [2]
as follows: a snap-stabilizing protocol guarantees that it always behaves according to its
specification. In [11], authors discuss and formalize the definition to clarify the concept.
In particular, they recall that snap-stabilization does not guarantee that all components
of the system never work in a fuzzy manner. Snap-stabilization just ensures that if an
execution of the protocol is initiated by some processor, then the protocol behaves as
expected. The protocol we present is a wave protocol as defined by Tel in [12]. By
definition, any execution of a wave protocol contains at least one initialization action.
So, following [11], we propose a more simple definition of snap-stabilization holding
for wave protocols.

Definition 1 (Snap-stabilization for Wave Protocols). Let T be a task, and SPT a
specification ofT . A wave protocolP is snap-stabilizing forSPT if and only if (i) at least
one processor eventually executes a particular action of P , and (ii) the result obtained
with P from this particular action always satisfies SPT .

3 Basis of the Algorithm

3.1 Definitions

We call path of G = (V ,E) any sequence of processors P = p0,p1,. . .,pk such that
∀i, 1 ≤ i ≤ k, (pi−1, pi) ∈ E. P is said elementary if ∀i,j, 0 ≤ i < j ≤ k, pi �= pj . If
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p0,...,pk−1 is elementary and p0 = pk, then P is called a cycle. The processors p0 and
pk are termed as the extremities of the path. The length of P , noted |P |, is the number of
edges which compose P . GS = (VS ,ES) is the subgraph of G = (V ,E) induced by VS

if and only if VS ⊆ V and ES = E∩(VS)2. G = (V ,E) is said connected if and only if
∀p, q ∈ V there exists a path between p and q in G. A connected componante of G is any
connected subgraph of G maximal by inclusion. A connected undirected graph without
any cycle is called a tree. The graph T = (VT ,ET ) is a spanning tree of G = (V ,E) if
and only if T is a tree, VT = V , and ET ⊆ E. Let T ree(r) = (V ,ET ) be a spanning
tree of G rooted at r. The height of a node p in T ree(r), noted h(p), is the length of the
elementary path from r to p in T ree(r). H = maxp∈Tree(r){h(p)} represents the height
of T ree(r). For a node p �= r, a node q ∈ V is said to be the parent of p in T ree(r) if
and only if q is the neighbor of p (in T ree(r)) such that h(p) = h(q) + 1. Conversely,
p is said to be the child of q in T ree(r). A node p0 is said to be an ancestor of another
node pk in T ree(r) (with k > 0) if there exists a sequence of nodes p0,...,pk such that
∀ pi, with 0≤ i < k, pi is the parent of pi+1 in T ree(r). Conversely pk is said to be a
descendant of p0. We note T ree(p) the subtree of T ree(r) rooted at p (∈ V ), i.e., the
subgraph of T ree(r) induced by p and its descendants in T ree(r). We call tree edges
the edges of ET and non-tree edges the edges of E \ET . We call non-tree neighbors of
p, nodes linked to p by a non-tree edge. T ree(r) is a DFS spanning tree of G = (V ,E)
if and only if ∀ (p,q) ∈ E, p ∈ T ree(q) or q ∈ T ree(p).

3.2 Approach

Let CS ⊆ V . Let G′ = (V ′,E′) be the subgraph of G induced by V ′ = V \ CS. Let
T ree(r) = (V ,ET ) be a DFS spanning tree of G rooted at r. By definition, CS is a
cutset of G if and only if there exists at least two connected componantes in G′. So,
in the following, we particularize a node, called CCRoot, for each connected compo-
nantes in G′. Then, we deduce some results, the last one is a technical lemma which
provide a way to locally detect if a node is a CCRoot.

Definition 2 (CCRoot). We call CCRoot of a connected componante C of G′, a node
p ∈ C satisfying h(p) ≤ h(p′), ∀p′ ∈ C (i.e., p is a node of C with the minimal height
in T ree(r)). In particular, by definition, r is a CCRoot if r /∈ CS.

Lemma 1. Let C be a connected componante of G′ and p be a CCRoot of C. T ree(p)
contains (at least) every node of C.

Corollary 1. There only exists one CCRoot in each connected componante of G′.

Theorem 1. CS is a cutset if and only if there exists at least two CCRoot in G′.

Lemma 2. Let C be a connected componante of G′. A node p is the CCRoot of C if
and only if p satisfies the two following conditions: (i) p ∈ C, (ii) ∀x ∈ T ree(p) such
that x ∈ C, ∀y ∈ Neigx: y /∈ CS ⇒ h(y) ≥ h(p).
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4 Algorithm

In this section, we propose a snap-stabilizing protocol for detecting if a set of proces-
sors is a cutset of the network. Our protocol is the conditional composition of two other
protocols: Algorithm DFS and Algorithm CCRC (the CCRoots Counting Algorithm).
AlgorithmDFS refers to the snap-stabilizing depth-first search (DFS) protocol of [9].
Algorithm CCRC uses the DFS properties in order to count the CCRoot of the net-
work as explained in the previous section. So, after recalling the definition of the condi-
tional composition, we present Algorithm DFS . We then introduce the data structures
used by Algorithm CCRC. Finally, we explain the behavior of the conditional compos-
ite algorithm CCRCDFS, i.e., the conditional composition of Algorithm CCRC and
Algorithm DFS.

4.1 Conditional Composition

The conditional composition is a protocol composition technique which has been intro-
duced by Datta et al in [13]. This general technique allows to simplify the design and
proofs of Algorithm CCRCDFS.

Definition 3 (Conditional Composition). Let S1 and S2 be protocols such that vari-
ables written by S2 are not referred by S1. The conditional composition of S1 and S2,
denoted by S2 ◦|G S1, is a protocol that satisfies the following conditions:

1. It contains all the variables and actions of S1 and S2.
2. G is a set of predicates and is a subset of the guards of S1.
3. Every guard of S2 has the form g ∧ h or ¬g ∧ h where g is a logical expression

using the guards ∈ G.
4. Since some actions of S2 may also be enabled when an action of S1 is enabled, the

order of execution is the following: the action of S2 followed by the action of S1 (in
the same step).

4.2 Algorithm DFS
We now roughly present AlgorithmDFS (see [9] for more details). In AlgorithmDFS ,
the root processor (r) eventually initiates a traversal of the network. During the traver-
sal, all the processors are sequentially visited in DFS order. Algorithm DFS is snap-
stabilizing. The snap-stabilizing property guarantees that, since r initiates the protocol,
the traversal is performed as expected. In particular, the traversal cannot be corrupted
by any abnormal behavior. The traversal performed by Algorithm DFS progresses in
the network as a token circulation:

- The traversal begins when r creates a token by Action F .
- Each non-root processor p executes Action F when it receives the token for the first

time.
- A processor p executes Action B each time the token is backtracked to it: If p has

sent the token to q, then, since the traversal ends at q (i.e., q holds the token and the
token has visited all its neighbors), q backtracks the token to p.
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Obviously, the traversal performed by Algorithm DFS follows a DFS spanning tree
of the network. Frow now on, we note T ree(r) = (V ,ET ) this tree. Also, we note h(p)
the height of the node p in T ree(r) and H the height of T ree(r).

4.3 Algorithm CCRC
Algorithm CCRC is just an application of the properties shown in Section 3. We now
describe the inputs, variables, and actions of Algorithm CCRC.

Algorithm 1 Algorithm (CCRC) CCRoots Counting for p = r
Input:
Neigp : set of neighbors (locally ordered);
Sp ∈ Neigp ∪ {idle, done}: variable from Algorithm DFS;
Forward(p), Backward(p), LockedF (p), LockedB(p): predicates from Algorithm DFS;
Nextp: macro from Algorithm DFS;
InCSp: boolean;
Constant: Levelp = 0;

Variables: IsCutsetp : boolean; Cntp: integer;

Macros:
InitCntp = if (InCS) then Cntp := 0; else Cntp := 1;
UpdIsCutsetp = if (Nextp = done) then IsCutsetp := (Cntp ≥ 2);
Actions:
Forward(p) ∧ ¬LockedF (p) → InitCntp; UpdIsCutsetp ;
Backward(p) ∧ ¬LockedB(p) → Cntp := CntSp ; UpdIsCutsetp ;

Inputs. Algorithm CCRC reads two inputs from Algorithm DFS: Sp and Nextp.The
current successor (resp. predecessor) of a processor p in the traversal is maintained in
Sp (resp. Pp). Note that Sp ∈ Neigp ∪ {idle, done} meaning that p is ready to receive
the token (Sp = idle), the traversal from p is done (Sp = done), or the traversal from
p is in progress (and Sp designates its current successor in the traversal). Moreover,
using the S variables, p can dynamically evaluate its parent Pp in T ree(r) as follows:
Pp = q where Sq = p (see Macro Pp). Finally, Macro Nextp allows to compute a new
value for Sp. In Algorithm CCRC, we only use this macro to know when the traversal
from p is done, i.e., when Nextp = done. To simplify the design of the algorithm, we
assume that every processor p knows if it belongs to the set to test (noted CS) thanks
to the boolean inCSp. In fact, we show inCSp as an input of the system but we could
provided CS (using a set of Ids) in the input of r only and, after, propagated it to all
other processors using Algorithm DFS .

Variables. In Algorithm CCRC, each processor p maintains the following datas: (i)
Levelp, Cntp, and IsCutsetp for p = r; (ii) Levelp, Backp, and Cntp for p �=
r. Levelp refers to as the height of p in T ree(r). In Backp, we compute the value
UNNTC(p) (i.e., the Uppermost Non-Tree Neighbor of T ree(p) in Cp) as follows: If
p ∈ CS, UNNTC(p) = -1. Otherwise, p belongs to a connected componante of G′,
noted Cp, and UNNTC(p) is equal to the minimal value among the height of each node
of T ree(p) ∩ Cp and the height of their non-tree neighbors q such that q ∈ Cp. From
the definition of UNNTC and Lemma 2, the following theorem shows that if Levelp
and Backp are correctly evaluated (i.e., if Levelp = h(p) and Backp = UNNTC(p)),
then we can locally detect if p is a CCRoot or not.
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Theorem 2. ∀p∈V \{r}, p is a CCRoot if and only if p/∈CS and h(p)=UNNTC(p).

Algorithm 2 Algorithm (CCRC) CCRoots Counting for p �= r
Input:
Neigp : set of neighbors (locally ordered);
Sp ∈ Neigp ∪ {idle, done}: variable from Algorithm DFS;
Forward(p), Backward(p), LockedF (p), LockedB(p): predicates from Algorithm DFS;
Nextp: macro from Algorithm DFS;
InCSp: boolean;
Variables: Cntp, Levelp , Backp: integers;

Predicate:

IsCCRoot(p) ≡ (Backp = Levelp)

Macros:
Pp = (q ∈ Neigp :: Sq = p);
NonCSAncLevelp = {x ∈ � :: (∃q ∈ Neigp :: Levelq = x ∧ Levelq < Levelp ∧ ¬inCSq)};
NonCSDescBackp = {x ∈ � :: (∃q ∈ Neigp :: Backq = x ∧ Levelq > Levelp ∧ ¬inCSq)};
UpdBackp = if (InCSp) then Backp := −1;

else Backp := min({Levelp} ∪ NonCSAncLevelp ∪ NonCSDescBackp);
UpdCntp = if (IsCCRoot(p)) then Cntp := Cntp + 1;
Updatep = if (Nextp = done) then UpdBackp; UpdCntp;
Actions:
Forward(p) ∧ ¬LockedF (p) → Levelp := LevelPp + 1; Cntp := CntPp ; Updatep;
Backward(p) ∧ ¬LockedB(p) → Cntp := CntSp ; Updatep ;

Thus, thanks to the Level and Back variables, we can locally detect the CCRoots. So,
in addition, we use the Cnt variables to count the CCRoots of the network. Finally,
the boolean IsCutsetr is used as a flag to mark if CS is a cutset or not.

Actions. Using the conditionnal composition, the actions of Algorithm CCRC are ex-
ecuted in the same step of Actions F and B of Algorithm DFS (see Definition 3).
Action F is enabled at p when p satisfies Forward(p) ∧ ¬LockedF (p). Respectively,
Action B is enabled at p when p satisfies Backward(p) ∧ ¬LockedB(p).

During a traversal, when Processor p receives the token for the first time (Action
F ), p can compute a value depending on it and its parents: a prefix action. In Algo-
rithm CCRC, the prefix action allows to compute Levelp for non-root processors and
to initialise Cntp for the root (Definition 2 allows to determine if r is a CCRoot or
not). Then, when the traversal locally ends at p (p executes Actions F or B while
Nextp = done), p can calculate a result depending on it, its neighbors and/or its de-
scendants: a postfix action. Indeed, in this case, T ree(p) is entirely computed and the
token has visited all neighbors of p. In Algorithm CCRC, the postfix action allows to:

- Compute Backp for p �= r. Indeed, when the traversal ends at p, its neighbors have
computed their height and its descendants have evaluated their Back Variable.

- Update Cntp for p �= r. As Backp and Levelp are evaluated, by Theorem 2, p
knows if it is a CCRoot and, if necessary, it increments Cntp.

- Update IsCutsetp for p = r. When the traversal ends at r, the traversal is entirely
done. So, r knows the number of CCRoots of the network and, using Theorem 1,
Macro UpdIsCutsetp updates IsCutsetp as well.

Finally, some actions of Algorithm CCRC have to be executed at each step of Algorithm
DFS (when Actions F or B are executed). These actions allow to maintain in the Cnt
variables the number of CCRoots currently discovered.
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4.4 Algorithm CCRCDFS
Algorithm CCRCDFS is shown as Algorithm 3. Informally, Algorithm CCRCDFS
works as follows. The root, r, begins the traversal by creating a token and initialises
Cntr to 0 or 1 according to Definition 2. Then, each time a processor p �= r receives the
token for the first time, it initialises Cntp (Cntp := CntSp) and computes its height in
Levelp. Each time the token is backtracked to a processor q, q updates Cntq . When the
traversal ends at q, q computes Backq . Indeed, all its neighbors have computed their
Level variables and all its descendants have already computed their Back variables.
Thus, by Theorem 2, q can decide if it is a CCRoot or not and updates Cntq as well.
Finally, when the traversal is completely done (i.e., the token is backtracked to r and
the token has visited all its neighbors), r can decide if CS (the set of nodes to test) is a
cutset (according to Theorem 1) and updates IsCutsetr as well. Thus, from any initial
configuration, after the end of a DFS traversal initiated by r, we obtain a configuration
similar to the one shown in Figure 1. In this exemple, CS = {1, 6, 8} and r, 2 are
CCRoots. The root processor r is a CCRoot because r /∈ CS (Definition 2). Processor
2 is a CCRoot because 2 �= r, 2 /∈ CS, and Level2 = Back2. During the traversal, the
Cnt variables count the number of CCRoots (here, equal to 2) and IsCutsetr is set
to true at the end of the traversal according to Theorem 1.

Algorithm 3 Algorithm (CCRCDFS) CCRoots Counting and Depth-First Search
CCRC ◦ |{Forward,LockedF,Backward,LockedB}DFS
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Fig. 1. State of the network after the end of a DFS traversal initiated by r

5 Sketch of Proof

In this section, we show that Algorithm CCRCDFS (i.e., the conditional composition
of Algorithm DFS and Algorithm CCRC) is snap-stabilizing under an unfair daemon.
First, we can remark that Algorithm CCRC does not change the variables used by Al-
gorithm DFS . Moreover, no action of Algorithm CCRC can prevent any action of Al-
gorithm DFS since, when an action of Algorithm CCRC is executed at p, it is done in
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the same step of an action of Algorithm DFS at p (because of the conditional compo-
sition). So, Algorithm CCRC has no impact on the behavior of Algorithm DFS . From
[9], we know that Algorithm DFS is snap-stabilizing, i.e., r eventually initiates the
protocol and since r initiates the protocol, Algorithm DFS satisfies its specification.
More precisely, starting from any initial configuration, r eventually initiates a traversal
of the network. During this traversal, all the processor are sequentially visited in DFS
order. In particular, the snap-stabilizing property guarantees that the traversal performed
by Algorithm DFS cannot be corrupted by any abnormal behavior. Since Algorithm
CCRC cannot prevent AlgorithmDFS to work as expected, we will observe the system
from the moment when r initiates the protocol and we focus on the traversal performed
from r only (we do not take care of any abnormal behavior related to AlgorithmDFS).
So, if we focus on the traversal performed from r, if easy to verify that, after receiving
the token for the first time, any p ∈ V satisfies Levelp = h(p) until the end of the
traversal. Then, when the traversal ends at p, Backp = UNNTC(p) and, by Theo-
rem 2, p is able to decide if it is a CCRoot or not as explained in Section 4. Hence,
at the end of a traversal initiated by r, r knows the number of CCRoots and takes the
right decision, i.e., IsCutsetr = true if and only if CS is a cutset. Finally, in [9],
Algorithm DFS is proven assuming an unfair daemon. Now, by Definition 3, Algo-
rithm CCRCDFS works with the same number of steps than AlgorithmDFS and it is
snap-stabilizing under the unfair daemon.

Theorem 3. Under an unfair daemon, Algorithm CCRCDFS is snap-stabilizing and
detects if CS is a cutset.

6 Complexity Analysis

Time Complexity. Using the conditional composition, the actions of Algorithm CCRC
are executed only when actions of Algorithm DFS are executed. Moreover, actions
of Algorithm CCRC and Algorithm DFS are executed in the same step. Thus, the
complexity results of Algorithm CCRCDFS and AlgorithmDFS are the same. Hence,
from [9], we can deduce that a complete CCRCDFS computation is executed in O(N2)
moves and in at most 6N − 1 rounds.

Space Complexity. In Algorithms 1 and 2, we do not assume any bound on Variables
Cnt, Level, and Back. But, we may assume that the maximal value of each of these
variables is any upper bound of N . Thus, we can claim that each variable Cnt, Level,
or Back can be stored in O(log N ) bits and, by taking account of the other variables, we
can deduce that the space requirement of Algorithm CCRC is O(log(N)) bits per pro-
cessor. From [9], we can conclude that the space requirement of Algorithm CCRCDFS
is O(N×log(N)+log(∆)) bits per processor (where ∆ is an upper bound on the degree
of the processors).

7 Conclusion

In this paper, we have presented the first snap-stabilizing protocol for detecting if a set
of processors is a cutset of an arbitrary rooted network called Algorithm CCRCDFS.
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This protocol, which is a conditionnal composition of Algorithms CCRC and DFS ,
works assuming an unfair daemon, i.e., the weakest scheduling assumption. The snap-
stabilizing property guarantees that despite the initial configuration, as soon as our pro-
tocol is initiated by the root, the result obtained from the computations will be right.
Moreover, as our protocol is snap-stabilizing, our protocol is optimal in stabilization
time. In addition, note that a complete computation of Algorithm CCRCDFS is exe-
cuted in O(N ) rounds and O(N2) moves. Finally, the space requirement of our solution
is O(N× log(N)+log(∆)) bits per processor. Algorithm CCRC can be combined with
any self-stabilizing DFS wave protocol (e.g. [14,15]) in order to improve the memory
requirement. Of course, in this case, the resulting protocol will be self-stabilizing only.
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Abstract. In this paper, we consider the problem of scheduling divisi-
ble loads onto an heterogeneous star platform, with both heterogeneous
computing and communication resources. We consider the case where
the workers, after processing the tasks, send back some results to the
master processor. This corresponds to a more general framework than
the one used in many divisible load papers, where only forward com-
munications are taken into account. To the best of our knowledge, this
paper constitutes the first attempt to derive optimality results under
this general framework (forward and backward communications, hetero-
geneous processing and communication resources). We prove that it is
possible to derive the optimal solution both for LIFO and FIFO dis-
tribution schemes. Nevertheless, the complexity of the general problem
remains open: we also show in the paper that the optimal distribution
scheme may be neither LIFO nor FIFO.

1 Introduction

This paper deals with scheduling divisible load applications on heterogeneous
platforms. As their name suggests, divisible load applications can be divided
among worker processors arbitrarily, i.e. into any number of independent pieces.
This corresponds to a perfectly parallel job: any sub-task can itself be processed
in parallel, and on any number of workers. In practice, the Divisible Load Schedul-
ing model, or DLS model, is an approximation of applications that consist of
large numbers of identical, low-granularity computations.

Quite naturally, we target a master-worker implementation where the master
initially holds (or generates data for) a large amount of work that will be executed
by the workers. In the end, results will be returned by the workers to the master.
Each worker has a different computational speed, and each master-worker link
has a different bandwidth, thereby making the platform fully heterogeneous.
The scheduling problem is first to decide how many load units the master sends
to each worker, and in which order. After receiving its share of the data, each
worker executes the corresponding work and returns the results to the master.
Again, the ordering of the return messages must be decided by the scheduler.

The DLS model has been widely studied in the last several years, after having
been popularized by the landmark book [7]. The DLS model provides a practical
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framework for the mapping of independent tasks onto heterogeneous platforms,
and has been applied to a large spectrum of scientific problems. From a theo-
retical standpoint, the success of the DLS model is mostly due to its analytical
tractability. Optimal algorithms and closed-form formulas exist for important
instances of the divisible load problem. A famous example is the closed-form
formula given in [4, 7] for a bus network. The hypotheses are the following: (i)
the master distributes the load to the workers, but no results are returned to the
master; (ii) a linear cost model is assumed both for computations and for com-
munications (see Section 2.1); and (iii) all master-worker communication links
have same bandwidth (but the workers have different processing speeds). The
proof to derive the closed-form formula proceeds in several steps: it is shown that
in an optimal solution: (i) all workers participate in the computation, then that
(ii) they never stop working after having received their data from the master,
and finally that (iii) they all terminate the execution of their load simultane-
ously. These conditions give rise to a set of equations from which the optimal
load assignment αi can be computed for each worker Pi.

Extending this result to a star network (with different master-worker link
bandwidths), but still (1) without return messages and (2) with a linear cost
model, has been achieved only recently [5]. The proof basically goes along the
same steps as for a bus network, but the main additional difficulty was to find
the optimal ordering of the messages from the master to the workers. It turns
out that the best strategy is to serve workers with larger bandwidth first, inde-
pendently of their computing power.

The next natural step is to include return messages in the picture. This is very
important in practice, because in most applications the workers are expected to
return some results to the master. When no return messages are assumed, it is
implicitly assumed that the size of the results to be transmitted to the master
after the computation is negligible, and hence has no (or very little) impact on the
whole DLS problem. This may be realistic for some particular DLS applications,
but not for all of them. For example suppose that the master is distributing files
to the workers. After processing a file, the worker will typically return results in
the form of another file, possibly of shorter size, but still non-negligible. In some
situations, the size of the return message may even be larger than the size of the
original message: for instance the master initially scatters instructions on some
large computations to be performed by each worker, such as the generation of
several cryptographic keys; in this case each worker would receive a few bytes of
control instructions and would return longer files containing the keys.

Because it is very natural and important in practice, several authors have in-
vestigated the problem with return messages: see the papers [3, 8, 9, 2, 1]. How-
ever, all the results obtained so far are very partial. Intuitively, there are hints
that suggest that the problem with return results is much more complicated.
The first hint lies in the combinatorial space that is open for searching the best
solution. There is no reason for the ordering of the initial messages sent by the
master to be the same as the ordering for the messages returned to the mas-
ter by the workers after the execution. In some situations a FIFO strategy (the
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worker first served by the master is the first to return results, and so on) may be
preferred, because it provides a smooth and well-structured pipelining scheme.
In other situations, a LIFO strategy (the other way round, first served workers
are the last to return results) may provide better results, because faster workers
would work a longer period if we serve them first and they send back their re-
sults last. True, but what if these fast workers have slow communication links?
In fact, and here comes the second hint, it is not even clear whether all workers
should be enrolled in the computation by the master. This is in sharp contrast
to the case without return messages, where it is obvious that all workers should
participate. To the best of our knowledge, the complexity of the problem re-
mains open, despite the simplicity of the linear cost model. In [1], Adler, Gong
and Rosenberg show that all FIFO strategies are equally performing on a bus
network, but even the analysis of FIFO strategies is an open problem on a star
network.

The main contributions of this paper are the characterization of the best
FIFO and LIFO strategies on a star network, together with an experimental
comparison of them. While the study of LIFO strategies nicely reduces to the
original problem without return messages, the analysis of FIFO strategies turns
out to be more involved; in fact, the optimal FIFO solution may well not enroll
all workers in the computations. Admittedly, the complexity of the DLS problem
with return messages remains open: there is no a priori reason that either FIFO
or LIFO strategies would be superior to solutions where the ordering of the
initial messages and that of return messages are totally uncorrelated (and we
give an example of such a situation in Section 2). Still, we believe that our
results provide an important step in the understanding of this difficult problem,
both from a theoretical and practical perspective. Indeed, we have succeeded in
characterizing the best FIFO and LIFO solutions, which are the most natural and
easy-to-implement strategies. Due to space limitations, the overview of related
work is not included in this paper, please refer to the extended version [6].
Similarly, all proofs are omitted, but they are all detailed in [6].

2 Framework

2.1 Problem Parameters

A star network S = {P0, P1, P2, . . . , Pp} is composed of a master P0 and of p
workers Pi, 1 ≤ i ≤ p. There is a communication link from the master P0 to each
worker Pi. In the linear cost model, each worker Pi has a (relative) computing
power wi: it takes X.wi time units to execute X units of load on worker Pi.
Similarly, it takes X.ci time units to send the initial data needed for computing
X units of load from P0 to Pi, and X.di time units to return the corresponding
results from Pi to P0. Without loss of generality we assume that the master
has no processing capability (otherwise, add a fictitious extra worker paying
no communication cost to simulate computation at the master). Note that a
bus network is a star network such that all communication links have the same
characteristics: ci = c and di = d for each worker Pi, 1 ≤ i ≤ p.
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It is natural to assume that the quantity di

ci
is a constant z that depends

on the application but not on the selected worker. In other words, workers who
communicate faster with the master for the initial message will also communicate
faster for the return message. In the following, we keep using both values di and
ci, because many results are valid even without the relation di = zci, and we
explicitly mention when we use this relation.

Finally, we use the standard model in DLS problem for communications: the
master can only send data to, and receive data from, a single worker at a given
time-step. A given worker cannot start execution before it has terminated the
reception of the message from the master; similarly, it cannot start sending the
results back to the master before finishing the computation. However, there is
another classic hypothesis in DLS papers which we do not enforce, namely that
there is no idle time in the operation of each worker. Under this assumption, a
worker starts computing immediately after having received its initial message,
which is no problem, but also starts returning the results immediately after
having finished its computation: this last constraint does reduce the solution
space arbitrarily. Indeed, it may well prove useful for a worker Pi to stay idle
a few steps before returning the results, waiting for the master to receive the
return message of another worker Pi′ . Of course we could have given more load
to Pi to prevent it from begin idle, but this would have implied a longer initial
message, at the risk of delaying the whole execution scheme. Instead, we will
tackle the problem in its full generality and allow for the possibility of idle times
(even if we may end by proving that there is no idle time in the optimal solution).

The objective function is to maximize the number of load units that are
processed within T time-units. Let αi be the number of load units sent to, and
processed by, worker Pi within T time-units. Owing to the linear cost model, the
quantity

�p
i=1 αi

T = ρ does not depend on T (see Section 2.2 for a proof), and
corresponds to the achieved throughput, which we aim at maximizing.

2.2 Linear Program for a Given Scenario

Given a star platform with p workers, and parameters wi, ci, di, 1 ≤ i ≤ p, how
can we compute the optimal throughput? First we have to decide which workers
are enrolled. Next, given the set of participating workers, we have to decide for
the ordering of the initial messages. Finally we have to decide for the ordering of
the return messages. Altogether, there is a finite (although exponential) number
of scenarios, where a scenario refers to a schedule with a given set of participating
workers and a fixed ordering of initial and return messages. Then, the next
question is: how can we compute the throughput for a given scenario?

Without loss of generality, we can always perform all the initial communi-
cations as soon as possible. In other words, the master sends messages to the
workers without interruption. If this was not the case, we would simply shift
ahead some messages sent by the master, without any impact on the rest of the
schedule. Obviously, we can also assume that each worker initiates its compu-
tation as soon as it has received the message from the master. Finally, we can
always perform all the return communications as late as possible. In other words,
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P2

P1

Pp

Pi

αici αiwi
xi

αidi

Fig. 1. LIFO strategy. Dark grey rectangles (of length αqcq) represent the initial mes-
sages destined to the workers. White rectangles (of length αqwq) represent the com-
putation on the workers. Light grey rectangles (of length αqdq) represent the return
messages back to the master. Bold lines (of length xq) represent the idle time of the
workers.

once the master starts receiving data back from the first worker, it receives data
without interruption until the end of the whole schedule. Again, if this was not
the case, we would simply delay the first messages received by the master, with-
out any impact on the rest of the schedule. Note that idle times can still occur
in the schedule, but only between the end of a worker’s computation and the
date at which it starts sending the return message back to the master.

The simplest approach to compute the throughput ρ for a given scenario is
to solve a linear program. For example, assume that we target a LIFO solution
involving all processors, with the ordering P1, P2, . . . , Pp, as outlined in Figure 1.
With the notations of Section 2.1 (parameters wi, ci, di and unknowns αi, ρ),
worker Pi: (i) starts receiving its initial message at time trecvi =

∑i−1
j=1 αjcj ; (ii)

starts execution at time trecvi + αici; (iii) terminates execution at time ttermi =
trecvi + αici + αiwi; (iv) starts sending back its results at time tback

i = T −∑i
j=1 αjdj . Here T denotes the total length of the schedule. The idle time of Pi

is xi = tback
i − ttermi , and this quantity must be nonnegative. We derive a linear

equation for Pi:

T −
i∑

j=1

αjdj ≥
i−1∑
j=1

αjcj + αici + αiwi.

Together with the constraints αi ≥ 0, we have assembled a linear program,
whose objective function is to maximize ρ(T ) =

∑p
i=1 αi. In passing, we check

that the value of ρ(T ) is indeed proportional to T , and we can safely define
ρ = ρ(1) as mentioned before. We look for a rational solution of the linear
program, with rational (not integer) values for the quantities αi and ρ, hence we
can use standard tools like Maple or MuPAD.

Obviously, this linear programming approach can be applied for any permu-
tation of initial and return messages, not just LIFO solutions as in the above
example. Note that it may well turn out that some αi is zero in the solution
returned by the linear program, which means that Pi is not actually involved
in the schedule. This observation reduces the solution space: we can a priori
assume that all processors are participating, and solve a linear program for each
pair of message permutations (one for the initial messages, one for the return
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messages). The solution of the linear program will tell us which processors are
actually involved in the optimal solution for this permutation pair.

For a given scenario, the cost of this linear programming approach may be
acceptable. However, as already pointed out, there is an exponential number of
scenarios. Worse, there is an exponential number of LIFO and FIFO scenarios,
even though there is a single permutation to try in these cases (the ordering of
the return messages is the reverse (LIFO) or the same (FIFO) as for the initial
messages). The goal of Sections 3 and 4 is to determine the best LIFO and FIFO
solution in polynomial time.

2.3 Counter-Examples

In Figure 2 we outline an example where not all processors participate in the
optimal solution. The platform has three workers, as shown in Figure 2(a). The
best throughput that can be achieved using all the three workers is obtained
via the LIFO strategy represented in Figure 2(b), and is ρ = 61/135. However,

P0

P1 P2 P3

d3 = 5d1 = 1

w1 = 1 w2 = 1 w3 = 5

c1 = 1
c2 = 1

c3 = 5

d2 = 1

(a) Platform

P2

P1

P3

(b) LIFO, ρ = 61/135

P2

P1

P3

(c) FIFO, 2 processors,
ρ = 1/2

Fig. 2. The best schedule with all the three workers (shown in (b)) achieves a lower
throughput than when using only the first two workers (as shown in (c))

P0

P1 P2 P3

c2 = 8c1 = 7 c3 = 12

d1 = 7 d3 = 12

w1 = 6 w2 = 5 w3 = 5

d2 = 8

(a) Platform

P2

P1

P3

(b) Optimal schedule
(ρ = 38/499 ≈ 0.076)

P2

P1

P3

(c) FIFO schedule (ρ =
47/632 ≈ 0.074)

P2

P1

P3

(d) LIFO schedule (ρ =
43/580 ≈ 0.074)

Fig. 3. An example where the optimal solution is neither FIFO nor LIFO
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the FIFO solution which uses only the first two workers P1 and P2 achieves
a better throughput ρ = 1/2. To derive these results, we have used the linear
programming approach for each of the 36 possible permutation pairs. It is very
surprising to see that the optimal solution does not involve all workers under
a linear cost model (and to the best of our knowledge this is the first known
example of such a behavior).

Next, in Figure 3, we outline an example where the best throughput is achieved
using neither a FIFO nor a LIFO approach. Instead, the optimal solution uses
the initial ordering (P1, P2, P3) and the return ordering (P2, P1, P3). Again, we
have computed the throughput of all possible permutation pairs using the linear
programming approach.

3 LIFO Strategies

In this section, we concentrate on LIFO strategies, where the processor that
receives the first message is also the last processor that sends its results back to
the master, as depicted in Figure 1. We keep the notations used in Section 2.2,
namely wi, ci, di and αi for each worker Pi.

In order to determine the optimal LIFO ordering, we need to answer the fol-
lowing questions: What is the subset of participating processors? What is the
ordering of the initial communications? What is the idle time xi of each partici-
pating worker? The following theorem answers these questions and provides the
optimal solution for LIFO strategies (see [6] for the proof):

Theorem 1. In the optimal LIFO solution, then: (i) all processors participate
to the execution; (ii) initial messages must be sent by non-decreasing values of
ci + di; and (iii) there is no idle time, i.e. xi = 0 for all i. Furthermore, the
corresponding throughput can be determined in linear time O(p).

4 FIFO Strategies

In this section, we concentrate on FIFO strategies, where the processor that
receives the first message is also the first processor to send its results back to
the master. We keep the notations used in Sections 2.2 and 3, namely wi, ci, di

and αi for each worker Pi. The analysis of FIFO strategies is much more difficult
than the analysis of LIFO strategies: we will show that not all processors are
enrolled in the optimal FIFO solution. In this section, we assume that di = zci

for 1 ≤ i ≤ p. The proof of the following theorem is long and technical, see [6]
for more details:

Theorem 2. In the optimal FIFO solution, then: (i) initial messages must be
sent by non-decreasing values of ci + di; (ii) the set of participating processors
is composed of the first q processors for the previous ordering, where q can be
determined in linear time; and (iii) there is no idle time, i.e. xi = 0 or all i.
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Furthermore, the optimal LIFO solution and the corresponding throughput can
be determined in linear time O(p).

5 Simulations

In this section, we present the results of some simulations conducted with the
LIFO and FIFO strategies. We cannot compare these results against the opti-
mal schedule, since we are not able to determine the optimal solution as soon
as the number of workers exceeds a few units. For instance, for a platform with
100 workers, we would need to solve (100!)2 linear programs of 100 unknowns
(one program for each permutation pair). Rather than computing the solution
for all permutation pairs, we use the optimal FIFO algorithm as a basis for
the comparisons. The algorithms tested in this section are the following: op-
timal FIFO solution, as determined in Section 4, called OPT-FIFO; optimal
LIFO solution, as determined in Section 3, called OPT-LIFO; a FIFO heuristic
using all processors, sorted by non-decreasing values of ci (faster communicat-
ing workers first), called FIFO-INC-C; a FIFO heuristic using all processors,
sorted by non-decreasing values of wi (faster computing workers first), called
FIFO-INC-W.

We present the relative performance of these heuristics on a master/worker
platform with 100 workers. For these experiments, we chose z = 0.8, meaning
that the returned data represents 80% of the input data. The performance pa-
rameters (communication and computation costs) of each worker may vary from
50% around an average value. The ratio of the average computation cost over
the average communication cost (called the w/c-ratio) is used to distinguish be-
tween the experiments, as the behavior of the heuristics highly depends on this
parameter.

Figure 4(a) presents the throughput of the different heuristics for a w/c-ratio
going from 1/10 to 100. These results are normalized so that the optimal FIFO
algorithm always gets a throughput of 1. We see that both OPT-FIFO and
FIFO-INC-C give good results. The other heuristics (FIFO-INC-W and OPT-
LIFO) perform not so well, except when the w/c-ratio is high: in this case,
communications have no real impact on the schedule, and almost all schedules
may achieve good performances.

In Section 4, we showed that using all processors is not always a good choice. In
Figure 4(b) we plot the number of processors used by the OPT-FIFO algorithm
for the previous experiments: for small values of the w/c-ratio, a very small
fraction of the workers is enrolled in the optimal schedule. Finally, Figure 4(c)
presents the relative performance of all heuristics when the size of the data
returned is the same as the size of the input data (z = 1). With the exception
of this new hypothesis (z = 1 instead of z = 0.8), the experimental settings are
the same as for Figure 4(a). We show that for a w/c-ratio less than 10, only the
OPT-FIFO algorithm gives good performance: the FIFO-INC-C heuristic is no
longer able to reach a comparable throughput. We also observe that when z = 1
the ordering of the workers has no importance: FIFO-INC-C and FIFO-INC-W
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are FIFO strategies involving all the workers but in different orders, and give
exactly the same results.
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Fig. 4. (a) (a): Performance of the heuristics (optimal FIFO schedule), for different
w/c-ratios. (b): Number of workers (optimal FIFO schedule), for different w/c-ratios.
(c): Performance of the heuristics (optimal FIFO schedule), when ci = di (z = 1), for
different w/c-ratios.
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6 Conclusion

In this paper we have dealt with divisible load scheduling on a heterogeneous
master-worker platform. We have shown that including return messages from
the workers after execution, although a very natural and important extension in
practice, leads to considerable difficulties. These difficulties were largely unex-
pected, because of the simplicity of the linear model.

We have not been able to fully assess the complexity of the problem, but
we have succeeded in characterizing the optimal LIFO and FIFO strategies,
and in providing an experimental comparison of these strategies against simpler
greedy approaches. Future work must be devoted to investigate the general case,
i.e. using two arbitrary permutation orderings for sending messages from, and
returning messages to, the master. This seems to be a very combinatorial and
complicated optimization problem.
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Abstract. Credential revocation is a critical problem in grid environ-
ments and remains unaddressed in existing grid security solutions. We
present a novel grid authentication system that solves the revocation
problem. It guarantees instantaneous revocation of both long-term dig-
ital identities of hosts/users and short-lived identities of user proxies.
With our approach, revocation information is guaranteed to be fresh
with high time-granularity. Our system employs mediated RSA (mRSA),
adapts Boneh’s notion of semi-trusted mediators to suit security in vir-
tual organizations and propagates proxy revocation information as in
Micali’s NOVOMODO system. Our approach’s added benefits include
a configuration-free security model for end-users of the grid and fine-
grained management of users’ delegation capabilities.

1 Introduction and Motivation

Kohnfelder introduced the notion of a digital certificate [1]. In public-key encryp-
tion systems [2][3], digital certificates ascertain the identities of users, hosts and
services (collectively termed as end entities). A digital certificate C is a trusted
third-party’s signature that validates the binding of a public key (PK) to an en-
tity’s identity (I). The trusted third-party is called a Certificate Authority (CA)
and the CA uses its private key to sign end-entity certificates (EEC). Clients
generate a public-private key pair and the CA signs the client’s public key and
includes information such as a serial number (SN), a start date (d1) and end
date (d2) of its validity. In essence, a digital certificate C = SignCA(I, PK, SN,
d1, d2). Now, any acceptor, to verify E’s identity, does so by checking that E’s
certificate includes a valid signature from a trusted CA. Often, the life-time of a
certificate C is in the order of years after which they expire. However, situations
might arise that warrant immediate revocation of C before its actual expiration
time. For instance, a trusted user Alice might leave her company or suspect
that her private key has been compromised. Then, it is essential to immediately
revoke her certificate so as to prevent acceptors from honoring stale or compro-
mised credentials. An important design consideration in any CA implementation
is handling prompt certificate revocation. Some studies [4] estimate that roughly
10% of public keys certified by a CA are revoked before they expire.
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We now stress the revocation problem and its importance in grids. Grids [5]
are persistent infrastructures for securely sharing distributed and diverse hard-
ware and software resources among dynamic collections of individuals, institu-
tions and resources called virtual organizations (VO)[6].Grid security demands
generality and transparency and has to ensure system, data and communication
integrity. The Globus project (GT) [7][8] develops fundamental technologies to
grids and provides an implementation of grid protocols and middleware. Grid
Security Infrastructure (GSI) [9] is the authentication protocol of GT and pro-
vides services such as single sign-on, credential delegation and identity mapping.
It requires a public key infrastructure (PKI) [10] for its operation. GSI allows
grid entities to mutually authenticate using X.509 [11]certificates. It introduced
the notion of proxies, an additional set of temporary, short-lived PKI credentials
derived from user’s long lived certificate to perform delegation on-behalf of the
user. This eliminates the need for the users to remain online or enter passwords
repeatedly whenever grid resource access is desired. User’s proxies are protected
using file permissions and could be compromised when someone can defeat or
circumvent the security of the file system that holds the user proxy.

However, GSI provides only little support for revocation of long-term certifi-
cates (in the form of revocation lists) and no support for revoking compromised
user proxies. Recent works [12] indicate hierarchical public key certification (a
common grid model) is increasingly becoming the target for attackers. Hence,
it has become vital to ensure revocation support in grids that can handle both
long-lived digital identities and short-lived proxy identities.

In short, we make use of a variant of RSA cryptosystem [13] called mediated
RSA (mRSA) as defined by Boneh and others [14] and extends the notion of
semi-trusted mediators (SEM) to fit security in VOs. Each VO hosts a SEM-like
entity to handle revocation of long-term X.509 certificates. The private key of
a grid entity (E) is split (by mRSA) into two parts based on a simple 2-by-2
threshold cryptography [15]. Knowledge of a half-key cannot be used to derive
the entire private key. Part of the key is held by E and the other part is held
by E’s SEM. So, private-key based operations (decryption / signing) can be
carried out by neither E nor its SEM in isolation. Hence revocation of long-term
credentials is instantaneous as the trusted SEM can simply stop exercising its
part of the private key for revoked identities. We envision that the number of
VOs will be much lesser than that of resources and individuals hosted by them.
Our model uses GSI for delegation and resource-side user mapping. But, we add
revocation capabilities for user proxies by modifying the proxy-creation process
to handle validity and revocation targets as in NOVOMODO scheme [4].

The rest of the paper is organized as follows. Section 2 surveys existing efforts
to solve the revocation problem in a general setting. Section 3 is a brief overview
of GT’s GSI. In section 4, we present a detailed explanation of our system
components and protocols for grid authentication with revocation support. We
discuss our future work and summarize in section 5.
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2 Overview of Related Work

In a general PKI setting, many techniques exist that address revocation of dig-
ital identities. Certificate Revocation List, (CRL) [16] is the most popular PKI
proposal for explicit revocation structures. It is a periodically generated, CA-
signed list of certificates that are revoked before their intended expiry time. The
acceptor of an entity E’s certificate (CE) checks that CE is not in the latest CRL.
Unfortunately, this is a very inefficient mechanism. CRLs tend to grow into un-
manageable sizes with time and hence pose severe bandwidth requirements and
transmission costs. In some major PKI implementations [17], CRLs form the
most expensive component. Also, the long intervals between CRL distribution
often result in stale revocation information. This is known as the time granular-
ity problem. Further, CRLs are issuer-driven approaches and hence often fail to
address recency requirements of the acceptors.

Online Certificate Status Protocol (OCSP) [18] is another PKI proposal
wherein a CA replies to certificate status queries with a freshly generated signa-
ture. It is a simple request/reply protocol allowing an acceptor to query a CA
for a certificate C’s status. If C’s identity is revoked, the CA indicates it to the
querying acceptor. If the certificate is valid, it confirms it by issuing a fresh cer-
tificate. However, this model requires the CA/validation server to be available
online all the time and if the validation server implementation is centralized, it
becomes vulnerable to Denial of Service (DoS) attacks. Though it reduces the
reply size per single status query, it poses significant loads on the CA due to the
computationally expensive signature operations. This setup could easily outrun
the CA resources under a heavy stream of incoming certificate status queries.

Micali proposed the NOVOMODO Certificate Validation System where a CA
is aided by a few servers referred to as directories that distribute revocation in-
formation. Briefly, the CA, at the time of issuing the certificate to the client,
includes 160-bit hash values indicative of the revocation information about the
certificate. The CA generates two random 20-byte values X0 and Y0 and uses
a publicly-known one-way hash function on these values. The successive hash
values of X0 are indicated as X1, X2, X3 and so on. That is, X1 = H(X0); X2 =
H(X1);. . . . And, Y1=H(Y0). To generate a certificate with a lifetime of 1 year,
the CA computes X1 through X365. Micali refers to X365 and Y1 as validity
target and revocation target respectively. That is, C=SignCA(U, PK, SN, d1,
d2,. . . ,Y1,X365). Every nth day after certificate issuance, the CA distributes the
targets of all its clients to the directories. For revoked clients, the CA distributes
their corresponding Y0 values, the X365−n values otherwise. Hence, a verifier of
a certificate C on day i will query the directories for a target value (X or Y
depending on C’s validity). When a X value is returned (Xreply), the verifier en-
sures C’s validity by checking Hi(Xreply) equals the X365 value in the certificate.
When Y0 is returned, the verifier can confirm C is revoked by checking Y1 in
the certificate equals H(Y0). NOVOMODO directory responses are concise (20-
bytes) and directories cannot forge validity targets as one-way hash functions
are hard to invert. Also, the computational demands on the CA are minimal
as hashing is orders of magnitude cheaper to compute than signatures. How-
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ever, NOVOMODO involves third-party queries and as noted in [19], its often
necessary to deincentivize third party queries. And, the number of queries for a
given certificate could increase dramatically as the number of querying verifiers
increases, a common scenario in grid environments.

Identity-based Encryption(IBE) [20] is a public-key cryptosystem where any
arbitrary string, such as a person’s e-mail address or host’s IP address, can act
as the public key. The corresponding private keys are issued by a trusted third-
party called a Private Key Generator (PKG). Shamir conceptualized this idea
for simplified certificate management. With IBE, certification is implicit because
decryption can happen only after getting keys from the trusted PKG. Implicit
certification eliminates the need for third-party status queries. More details on
this approach can be found in [21][22]. IBE scheme has two major drawbacks.
First is the key escrow problem, that is, a PKG can decrypt messages intended
for its clients. Second is the key distribution problem where the PKG has to
communicate private keys to its clients via secure channels.

Certificate-based Encryption(CBE) was proposed by Gentry [19], where the
certificate additionally serves as part of the decryption key. It eliminates the
problem of key escrow by using double encryption. Certification in this model
is implicit as the CA can stop issuing fresh certificates (part of decryption key)
to revoked clients preventing them from decrypting any further. Gentry refined
the basic CBE scheme to make use of subset covers to reduce the computational
demands. However, CBE model requires CA to be an online entity in order to
assist decryption. Further, such a CA setup becomes susceptible to DoS attacks.
Also, the CA has to take part in multiple queries from various acceptors, even
for the same certificate and thereby increasing the transmission costs.

The Semi-trusted Mediator (SEM) Architecture with a mRSA cryptosystem
was introduced by Boneh to realize fine-grained control over security capabilities.
mRSA is a simple threshold variant of RSA public key cryptosystem. With
this approach, the CA initializes and distributes the mRSA keys to its clients.
The threshold variant splits the private key d of an entity into two parts dsem

(distributed to SEM) and du (distributed to the client) such that d = dsem + du

mod φ(n) where n is the product of two large primes p and q. Complete details
of the algorithms for mRSA key generation, message encryption/decryption and
signature/verification can be found in [14]. For successful decryption or signature
generation, the client and SEM must co-operate and exercise their respective
portions of the private key. SEMs are only semi-trusted because an acceptor
trusts the SEM to have verified the revocation status of a client. SEMs cannot
issue forged messages on behalf of revoked users (since it does not have du portion
of the key to generate signatures). Part of our work relies upon SEM as it fits
the grid model well. However, its scope disallows handling revocation of user’s
delegated credentials. Partly, this is because the assignment of SEMs to users is
a fixed, static setup and it requires key generation support from the CA. But,
user proxies are generated dynamically based on resource needs and matching
frequent involvement from CA is often impractical.
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3 Globus Toolkit’s Grid Security Implementation

GSI is a stand-alone grid model for authentication and secure communication.
GSI entities require a long-term public (RSA) key certificate - private key pair
validated from a CA. GSI uses proxies for delegation on-behalf of a user. The
user’s grid identity is mapped into resource-specific user identity based on grid
map files. The user’s private key is encrypted with a passphrase.

Fig. 1. Certificate-based Authentication and Delegation in GSI

To sign on to a grid resource, the user creates a proxy (with a few hours of
lifetime), signs it with his private key and delegates it to the remote resource.
Any resource with the delegated user proxy can now make additional resource re-
quests on behalf of the user. To protect against malicious resources, the user can
choose to restrict the proxies from any further delegation. However, there is cur-
rently no support in GSI to protect against compromised user proxies. Figure 1
illustrates the basic GSI operations. Earlier efforts [23] aimed at specifying usage
restrictions as proxy certificates extensions to protect against compromised cre-
dentials. However, complete revocation capabilities were not realized. As noted
earlier, grid PKI setup involves identities of various lifetimes; ranging from years
for EECs to hours for user proxies. So, it is infeasible to devise a revocation
scheme based solely upon any one of the above efforts. Thus, our work derives
aspects from the SEM architecture as well NOVOMODO to achieve end-to-end
revocation guarantees for all grid credentials.

4 Grid Authentication with Revocation Guarantees

Our model employs mRSA scheme for managing certification of users and re-
sources. The user proxy generation process relies on NOVOMODO scheme to
propagate validity status of proxies. The algorithms to generate mRSA keys and
signatures are similar to SEM and are explained in the following sections.
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4.1 The Architecture

Our architecture allows for instantaneous revocation capabilities and simplified
credential management. Each VO’s SEM and mRSA signature operations are
handled by a daemon, what we call Grid Security Mediator (GSMu and GSMR

for user’s and resource’s VO) that eliminates the need for CA to remain online
and answer credential status queries. The GSMs generate their standard private
keys, submit the public keys to their respective CAs and obtain certificates.

Fig. 2. Architecture of the Authentication Model

In contrast to GSI, the clients do not generate their keys themselves. But, the
CAs generate and distribute a set of simple 2-by-2 threshold keys (du and dsem−u

or dR and dsem−R) based on mediated RSA to u, R and their GSMs. For each
requestor, the CA generates a unique set: {p, q, e, d, dgsm, du} where p and q are
large primes and n = pq and φ(n) = (p-1)(q-1). e is a random number prime to
φ(n), that is, g.c.d(e,φ(n)) = 1. d is the multiplicative inverse of e modulo φ(n),
that is, d = e−1 mod φ(n). Now, (n,e) forms the public enciphering key. Now,
dgsm is a random integer in [1,n] and du = d - dgsm mod φ(n). The initial key
distribution does not require secure channels. Once this initial setup is complete,
the client and the its SEM have to co-operate by using their respective half-keys
to complete any signature or decryption operations.

4.2 Inter-GSM Authentication

A VO’s GSM provides for SEM and NOVOMODO directory operations. By
securely interacting with another VO’s GSM, it also realizes freshness guarantees
for user/resource credentials. For this purpose, establishing inter-GSM trust is
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vital and can be realized using traditional certificate-based handshake approach.
As in classic GSI, the GSMs are configured to accept the credentials issued by
each other’s CAs. Optionally, it is trivial to achieve authentication between the
GSMs and their clients using an optional password during the initial setup.

4.3 Protocol for Grid Resource Authentication

After the inter-GSM trust setup, whenever a user wants to use a remote resource
(R), his client program (P) queries the local GSM for the target resource’s pub-
lic key (PKR). For first-time communication with R, the GSM will not have
PKR cached locally and hence queries the target VO’s GSM. Once the key is
obtained, the local GSM caches it for future use and includes in its reply to P
as well. P then sends a randomly generated message (M) to R encrypted with
PKR. If R can successfully decrypt C and communicate M to P, implicitly R
stands authenticated to P. This is because R possesses only half of the private
key corresponding to PKR and cannot perform decryption without co-operation
from GSMR. If R’s identity has been revoked, GSMR will not exercise its half
of R’s private key and decryption will not be possible for R. The mere ability of
R to decrypt C implies the validity of R’s identity at the time access is requested.

Resource Authentication

(1) P
getPK(R)−−−−−−→ GSMu

1.1 GSMu
R−→ GSMR

1.2 GSMu
PKR←−−− GSMR

(2) P
PKR←−−− GSMu

(3) P
C=EncPKR

(M)
−−−−−−−−−−→ R

(4) P
M←− R

(5) P considers R authenticated

Grid User Authentication

(1) R
EncPK(S)−−−−−−−→ P

(2) R
Encs(u)←−−−−− P

(3) R considers U as authenticated
(4) S is a shared secret between R, U

4.4 Protocol for Grid User Authentication

As indicated in [24], it is always the credential acceptor that runs the risk of ac-
cepting stale credentials and, thus, should have the ability to dictate the recency
requirements for the credential on behalf of U. In our setup, R can verify that
U’s certificate CU is issued by a trusted CA. R can obtain CU from some online
service or U can supply it as part of its authentication request. R now generates
a secret (S) and encrypts it with the public key of U (in Cu) and sends it to U. U
can get S by sorting co-operation from its local VO’s GSM and this will succeed
only if U’s status is valid. To confirm its validity status, U sends an OK message
to R encrypted with S. R can repeat the secret-key operation on this message
to obtain the OK message and this implicitly confirms U’s valid identity to R. If
U’s credentials have been revoked, GSMu will not exercise its half of U’s mRSA
private key and hence U cannot decrypt to get S in the previous step. Optionally,
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once this protocol completes, S can be used as a shared secret between R and U
for secure communication.

4.5 User Privilege Delegation Model

In our system, GSI’s user proxy generation step is augmented to include sup-
port for revocation. When the proxy is created, the proxy creator makes use of
NOVOMODO approach to indicate to the acceptor whether the proxy is fresh
or stale. As with NOVOMODO, the proxy certificate is enhanced with the va-
lidity and revocation target values. Depending upon the intended lifetime of the
proxy, the values of Xis are calculated and X and Y values are included as part
of the proxy certificate extensions. This structure is ensured to comply with the
proxy certificate profile specifications [25]. The functionality of a NOVOMODO
directory is implemented as part of the GSMs and the GSM details are included
as part of the proxy certificate. That is, a proxy with a lifetime of n periods
(starting at time d1, and d2 = d1 + n) contains Cproxy, PrivateKeyproxy and
Cu, where Cproxy = SignU (PublicKeyproxy, d1, d2, Y1, Xn, GSMu). Now, with
a delegated proxy, the acceptor can query the user’s GSM for revocation status.
For a period i, the presence of Xn−i or Y0 in GSM’s reply indicates the valid
or revoked status of U’s proxy respectively. We argue that this modification is
mandatory because, though proxies have limited lifetime, the scale of accessible
resources with a full proxy on a grid raises serious concerns. Further, user au-
thorization [26] on a grid is granted solely based upon a valid proxy and hence
proxy compromise proves to be a serious threat.

4.6 Implementation and Discussion

Currently, our implementation of GSM is in C and uses the SEM libraries avail-
able as part of [27]. We have completed an implementation of the grid proxy
creation program that adds NOVOMODO-like target values to proxy certificate
extensions. Complete software information is available publicly at [28]. By us-
ing mRSA, we inherit the benefits of binding signature semantics in grids. That
is, a signature’s validity is equivalent to checking the public key’s validity at
the time the signature was generated. This could prove to be beneficial to grid
accounting systems in guaranteeing non-repudiation. Also, our system is quite
easy to setup and the administrative overhead involved with continued opera-
tion is trivial. For the end-users, no setup procedures or security configuration is
required to use a grid. The simplified credential management in our model can
aid developing simpler co-allocation tools across VOs with multiple CAs and
complex trust relations. Inherently, our system eliminates key escrow problem
because no single entity possesses the entire private key for grid users/resources
and hence cannot decrypt communications. Additionally, it is trivial to achieve
encrypted grid communication in our system. This is aided by the establishment
of a shared secret at the end of mutual authentication protocol between grid
resources and users. Caching of public keys of the resources at various GSMs
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helps in reduced communication between GSMs over time. Optionally, per re-
cency requirements, a client can make the associated GSM to request a fresh
copy of a chosen resource’s public key.

5 Future Work and Summary

Centralized GSMs could become inter-VO communication bottleneck and liable
to DoS attacks. This could be solved by replicating GSM functionalities. Repli-
cating GSMs could complicate setting inter-GSM trust across VOs and this mo-
tivates us to devise better setup solutions. An interesting approach would be to
examine minimal overhead IP security model as in [29] using low-level, host-to-
host communication. To address WSRF-based [30] Globus toolkit 4 (GT4), we
plan to provide an implementation of our GSM functionality as a GT4 service as
well. Further, with the privilege delegation model, situations might arise where
a specific resource gets compromised. So, it should be possible for the user to
revoke specific delegated proxies, a problem we call proxy subset revocation. We
plan to examine earlier approaches such as [23] to address this. It would also be
interesting to study the role of online credential repositories such as MyProxy
[31] in this initiative. We also envision that our model could simplify aspects of
certain recent projects [32] that aim for web-based GSI support for users.

Certificate validation and revocation is universally recognized as a crucial
problem. We presented an authentication system that solves the revocation issues
in grid environments. The main idea is to employ mRSA approach to handle
the identities of the grid users and resources. Also, user proxies are enhanced
to contain revocation information using aspects of the NOVOMODO scheme.
This allows for instantaneous revocation of both long-term digital identities of
hosts/users and short-lived identities of user proxies. We introduced a SEM-
type mediator for virtual organizations. With this approach, the users enjoy a
simplified view and usage of grid security.
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Abstract. This paper presents a new unified algorithm for cluster as-
signment and region scheduling, and its integration into an experimental
retargetable code generation framework. The components of the frame-
work are an instruction selector generator based on a recent technique,
the IMPACT front end, a machine description module which uses a mod-
ification of the HMDES machine description language to include cluster
information, a combined cluster allocator and an acyclic region sched-
uler, and a register allocator. Experiments have been carried out on the
targeting of the tool to the Texas Instruments TMS320c62x architecture.
We report preliminary results on a set of TI benchmarks.

1 Introduction

Building compilers for new architectures is often a bottleneck in conducting
experimental research in digital signal processors. A particularly challenging
problem is the construction of compiler back-ends. Current trends necessitate
the design of retargetable systems where portions of the back-end are gener-
ated automatically from specifications of the instruction set architecture and
the microarchitecture of the machine. Typical components of the backend are
instruction selectors, schedulers, and register allocators. If the architecture is par-
titioned, then the compiler has the additional task of judiciously selecting the
functional unit on which an operation is to be executed so that the movement of
operands between clusters is minimized. This paper reports preliminary results of
an attempt to integrate a combined scheduling and cluster assignment algorithm
into an experimental framework using some infrastructure that is publicly avail-
able and parts that have been developed by us. The framework consists of a tree
parser generator with a mechanism for handling attributes and actions so that
it can output an instruction selector[11, 2]. The instruction selector traverses a
sequence of expression Directed Acyclic Graphs(DAGs) representing expression
trees, and can output either unscheduled code with virtual registers or a sequence
of data dependency DAGs with flow dependencies. Output and anti dependency
edges are added to the DDG’s in a separate pass. We also propose a simple new
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integrated algorithm that performs cluster assignment as well as region schedul-
ing together, and integrate it into the framework. A global register allocator, at
the level of a function, based on the graph colouring heuristic of Chaitin[3] is
used. We report the results of preliminary experiments on targeting the tool to
the Texas Instruments TMS320c62x architecture. We have not attempted any
hand optimization and we present the code that is completely automatically
generated(except the addition of assembler directives). We also discuss ways in
which the code can be improved in future work on this experimental tool. The
instructor selector generator and the microarchitecture description module are
described in detail in [2].

Section 2 is a brief description of the framework. Section 3 describes the in-
struction selector generator. Section 4 describes the architecture of the Texas
Instruments TMS320c62x Digital Signal Processor. Section 5 presents the com-
bined cluster assignment, acyclic scheduling algorithm and register allocator.
Section 6 presents preliminary results obtained from targeting the tool to the TI
processor. Section 7 describes related work on acyclic scheduling for partitioned
architectures. Finally Section 8 concludes the paper.

2 Architecture of the Framework

The architecture of the framework is represented in figure 1. The IMPACT
frontend[19] is used to convert source code in C to low level intermediate code
Lcode. This is transformed into expression Directed Acyclic Graphs(DAGs) by a
syntax directed translation from Lcode using a YACC generated translator. The
instruction selector is generated by an Instruction Selector Generator. Specifi-
cally, the underlying regular tree grammar generates trees that correspond to in-
termediate code trees, and the actions correspond to the emission of code or data
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Fig. 1. The Architecture of the Code Generation Tool
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dependency graphs(DDGs) as the need dictates. We have used data dependency
graphs in this implementation. The tool generates a tree parser that parses in-
termediate code trees and generates output in the form of DDGs for unscheduled
code[2]. The DDG’s are at the level of superblocks[8]. This code is then cluster
assigned and scheduled using the integrated algorithm described in this paper.
The HMDES[20] specification is used to describe the microarchitecture. The lan-
guage has been augmented to include the description of cluster information[2].
A scheduling automaton[5] is generated, which is queried by the scheduler as it
attempts to construct a cluster assignment and schedule for the code. Finally
the scheduled code is register allocated. Cluster allocation and scheduling are
performed together and register allocation for the two clusters of the TI proces-
sors is done independently in a subsequent pass. Any spill code is scheduled in
a final pass. We now briefly describe the instructor selector generator.

3 Instruction Selector Generator

The instructor selector generator(ISG) constructs a tree parser from a regular
tree grammar specification of the machine instructions. The mechanism is an
adaptation of LR parsing[9] to parse ambiguous tree grammars converted into
context free grammars[1]. We have not yet exploited cost computations that
come free with code selection, but have extended the scheme to work with DAGs
so that common subexpressions are not recomputed. Attributes are used as in
YACC to propagate register names,operand types and so forth as the tree parser
moves up the tree selecting instructions that match and creating parts of the
DDG. The ISG generates a driver and tables that encode the actions of the tree
parser. Since the output of the translator of Lcode is a sequence of expression
DAGs, the tree parser is modified to work on DAGs. This is done by choosing a
nonterminal corresponding to a register whenever the result has more than one
parent in the DAG. This register is used as the operand for operations corre-
sponding to subsequent parents. The tree transformer works in three phases. In
the first phase it performs a bottom up tree parse and marks the tree nodes with
all instructions that match at the node; in the second downward pass it selects
instructions; in the third postorder pass, it performs actions corresponding to
the instructions selected. In our implementation the actions directly generate
the data dependency DAGs for the control block.

4 The Texas Instruments TMS320c6x Architecture

The TMS320C62x is a clustered VLIW processor belong to the TMS320C6000 [6]
family of DSPs from Texas Instruments. The main features of the processor are

– It has two clusters A and B
– Each cluster has a register file with 16 general purpose registers of width 32

bits. 64 bit floating point data is represented by register pairs. In addition
B has a control register file.
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– There is a load path and a store path to each cluster
– Each cluster has four functional units ( L1, M1, S1 and D1 in A and L2, M2,

S2 and D2 in B ).
– There are two cross paths ( 1X and 2X ). Cross path 1X is used by cluster B

to read from A and similarly 2X by cluster A to read from B. Units L1, M1
and S1 have access to 2X and L2, M2 and S2 to 1X. L1, L2 can read either
of the two source operands via the cross path while the other four can read
only their second source operand.

– The data address paths DA1 and DA2 are each connected to both D units.
This allows the address generated in one cluster to write into/read from a
register in the other register file during a load/store.

– The processor supports predication but with a restricted set of predicate
registers ( A1, A2, BO, B1, B2 )

– The functional unit latencies for all fixed point instructions is 1 cycle. The
destination latency for multiply is 2 cycles, for branch 5 cycles, for load
4 cycles and for store 3 cycles and for other fixed point operations it is
one cycle.

– Each fetch packet can contain at most 8 instructions. A fetch packet may
consist of one or more execute packets, each of which contains the set of
parallel operations to be executed in that cycle.

– Two instructions cannot use the same unit in a cycle. Two loads/stores
cannot read from/write into the same register file in the same cycle. Two
instructions cannot write to the same register in the same cycle. In any cycle
there can be a maximum of four reads to the same register. Only one unit
can access a cross path in a cycle.

5 Cluster Allocation, Scheduling and Register Allocation

The output of the tree parser is a sequence of DDG’s one corresponding to each
control block. IMPACT has the flexibility to output intermediate code at the
level of basic blocks, superblocks and hyperblocks. We chose superblocks[8] for
our implementation. Here each block has a single entry point but may have more
than one exit point. Tail duplication[8] is a strategy used to ensure semantic cor-
rectness when superblocks are constructed. There are several cluster allocation
and scheduling algorithms proposed in the literature; these are described in Sec-
tion 7. Some of these[17, 10] are integrated into a single phase. Others[15, 7] use
phase ordering. In terms of computational overheads of cluster scheduling, there
is a wide spectrum, ranging from exponential time to linear time. We assume a
“compile-and-run” environment, which renders non-polynomial time algorithms
impractical. The cluster scheduling algorithm performs both cluster allocation
within superblocks as well as packing of independent instructions into VLIW in-
structions simultaneously. The algorithm is a simple extension of a list scheduling
algorithm with a dynamic priority computation strategy and is described below.

Since clusters are allocated ahead of register allocation, register allocation
is carried out independently on each cluster. The unit of allocation is a web[4]
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procedure 1. CB Scheduling
{INPUT : Data Dependence Graph}
{OUTPUT : Scheduled Code With Virtual Registers}
{Terminology:
CP: Critical Path
Non CP: Non Critical Path
Successor(X): Set of instructions data dependent on X
P redecessor(X): Set of instruction on which X is data dependent
I.Lst: latest start time for instruction I
I.Est: earliest start time for instruction I
Unscheduled: Set of unscheduled instructions
Dependency edge latency(I, J): Function returns latency of edge between I
and J.
I.sched cluster: Cluster in which instruction I is scheduled}

curr cycle ← 0
for Each instruction I where P redecessor(X)= ∅ do

if I.Lst = 0 then
Add to CP Readylist

else
Add to Non CP Readylist

end if
end for
Curr cycle ← 0
while Unscheduled �= ∅ do

CP selected set ← Select Max Subset(CP Readylist)
NonCP selected set ← Select Max Subset(NonCP Readylist)
Execution packet ← CP selected set ∪NonCP selected set
for Each instruction I in Execution packet do

for Each instruction J in Successor(I) do
if I.Lst ≤ (curr cycle + Dependency edge latency(I, J)) then

Add J in CP Readylist if all its parents are scheduled
else

Add J in NonCP Readylist if all parents are scheduled
end if

end for
end for
curr cycle ← curr cycle + 1

end while

which is a maximal union of intersecting def-use chains. Since cluster schedul-
ing is performed at the level of a superblock while register allocation is per-
formed at function level, it is possible for the same virtual registers of Lcode to
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procedure 2. Select Max Subset
{INPUT : Ready list R}
{OUTPUT : Maximum subset S of R that can be executed in parallel}
{Terminology:
I.cluster weights[i]: the priority for instruction I to be scheduled in cluster
i. A higher number indicates higher priority.
load balance(): Function that returns cluster with fewer number of instruc-
tions scheduled in it.
P replaced(I): A boolean variable which is true if the target of I is a virtual
register already assigned a cluster in a region previously scheduled.

S ← ∅
for Each instruction I in R do

if P replaced(I) then
/* The cluster in which I will be scheduled is predetermined as
pre placed cluster*/
I.sched cluster ← pre placed cluster

else
if I.cluster weights[0] > I.cluster weights[1] then

I.sched cluster ← 0
else

if I.cluster weights[0] < I.cluster weights[1] then
I.sched cluster ← 1

else
I.sched cluster ← load balance()

end if
end if

end if
if Resources available to execute I then

S ← S ∪ I
for Each J in Successor(I) do

/*Dynamic tuning of weights for instrcutions dependent on I*/
J.cluster weights[I.sched cluster] ←
J.cluster weights[I.sched cluster] + 1
for Each K in P redecessor(J) do

if K in Unscheduled then
/*Dynamic tuning of weights for siblings of I*/
K.cluster weights[I.sched cluster] ←
K.cluster weights[I.sched cluster] + 1

end if
end for

end for
end if

end for
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be allocated to different clusters in different regions. In such a case intercluster
move instructions would have to be introduced between regions. Here we ensure
cluster consistency via preallocation. This may introduce some moves within a
region to maintain consistency. Register allocation is carried out on each clus-
ter independently using Chaitin’s graph colouring heuristic. Since the register
set in each cluster is uniform, application of the algorithm does not pose any
special problems.

6 Results and Discussion

Eight TI benchmarks were compiled and the resulting code was examined for
size and parallelism, and compared with the code generated by the state of the
art TI compiler{TI Code Composer}. Tables 1 and 2 give the size of source
code and the size of the assembly code generated by the tool and by the TI
compiler for O3 optimization without software pipelining. Note that the code
generated by the tool is not hand optimized and the generation is completely

Table 1. TI Compiler: With O3 Optimization and without software pipelining

Program No. Execution Packets No. of Instructions Parallelism
Codebook Search 96 119 1.239583

FIR filter 62 77 1.241935
IIR cascaded 46 52 1.130435
MAC vselp 17 20 1.176471

Minimum err 64 75 1.171875
Vector max 29 33 1.137931
Vector sum 12 14 1.166667

vq MSE 18 21 1.166667

Table 2. Our Compiler: With O3 optimized lcode as IR and without software pipelining

Program No. Exe-
cution
Packets

No. of In-
structions

Parallelism lcode size Src size

Codebook Search 162 249 1.537037 99 57
FIR filter 41 63 1.536585 33 16

IIR cascaded 62 117 1.982143 59 22
MAC vselp 30 45 1.500000 27 17

Minimum err 121 208 2.426230 76 28
Vector max 47 66 1.404255 35 32
Vector sum 29 42 1.448276 24 8

vq MSE 36 49 1.361111 25 13
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automatic except for the addition of assembly directives. The table also indi-
cates the average parallelism in a VLIW instruction generated by the compiler.
Our observation is that code sizes produced automatically by the tool are con-
siderably larger than those produced by the TI compiler with all optimizations
except software pipelining turned on. There are two reasons for this. Firstly there
is some improvement possible in the specifications for the multiply instruction so
that compact code can be generated for short operands. At present the code gen-
erated assumes that all operands are 32 bits( as Lcode loads short operands with
type ll) and therefore sometimes generates four instructions where one would
suffice. This is particularly observable in the program Codebooksrch. Secondly
the calling conventions of Lcode and the TI assembler for function calls have to
be matched. This requires some additional move instructions. Thirdly, the as-
sembly code generated by our tool cannot have fewer statements than the Lcode
size. In many cases the Lcode size is larger than the TI assembly code size
with the O3 level of optimization with no software pipelining. Fourthly some
programs namely CodebookSrch, IIR Cascade and Minimum err result in a
large number of register spills, whereas there were no spills in the others. Thus
some changes need to be carried out in the register allocation phase to reduce
the number of spills. However, we note that the combined cluster assignment
and scheduling algorithm delivers a fairly good parallelism when compared with
the TI average VLIW parallelism with O3 optimization but without software
pipelining. The parallelism should improve if software pipelining is integrated
into the framework. Clearly, several improvements to the framework need to be
incorporated before the tool is able to generate really good quality code.

7 Related Work

We briefly describe related work in cluster allocation. Pioneering work on cluster
scheduling was reported in the BUG compiler[15]. The Multiflow Trace Compiler
used the algorithm from the Bulldog compiler. BUG uses a two phase algorithm.
The first phase traverses the dependence graph bottom up to propagate informa-
tion about preplaced instructions. The second phase traverses the dependence
graph top down and uses a greedy algorithm to map the instruction to the clus-
ter that can execute it the earliest. Scheduling is done in a later pass. Capitanio
et al.[14] perform scheduling before assignment. The assignment phase uses a
min-cut algorithm that tries to minimize communication. Rau et al. consider
code generation for VLIW processors with clustering. Partitioning of instruc-
tions is done before instruction scheduling so as to achieve load balancing in
the functional units and move instructions are inserted to ensure availibility of
operands in the proper cluster. However the partitioning technique is insensi-
tive to the schedule length and there is a phase ordering problem. The unified
assign and schedule algorithm[17] uses a list scheduler to perform integrated par-
titioning and scheduling. Desoli et al.[18] use a heuristic algorithm called Partial
Component Clustering for the problem of partitioning DDG nodes between clus-
ters. The basic idea is to avoid copy operations on critical paths. If the critical
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path length is close to the actual schedule length then this is a useful heuristic;
however if there is a wide but shallow DDG then the functional units are the
limiting factor and this method may not produce good code. Leupers[7] proposes
a technique consisting of two interleaved phases, which are alternately invoked
passing feedback to one another till all instructions are scheduled. Whereas this
achieves good results the computational effort is considerable. Kailas et al.[16]
propose a scheme that combines cluster assignment, register allocation and in-
struction scheduling into a single phase, thus eliminating problems associuated
with phase ordering. In a significant departure from traditional techniques, Lee et
al. propose convergent scheduling[13] which is a framework for cluster assignment
and scheduling using independent passes each implementing a heuristic that ad-
dresses a particular problem or constraint. This appears to be a very flexible
framework. However it is not clear whether convergence is always guaranteed.

8 Conclusion

We have described the integration of a cluster assignment and scheduling algo-
rithm into a code generation framework. Our experience indicates that such a
task is feasible though some care is required to generate the specifications so that
advantage is taken of special machine instructions. The code size generated by
the tool needs to be reduced though the parallelism is quite good. Future work
envisages including software pipelining into the tool and improving the register
allocator, as at present it seems to introduce too many spills. More architectures
have to be experimented on to estimate the practicality of the tool. We also
intend to implement other acyclic scheduling algorithms as well so that the tool
allows the choice of scheduling algorithm.

References

1. Priti Shankar, A. Gantait, A.R. Yuvaraj, M. Madhavan. A New Algorithm For
Linear Regular Tree Pattern Matching, Theoretical Computer Science 242, 2000,
pp. 125-142

2. Deepak Sreedhar, Easwaran R. Retargetable code generation for clustered embed-
ded processors, ME Project Report. Dept of CSA, Indian Institute of Science

3. G.J. Chaitin. Register Allocation and Spilling via Graph Coloring, Proceedings of
the 1982 Symposium on Compiler Construction, June 1982, pp. 98-105

4. Preston Briggs, Keith Cooper and Linda Torczon . Improvements to Graph Color-
ing Register Allocation, ACM Transactions on Programming Languages and Sys-
tems, 16(3), May 1994, pp. 428-455

5. T.A. Proebsting and C.W. Fraser. Detecting Pipeline Hazards Quickly. 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Jan
1994

6. Texas Instruments TMS320C6000 CPU and Instruction Set Reference Guide
7. R. Leupers. Instruction Scheduling for Clustered VLIW DSPs. Proceedings of the

International Conference on Parallel Architecture and Compilation Techniques.
(Philadelphia,PA), October 2000.



Integrating a New Cluster Assignment and Scheduling Algorithm 527

8. Wen-mei Hwu et. al. The superblock: An effective structure for VLIW and su-
perscalar compilation. The Journal of Supercomputing, vol. 7, pp. 229–248, Jan.
1993

9. A.V. Aho and J.D. Ullman.Principles of Compiler Design.Addison-Wesley, 1977.
10. Krishnan Kailas, Kemal Ebcioglu, Ashok Agrawala. CARS: A New Code Gener-

ation Framework for Clustered ILP Processors, 7th Interbational SYmposium on
High Performance Computer Architecture, pp 133-143, 2001

11. Maya Madhavan, Priti Shankar, Siddhartha Rai, U. Ramakrishna.Extending
Graham-Glanville techniques for optimal code generation,ACM Trans. Program.
Lang. Syst. 22(6): 973-1001 (2000)

12. http://dspvillage.ti.com/docs/catalog/devtools/details.jhtml?templateId
=5121&path=templatedata/cm/tooldetail/data/ccs codegen

13. Walter Lee, Diego Puppin, Shane Swenson, Saman Amarasinghe Convergent
Scheduling. MICRO-35, November 2002 Istanbul, Turkey

14. A. Capitanio, N. Dutt, and A. Nicolau. Partitioned Register Files for VLIWs: A
Preliminary Analysis of Tradeos. 25th International Symposium on Microarchitec-
ture (MICRO),1992

15. J. R. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, 1986.
16. K. Kailas, K. Ebcioglu, and A. K. Agrawala.CARS: A New Code Generation

Framework for Clustered ILP Processors. 7th International Symposium on High
Performance Computer Architecture (HPCA)

17. E. Ozer, S. Banerjia, and T. M. Conte. Unified Assign and Schedule: A New Ap-
proach to Scheduling for Clustered Register File Microarchitectures. In 31st Inter-
national Symposium on Microarchitecture (MICRO)

18. G. Desoli. Instruction Assignment for Clustered VLIW DSP Compilers: a New
Approach. Technical Report HPL-98-13, Hewlett Packard Laboratories, 1998.

19. The Impact Research Group, University of Urbana Champaign.
http://www.crhc.uiuc.edu/Impact

20. Trimaran Compiler. http://www.trimaran.org



Cooperative Instruction Scheduling
with Linear Scan Register Allocation

Khaing Khaing Kyi Win and Weng-Fai Wong

Department of Computer Science,
National University of Singapore,

3 Science Drive 2, Singapore 117543
khaing khaing@alumni.nus.edu.sg, wongwf@comp.nus.edu.sg

Abstract. Linear scan register allocation is an attractive register alloca-
tion algorithm because of its simplicity and fast running time. However,
it is generally felt that linear scan register allocation yields poorer code
than allocation schemes based on graph coloring. In this paper, we pro-
pose a pre-pass instruction scheduling algorithm that improves on the
code quality of linear scan allocators. Our implementation in the Tri-
maran compiler-simulator infrastructure shows that our scheduler can
reduce the number of active live ranges that the linear scan allocator
has to deal with. As a result, fewer spills are needed and the quality of
the generated code is improved. Furthermore, compared to the default
scheduling and graph-coloring allocator schemes found in the IMPACT
and Elcor components of Trimaran, our implementation with our pre-
pass scheduler and linear scan register allocator significantly reduced
compilation times.

1 Introduction

Instruction scheduling and register allocation are one of the most important
phases in compiler optimization. In compilers for machines with instruction-
level parallelism, the phases of instruction scheduling and register allocation can
be antagonistic. This is the well-known phase ordering problem [7] as shown in
Fig. 1. One of the ways to solve that problem is to combine instruction scheduling
and register allocation such that these two phases can be performed together to
generate efficient code. In current optimizing compilers, a compromise consist-
ing of a phase of instruction scheduling (pre-pass scheduling) is first performed.
This is followed by register allocation and another phase of instruction schedul-
ing (post-pass scheduling). The linear scan register allocator proposed by Poletto
and Sarkar [13] is very simple and significantly faster than algorithms based on
graph-coloring approaches. The performance of a linear scan register allocator
is affected by the maximum number of active live intervals. If we can reduce
the maximum number of active live intervals, the linear scan register allocator
can generate a more efficient code by reducing the amount of spill code inserted.
Thus, we propose a pre-pass local instruction scheduler which can reduce si-
multaneously live ranges so as to decrease the maximum number of active live
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( a )

1 Load R1 10
2 Load R2 20
3 NOP
4 Add R2 R1 R2
5 Load R1 30
6 Load R2 40
7 NOP
8 Add R2 R1 R2

1 Load R1 10
2 Load R2 20
3 Load R3 30
4 Load R4 40
5 Add R2 R1 R2
6 Add R4 R3 R4

1 Load V0 10
2 Load V1 20
3 NOP
4 Add V2 V0 V1
5 Load V3 30
6 Load V4 40
7 NOP
8 Add V5 V3 V4

1 Load V0 10
2 Load V1 20
3 Load V3 30
4 Load V4 40
5 Add V2 V0 V1
6 Add V5 V3 V4

V0

V4
V3

V1

V0
V1

V3

V4

( b ) ( c ) ( d )

Fig. 1. Example of the phase ordering problem. (a) Sample code in a pseudo inter-
mediate language with live ranges. (b) After instruction scheduling with live ranges.
(c) Register allocation first. (d) Instruction scheduling first. Memory access operations
are assumed to take two cycles while all other operations take one cycle. Comparing
(a) and (b) we see the increase in the number of overlapping live ranges after instruc-
tion scheduling. If the register allocation is executed first, it would require eight cycles
although only two registers is enough for register allocation. However, if instruction
scheduling is done first, then although it would require only six cycles, four registers
would be needed to avoid spilling. Which of these two orders is better depends upon
the number of available registers and functional units.

intervals. We combined the our proposed scheduler with a linear scan register al-
locator and evaluated the overall performance. Some previous experimental eval-
uation and improvements to the linear scan register allocation can be found in [6]
and [14]. Previous studies [13], [6] and [14] investigated the linear scan register
allocator in isolation rather than its combination with instruction scheduling. In
addition, most previous works on phase ordering problem [7], [1], [12], [10], [2]
and [4] had focused on combining the instruction scheduling phase with register
allocator based on graph-coloring approaches. In this paper, we focus on a co-
operative approach that solves the phase ordering problem between instruction
scheduling and linear scan register allocation. In order to evaluate the perfor-
mance of combining our proposed scheduler with linear scan register allocation,
we have implemented our proposed scheduler and linear scan register allocator
in Trimaran. Trimaran [16] is a compiler infrastructure for supporting state of
the art research in compiling for Instruction Level Parallel (ILP) architectures.
The system is oriented towards EPIC (Explicitly Parallel Instruction Comput-
ing) architectures, and supports compiler research in what is typically considered
to be “back end” techniques such as instruction scheduling, register allocation,
and machine-dependent optimizations. In our framework, we first perform our
proposed scheduler, followed by linear scan register allocation and finally the
Trimaran-Elcor list scheduler. The results show that performing our proposed
pre-pass scheduler can reduce the maximum active live intervals of the linear
scan register allocator. This can decrease the amount of spill code inserted by
the linear scan register allocator thereby increasing the quality of the generated
code. Moreover, it also shows that combining our proposed pre-pass scheduler
with linear scan register allocator is significantly faster than Trimaran’s pre-pass
scheduling, register allocation, and post-pass scheduling scheme using either the
IMPACT or the region-based register allocator.
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The rest of the paper is organized as follows. In Section 2, we give the overview
of our proposed scheduler. Section 3 discusses register allocators in Trimaran,
followed by the experimental result and discussion of cooperative our proposed
pre-pass scheduler with linear scan register allocator (Section 4). Section 5 con-
cludes the paper.

2 Overview of Our Proposed Scheduler

Our proposed scheduler is based on convergent scheduling [11]. As in the con-
vergent scheduler, we used a weight matrix to compute the schedule time of an
operation. However, while the convergent scheduler schedules the instructions at
the earliest cycle, our proposed scheduler schedules the instructions in the latest
cycle possible while maintaining optimal instruction scheduling length which we
assumed to be the critical path of a basic block. In order to get our proposed
schedule, we use a weight matrix to calculate the optimal schedule length. In
particular, the weight Wi,t of instruction i at time slot t is a value between zero
and one.

Our heuristic is based on the earliest completion time (the longest path from
the root node to the current node) and latest completion time (i.e., the critical
path length - the longest path from the current node to a leaf node) of the
dependence graph. The operation nodes exist either on the critical path (the
longest path of the root node to leave node) or non-critical path of the DAG.
The optimal schedule length can be assumed as the length of the critical path
length if the available resources are not in conflict. Normally, we can only reorder
the operation nodes which are not on the critical path length in order to get
more efficient codes. This is especially in the case when there are two kinds
of non-critical paths: one that starts with a node which has no dependence
predecessor and ends at a node on the critical path, or a second kind that starts
at a node on the critical path and ends with a node which has no dependence
successor. We should schedule the operation nodes which are on the first kind
of non-critical path at the latest cycle possible to reduce the simultaneously live
ranges. In contrast, the second kind of non-critical paths should be scheduled at
the earliest cycle possible. In [15], Chen reported that real dependence graphs
of programs have more of the first kind of non-critical paths than the second.
Therefore, our proposed scheduler applies as late as possible schedule. If le is the
earliest completion time and ll is the latest completion time, the instruction can
be scheduled only in the time slots between le and ll. If the instruction could not
be scheduled between le and ll due to insufficient parallel functional units, we
increase ll by one and reschedule again. To begin, the value of Wi,t is initialized
as follows:

Wi,t =
{

0 if t < le or t > ll;
1/I(t) if t ≥ le and t ≤ ll.

where I(t) is the number of instructions that has its (le, ll) crossing time t.
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1. Compute the earliest completion time and latest completion time
2. Initialize the weight matrix
3. Mark the scheduling is not finished
4. While scheduling is not finished
5. While the latest completion time is greater than zero
6. For (each operation within a basic block)
7. If (resource is available and weight matrix is not zero)
8. Multiply weight matrix by 1.2 and put back into weight matrix
9. Mark the operation with schedule
10. Increase the number of current resources by one
11. If the current resources reach the maximum resource limit
12. Decrease the latest completion time by one
13. Initialize the number of current resources by zero
14. Endif
15. Endif
16. Endfor
17. Endwhile
18. Mark the scheduling is finished
19. For (each operation within a basic block)
20. If one of the operations within a basic block is not scheduled
21. Mark the scheduling is not finished
22. Endif
23. Endfor
24. Endwhile
23. Normalize the weight matrix by dividing each weight with the

total weights for each operation
24. Choose the cycle time which has the maximum weight for each

operation as schedule time

Fig. 2. Our proposed scheduler

We give more weight to a specific instruction to be scheduled in a given time
cycle by multiplying the weight with a constant value. Then, we normalize our
weights:

∀i, t, Ŵi,t ←
Wi,t∑
t′ Wi,t′

The schedule time for each instruction is then maxt{Ŵi,t}. The full algorithm
of our proposed scheduler is given in Fig. 2.

3 Register Allocators in Trimaran

Global register allocation based on graph coloring was first proposed by Chaitin
et al. [3]. A graph coloring register allocator iteratively builds an undirected
graph called an interference graph that shows the overlap in live ranges. A node
in an interference graph is a live range that is a candidate for register allocation
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and an edge connects two nodes when the corresponding live ranges overlap.
The standard graph-coloring method heuristically attempts to find a k-coloring
for the interference graph. A graph is k-colorable if each node can be assigned
to one of k-colors such that no two adjacent nodes have the same color. If the
heuristic can find a k-coloring, then k registers are sufficient to hold the content
of all the live ranges. Otherwise, some candidates are chosen to be spilled, and the
interference graph must be rebuilt after a spill decision is made. Another attempt
is then made to obtain a k-coloring. This whole process is repeated until a k-
coloring is finally obtained. In practice, the cost of graph-coloring approach can
be expensive by repeatedly constructing a register interference graph until the
heuristic succeeds. However, the graph-coloring based register allocators have
been used in many commercial compilers to obtain significant improvements
over simple register allocation heuristic. In Trimaran, there have been two global
register allocators: the IMPACT register allocator [8] and region-based register
allocator [9], adapted from Chow and Hennessy graph-coloring framework [5].

3.1 Linear Scan Register Allocator

Register allocation based on graph-coloring is generally considered the state-of-
the-art. However, the algorithm can be computationally expensive. In light of
this, Poletto and Sarkar [13] proposed an alternative algorithm for fast register
allocator called linear scan register allocation. Linear scan register allocation
works on the topological ordering of live ranges (also known as live intervals).
Live intervals of each temporary variable are computed and assigned registers.
A temporary variable with overlapping intervals can be assigned to different
registers and non-overlapping intervals can be assigned to same registers. A
linear scan register allocator performs the following four steps [6]:

1. sort all the instructions in topological order;
2. calculate the set of live intervals;
3. assign each temporary variable to physical register for each interval (or spill

into the memory) and finally
4. rewrite the code with the obtained allocation.

Ordering of Instructions. The topological ordering of basic blocks required
by the linear scan allocator is not unique. In particular, the ordering may be (1)
depth-first, (2) preorder, (3) postorder, (4) breadth-first, (5) prediction, and (6)
random. An experimental study of the impact of these orderings can be found
in [6]. Among the different orderings, depth-first ordering was found empirically
to reduce the most amount of false interference between live intervals [13,6].
However, there has been no discussion of reordering of instructions within a basic
block. The order of instructions within a basic block impacts the allocation and
the number of spill code insertions. Our proposed schedule described in Section
2 reorders instructions within a basic block to reduce simultaneously live ranges.
Fig. 3(a) and (b) show the original ordering and the ordering of instruction after
applying our proposed scheduler respectively.
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Computation of Live Intervals. Live ranges are determined by a set of
instructions within each basic block. Each live range has a start position with
the first definition of the temporary and an end position with the last use of the
temporary. Then, all live intervals are sorted in the order of increasing start-
points so as to make the allocation more efficient. The number of live intervals
with start position and end position in Fig. 3 are given in Fig. 4.
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  1.   op 41 (C_MERGE [ ] [ ] s_time (0))
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7.   op 34 (DEFINE [m <35>] [u<> u<> ] s_time (0) )
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9.   op 42 (DUMMY_BR [ ] [ ] s_time (2) )
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       attr(lc ^51)

Fig. 3. Control Flow Graph (CFG) with long instructions within each basic block from
Trimaran. (a) without instruction reordering. (b) with instruction reordering.

Register name Start position End position

BTR1 8 25

GPR2 11 15

BTR3 12 16

BTR4 13 20

BTR5 14 22

Register name Start position End position

BTR1 8 25

GPR2 11 12

BTR3 13 14

BTR4 15 19

BTR5 20 22

( a ) ( b )

Fig. 4. A number of live intervals for the data dependent graph in Fig. 3. (a) without
instruction reordering (b) with instruction reordering.
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As shown in Fig. 4, without instruction reordering, BTR1, BTR3, BTR4 and
BTR5 are live at the same time. However, with instruction reordering, BTR1 is
only live at the same time with BTR3, BTR4 or BTR5.

Register Assignment. After sorting all live intervals by their start points,
the allocation of registers to intervals can be done. In Trimaran, there are four
register types : general purpose registers (GPRs), floating point registers (FPRs),
branch target registers (BTRs) and predicate registers (PRs). We performed
linear scan allocation on all four types.

Code Rewrite. After register assignment, the code is rewritten to bind the
temporary variables to physical registers.

4 Experimental Evaluation

We use Trimaran infrastructure to compare the performance of our linear scan
register allocator with the IMPACT register allocator and region-based register
allocator. We also implemented our pre-pass scheduler in Trimaran.

4.1 Result and Discussion

Table 1 gives the experimental results of combining our pre-pass scheduler with
linear scan register allocator. The result suggests that combining our scheduler

Table 1. The maximum active live intervals of each procedure of several benchmarks
in Trimaran

GPR FPR BTR
Benchmarks(procedure) Act1 Act2 Reduce% Act1 Act2 Reduce% Act1 Act2 Reduce%
181.mcf( insert new arc) 16 11 31.25% 0 0 0% 1 1 0%
181.mcf( replace weaker arc) 17 12 29.41% 0 0 0% 1 1 0%
181.mcf( price out impl) 29 24 17.24% 0 0 0% 2 2 0%
181.mcf( suspend impl) 19 13 31.58% 0 0 0% 1 1 0%
181.mcf( global opt) 3 3 0% 0 0 0% 7 2 71.43%
101.tomcatv 69 65 5.80% 33 32 3.03% 7 2 71.43%
wc( main) 7 7 0% 0 0 0% 3 2 33.33%
bmm ( sumup) 6 6 0% 1 1 0% 3 1 66.67%
dag 11 11 0% 0 0 0% 1 1 0%
eight 8 8 0% 0 0 0% 2 1 50.00%
example bench( convert to int) 2 2 0% 0 0 0% 3 2 33.33%
fact2 3 3 0% 0 0 0% 3 2 33.33%
fib 4 4 0% 0 0 0% 3 2 33.33%
fib mem 6 6 0% 0 0 0% 3 2 33.33%
fir 11 11 0% 3 3 0% 3 2 33.33%
hyper 5 5 0% 0 0 0% 1 0 100.00%
ifthen 13 13 0% 0 0 0% 2 1 50.00%
mm double ( matmult) 11 11 0% 3 3 0% 2 1 50.00%
mm int 14 13 7.14% 0 0 0% 2 1 50.00%
mm 11 11 0% 3 3 0% 3 2 33.33%
nested 6 6 0% 1 1 0% 2 1 50.00%

Act1 - the number of active live intervals after Elcor pre-pass scheduler
Act2 - the number of active live intervals after our pre-pass scheduler
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Fig. 6. Actual compilation time on an 1.2 GHz AMD Athlon MP Linux system with
1 GByte RAM

with linear scan register allocator can significantly reduce the maximum active
live intervals of basic block. This in turn may reduce spill code insertion and
remove unnecessary dependencies. As a result, as shown in Fig. 5, the code
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generated by our simpler scheme performs just as well as that generated by
list scheduling and graph-coloring based register allocation. In some cases, some
minor gains were even achieved.

Fig. 6 shows the actual compilation time observed for the various combination
of scheduler and register allocators. A linear scan register allocator attempts to
find the number of live intervals which are currently active at a certain program
point by visiting each lifetime interval in turn. The number of active live intervals
represent the number of register needed at this point in the program. If there are
insufficient number of free registers, then some active live intervals are chosen to
spill and the scan proceeds. Since a linear scan register allocator scans the whole
process linearly rather than repeating the process after spill code is inserted, it
can operate faster than graph-coloring method based register allocators such as
the IMPACT and region-based register allocators in Trimaran.

The list scheduler never unschedules already scheduled operations. Our pre-
pass scheduler, on the other hand, unschedules the operations when all the oper-
ations cannot schedule within critical path length due to a shortage of functional
units. However, unlike the list scheduler, our proposed scheduler does not need
to recalculate le of successor ops after an op has been scheduled. Thus, the com-
pilation time of our pre-pass scheduler is comparable with the list scheduler.
As a result, combining our pre-pass scheduler with linear scan register alloca-
tor is significantly faster than combining Trimaran’s list scheduler with either
the IMPACT or region-based register allocator. Putting the above together, we
therefore argue that combining our pre-pass scheduler with linear scan register
allocation is the most cost-effective option.

5 Conclusion

In this paper, a cooperative approach utilizing our pre-pass local instruction
scheduling and linear scan register allocation has been presented. As far as we
know, this is the first study that combines instruction scheduling with linear
scan register allocation. The results show that combining our proposed pre-pass
scheduler with the linear scan register allocator can reduce the maximum number
of active live intervals. This in turn can reduce register pressure and spill code
insertion resulting in high quality code comparable to that generated by a list
scheduler and a graph-coloring register allocator. Moreover, compared with the
latter our scheme results in significantly lower compilation times. As a future
work, we will consider the problem of how to do cooperative global scheduling
with linear scan register allocation. Yet another approach is to fully integrate
instruction scheduling with linear scan register allocation.
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Abstract. IP-SAN and iSCSI are expected to remedy the problems of
FC-based SAN. iSCSI has a structure of multilayer protocols. A typ-
ical configuration of the protocols to realize this system is as follows:
SCSI over iSCSI over TCP/IP over Ethernet. Thus, in order to improve
the performance of the system, it is necessary to precisely analyze the
complicated behavior of each layer. In this paper, we present an IP-SAN
analysis tool that monitors each of these layers from different viewpoints.
By using this analysis tool, we experimentally demonstrate that the per-
formance of iSCSI storage access can be significantly improved by more
than 60 times.

1 Introduction

The size of data processed by computer systems is increasing rapidly; thus,
the large maintenance costs of storage systems have become one of the crucial
issues for current computer systems. Storage consolidation using a Storage Area
Network (SAN) is one of the most efficient solutions to this problem, and it has
been implemented in many computer systems. However, the current-generation
SAN based on FC has few demerits; for example, 1) the number of FC engineers
is small, 2) the installation cost of FC-SAN is high, 3) the FC has distance
limitation, and 4) the interoperability of the FC is not necessarily high. The next-
generation SAN based on IP (IP-SAN) is expected to remedy these issues. The
IP-SAN employs commodity technologies for a network infrastructure, including
Ethernet and TCP/IP. One of the promising standard data transfer protocols
of IP-SAN is iSCSI [1], which was approved by the IETF [2] in February 2003.
However, the problems of low performance and high CPU utilization have been
identified as the demerits of IP-SAN [3, 4, 5]. Thus, improving its performance
and maintaining low CPU utilization [3, 6] are the critical issues regarding IP-
SAN. In this paper, we discuss the performance issues of IP-SAN.

iSCSI is a protocol through which the SCSI protocol is transferred over
TCP/IP; thus, the protocol stack of IP-SAN is “SCSI over iSCSI over TCP/IP
over Ethernet.” In order to improve the performance of iSCSI storage access,

D.A. Bader et al. (Eds.): HiPC 2005, LNCS 3769, pp. 538–548, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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detailed information of all these layers is required because each of them may
have an influence on the end-to-end performance. We propose an iSCSI anal-
ysis system and demonstrate that it can identify the causes for the decline in
performance, which can be improved by resolving them.

The remainder of this paper is organized as follows. Section 2 introduces the
iSCSI analysis system. Section 3 describes an actual application of this system
and its role in improving the performance improvement. Section 4 mentions
related work and compares them with our research. Finally, section 5 concludes
this research and projects future work.

2 iSCSI Analysis System

In this section, we explain our iSCSI monitoring system. This system can monitor
the internal states of each layer in an IP-SAN protocol stack. We developed an
iSCSI analysis system by inserting the monitoring code into these layers. The
functions of this monitoring system are as follows: 1) protocol translation (SCSI,
iSCSI, and TCP/IP); 2) visualization of packet transmission with timeline; 3)
monitoring behavior of the TCP flow control; 4) detection of packet loss; and 5)
generation of the iSCSI storage access with a pseudo iSCSI initiator driver. An
overview of our analyzing system is shown in Figure 1. We have discussed these
functions in detail in the following subsections.

2.1 Protocol Translation

In this subsection, we describe the function of protocol translation in our analyz-
ing system. With this function, the recorded iSCSI traffic data can be translated
into human-readable text data. The iSCSI PDU format and an example of the
translation are shown in Figure 2. In the case of “SCSI Command Read,” the

SCSI

iSCSI

TCP/IP

Ethernet

Monitor
Monitor

Access
Generator

Initiator Target

SCSI

iSCSI

TCP/IP

Ethernet

Fig. 1. Overview of the
iSCSI analysis system

Transferred Packet

Translated Packet

Translation

I OpCode R ATTRF W

TotalAHS Len DataSegmentLength

Logical Unit Number (LUN)

Initiator Task Tag

Expected Data Transfer Length

CmdSN

ExpStatSN

SCSI Command Descriptor Block (CDB)

SCSI Command, Read

SCSI Command Descriptor Block

28 00 00 00 00 80 00 00 40 00

Read
LUN
=0

Logical Block
Address =

0x80 [# of sectors]

Data
Length
=0x40

CTRL
Byte

Expected Data Transfer Length
=0x8000 [Byte]

Fig. 2. iSCSI read command as an example of pro-
tocol translation
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iSCSI PDU has a format as shown in the lower left part of Figure 2. An example
of the hexadecimal dump of a transferred Ethernet packet with 100 byte data
in an actual iSCSI storage access is shown in the “Transferred Packet” at the
upper left part of Figure 2. The first 52 bytes written in a smaller font (bytes
1-52) construct the IP and TCP headers, and the remaining 48 bytes written in
italics (bytes 53-100) construct the iSCSI PDU.

The translation function translates each of these fields into human-readable
values and sections of the translated texts are shown in the upper right part of
Figure 21. In this case, it can be observed that the packet implies SCSI Command
Read with a data length of 32 KB.

The SCSI CDB field with a size of 16 bytes is allocated in the range from
bytes 33-48 in the iSCSI PDU. The fields in the range from bytes 43-48 in the
PDU are padding data because the length of the SCSI CDB is 10 bytes in our
experimental environment. The “Data Segment Length” and “Expected Data
Transfer Length” in the iSCSI PDU are of one byte each while that of the SCSI
CDB is 512 bytes. Consequently, both the “Expected Data Transfer Length” in
the iSCSI header, which is 0x8000 [bytes], and the “Data Length” in the SCSI
CDB, which is 0x40 [512 Bytes], are of 32 [KB]. As shown in this section, our
analyzing system enables easy understanding of the transferred data using the
iSCSI protocol.

2.2 Visualization of Packets Transmission

The transferred packets in the network can be visualized on a timeline with the
visualization function. An example of visualized packet transmissions is shown
in Figure 3. It shows the packet transmission of the iSCSI sequential read when
the one-way latency time is 16 ms and the block size in the iSCSI PDU (“block
size in the PDU” will be discussed in Section 3.3) is 32 KB. There are 5 cycles
of “SCSI Command Read” iSCSI PDU and “Data-in” PDU with a data unit
of 32 KB for the read command (this sequential read cycle is termed as “Seq.
Read Cycle”). Figure 3 shows that a significant amount of idle time results while
waiting for the network I/O. Further, the network utilization is considerably low.

Figure 4 shows the packet transmission and the states of the TCP flow control
of the iSCSI sequential read when the one-way latency time is 16 ms and the
block size in the iSCSI PDU is 4 MB. The figure indicates the size of the TCP
congestion window, transition of the state machine of Linux TCP implementa-
tion, and events that occurred in the TCP while implementing in kernel space.
In this case, the figure shows the iSCSI PDUs of the “SCSI Command Read”
and “Data-in” for the read command. It can be observed in the figure that the
target attempted to transmit a large amount of data on receiving the read com-
mand leading to congestion of the local device. The TCP implementation then
reduced the size of the TCP congestion window.

1 TCP/IP header and some fields in iSCSI PDU are omitted in Figure 2.
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Fig. 3. Packet Transmission A Fig. 4. Packet Transmission B

2.3 Monitoring TCP Flow Control

The TCP implementation has a flow-controlling function. In most cases, since
the TCP implementation functions in the kernel space, users are not allowed
to monitor its behavior. The monitoring functions of the TCP flow control in
our analyzing system enables the monitoring of this behavior in user space by
adding a monitoring code into the TCP implementation. This is the only function
that depends on system implementation in the iSCSI analysis system. Our TCP
flow control monitoring system is implemented with Linux TCP implementation.
With this function, the size of the TCP congestion window, various events in the
TCP implementation such as congestion detection, and the state transition of the
Linux TCP can be monitored from the user space. Linux TCP is implemented as
a state machine. The state transition shown in Figure 4 (transition from “Open”
to “CWR”) is monitored by this function. The TCP flow control has a direct
influence on iSCSI performance; thus, it is important to consider this function
for improving iSCSI performance.

2.4 iSCSI Access Generation

The analyzing system also has a function for iSCSI access generation. The iSCSI
driver is usually installed as a SCSI HBA driver. It is then driven by a generic
SCSI driver and other OS implementations. Consequently, the users cannot cre-
ate the iSCSI PDU based on their requirements. In the case of Linux, since a
raw device and certain driver implementations divide a single block issued by
the I/O command into multiple small blocks, the users cannot issue an iSCSI
read command with a large block size. This limitation does not originate from
the iSCSI protocol but from the OS implementation. The iSCSI access gener-
ation function enables the iSCSI access without the OS limitation affecting it.
The generator directly establishes a TCP/IP connection with iSCSI target im-
plementation using a socket API and transmits and receives the iSCSI PDU
according to the iSCSI protocol. With this generator, the users can create the
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iSCSI PDU based on their requirements and can measure the performance of
the iSCSI storage access.

3 Performance Improvement

In this section, we present the performance evaluation of iSCSI sequential storage
accesses in a long delayed network and the results of the analysis from our system.
We also identify the causes of performance decline. In addition, we demonstrate
how performance can be improved.

3.1 Experimental Setup

In this subsection, we describe an experiment conducted to evaluate the iSCSI
performance and its environment.

We evaluated the performance of the iSCSI storage access in a heavily delayed
network by performing the following experiment. The experimental system is
shown in Figure 5. The iSCSI initiator and iSCSI target are constructed using
PCs. A network delay emulator, which is constructed by FreeBSD dummynet [7],
is placed between the initiator and the target. Further, the initiator and target
establish a TCP connection over the dummynet in order that a simulated delayed
network is realized between them. The initiator and dummynet are connected
with a cross cable of 1 gigabit Ethernet. Further, the dummynet and target are
also connected with a cross cable. Both the initiator and target are constructed
by a Linux OS, and the dummynet is constructed by FreeBSD. The detailed
specifications of the initiator and the target PCs are as follows: CPU Pentium 4
2.80 GHz; main memory 1 GB; OS Linux 2.4.18-3; and NIC gigabit Ethernet card
Intel PRO/1000 XT Server adapter. The detailed specifications of the dummynet
PC are as follows: CPU Pentium 4 1.5 GHz, main memory 128 MB, OS FreeBSD
4.5-RELEASE, and NIC Intel PRO/1000 XT Server Adapter × 2.

Fig. 5. Experimental setup
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We employed the iSCSI implementation, which is distributed by the interop-
erability laboratory in the University of New Hampshire [8, 9]. This iSCSI im-
plementation is termed as “UNH” implementation. The detailed specifications
and configurations of the iSCSI implementation used for the evaluation are as
follows: iSCSI initiator and target: UNH IOL Draft 18 reference implementation
ver. 3; iSCSI MaxRecvDataSegmentLength, iSCSI MaxBurstLength, and iSCSI
FirstBurstLength: 16777215 bytes.

The initiator establishes the iSCSI connection with the target, and a bench-
mark software is implemented to measure the performance. The benchmark soft-
ware iterates by issuing system call read() to the raw iSCSI device on the ini-
tiator OS. This call is single-threaded. The size of the TCP advertised window is
2 MB. The iSCSI target runs in memory mode. It can be regarded as a storage
device with exceptional performance.

3.2 Basic Performance Measurement

“Socket Tx256” and “iSCSI (UNH) 500 KB Tx256” shown in Figure 6 are ob-
tained by the experiment described in Section 3.1. We refer to this experiment
as “Exp. A.” The horizontal axis represents the one-way delay time between
the initiator host and the target host. The vertical axis represents the measured
throughput. “0 ms” implies that the network delay was not intentionally gener-
ated by the dummynet. In this case, the network delay with the physical device
is approximately 100 µs. The “iSCSI (UNH) 500 KB Tx256” shown in the fig-
ure represents the throughput of the iSCSI sequential read, while the “Socket
Tx256” represents the throughput of simple socket communication by means of
which the initiator and target hosts establish the TCP/IP connection and trans-
mit data through the socket API in the same environment. This simple socket
connection is referred to as “pure socket.” The block size specified at system call
read() is 500 KB, and this block size is termed as “System Call Block Size.” The
maximum throughput of the “pure socket” is approximately 40 [MB/s] because
this value represents the performance limit of the dummynet PC.

The results obtained indicate the following: 1) The iSCSI performance is
severely low although considerably high-performance socket communication is
achieved in the same environment and 2) The iSCSI performance decreases as
network latency increases. In the following subsections, the reasons for the per-
formance decline of the iSCSI are discussed.

3.3 Analysis of iSCSI Access

In this subsection, we present the analysis of the iSCSI storage access, as dis-
cussed in Section 3.2. Figure 2 shows the results of the protocol translation of the
iSCSI PDU in the experiment. Figure 3 shows the visualized packet transmission
in the experiment.

The translation results indicate that the “SCSI Command Read” PDUs with
32-KB “PDU Block Size” were issued even though the benchmark software is-
sued the system call read() with a System Call Block Size of 500 KB. With
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several OS implementations, the issued system calls are transmitted to the net-
work through the block or character devices, SCSI generic driver, iSCSI driver,
TCP/IP implementation, and Ethernet device driver. Such calls are rarely trans-
mitted to the network without being modified by these drivers. In other words,
the “System Call Block Size” is not always equal to the “PDU Block Size.” It
can also be observed that in our experimental environment, the block size of
the issued system call read() is divided into multiple 32-KB block reads and
transmitted to the target host.

The visualized figure (Figure 3) shows that when a large amount of time in
the “Seq. Read Cycle” is expended in waiting for the network I/O, the network
utilization is considerably low.

3.4 Discussion of Performance Decline

The analysis in Section 3.3 demonstrated that the System Call Block Size was
divided into multiple small (i.e., 32 KB) “PDU Block Size”; thus, the network
utilization is significantly low. The poor network utilization can be considered
as the most critical reason for the decline in performance. As shown in Figure 3,
the throughput of the iSCSI sequential read can be modeled as follows:

PDU Block Size

4×OneWayDelay + PDU Block Size
LowerLayerThroughput

(1)

A “Non-Idle ratio,” which is the ratio of the time spent for sending data to the
total “Seq. Read Cycle” time, can be modeled as follows:

PDU Block Size
LowerLayerThroughput

4×OneWayDelay + PDU Block Size
LowerLayerThroughput

(2)

In these models,LowerLayerThroughput represents the throughput of the pure
socket. Consequently, the idle ratio with a 32-KB “PDU Block Size” is 84% for
a one-way delay of 1 ms; 91%, 2 ms; 95%, 4 ms; 97%, 8 ms; and 98%, 16 ms. By
using the analyzing system, we can identify that the reason for the performance
decline is poor network utilization caused by a small block size.

The division of the block size is not only due to the limitation of the iSCSI
protocol specification but also due to Linux OS implementation. As a result,
we measured the performance of the essential iSCSI storage access, which is
not restricted by any specific OS implementation, by using our iSCSI access
generator. The experimental results are indicated in Figure 6 as “iSCSI(KI)
nKB Tx256”. The experiments were carried out in the same environment and
termed as “Exp. B.”

“iSCSI(UNH) 500 KB Tx256” in the figure represents the performance with
the iSCSI sequential read access under the UNH iSCSI implementation. The
System Call Block Size is 500 KB (“PDU Block Size” is 32 KB, as mentioned
previously). The lines labeled as “iSCSI(KI)” represent the performance using
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our pseudo iSCSI initiator. Their block sizes are recorded in the labels. The
“Socket Tx256” indicates the performance of the pure socket. “Tx” is mentioned
in section 3.5.

The following can be obtained from the results. 1) The performance of the
iSCSI increased significantly by increasing the read block size. 2) The perfor-
mance obtained by the iSCSI access with a large block is not sufficiently high.
In the case of 16-ms one way delay, the throughput of “iSCSI(KI) 4 MB Tx256”
is 10.1 [MB/s], while that of “iSCSI(UNH) Tx256” is 0.47 [MB/s]. The perfor-
mance improved more than 20 times when the block size was increased. However,
the throughput of the pure socket was 25.2 [MB/s], and the performance of the
iSCSI is less than half that of the socket.

3.5 Analysis Without Block Division

In this subsection, we analyze the behavior of the iSCSI storage access with a
large block size.

The transitions of the throughput and size of the TCP congestion window
of “iSCSI(KI) 4MB Tx256” and the “Socket Tx256” for a one-way delay of
16 ms are shown in Figure 7 and Figure 8, respectively. First, we found that
the obtained throughput and the size of the TCP congestion window vary syn-
chronously. The TCP implementation restricts the output throughput below
the CongestionWindowSize

RoundTripTime . Second, Figure 7 shows that local device conges-
tion occurs when the congestion window size is approximately 350 segments
and this size cannot be exceeded for the iSCSI access sequential read. However,
the congestion window size was approximately 850 segments in the case of the
socket communication. The burstness of traffic progressively weakens due to self-
clocking of the TCP during the pure socket communication. On the other hand,
in the case of the iSCSI access, the iSCSI driver is independently synchronized
using the SCSI Command Read and SCSI Response at the iSCSI layer. This
results in extremely bursty traffic that is generated when the target returns the
“Data-in” PDU for the “SCSI Command Read” PDU, as shown in Figure 4. As
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a result, the traffic burstness persists. Therefore, the iSCSI traffic patterns easily
cause congestion and the throughput is restricted by the TCP implementation.

In this case, the reason for the performance decline can be attributed to
the congestion in the local device and TCP flow control resulting from bursty
iSCSI traffic. The local device congestion occurs when the packet descriptors
are depleted in the local network interface card. This congestion can be avoided
by improving the tolerance of the NIC to bursty traffic by enlarging the buffer
size of the NIC device driver. The number of packet buffers in the device driver
of the NICs used in this experiment environment (refer to Section 3.1) can be
regulated from 80 to 4096. In “Exp. B” described in Section 3.4, they were set
to the default value of 256.

The measured throughput with 4096 NIC device driver buffers are represented
as lines that are labeled as “Tx4096” in Figure 6; this experiment is referred to
as “Exp. C.” In the labels in Figure 6, “Tx” represents the number of packets
that the device driver can buffer. Further improvement in the performance was
obtained by avoiding the local congestion. In the case of 4-MB block size and
16-ms one way delay, the performance improved 2.81 times. The performance in
Exp. C improved 60.5 times that in Exp. A for a one-way delay of 16 ms. The
performance of the pure socket, which can be considered as the performance
limit of our experiment environment, was also improved by avoiding the local
congestion. In Exp. C, the performance decline by adopting the iSCSI protocol
was 12% below the system performance limit for a one-way delay of 16 ms, while
it was 60% in Exp. B. Thus, a performance comparable to the system limit can
be achieved in the iSCSI storage access.

4 Related Work

Several studies have presented the performance evaluation of IP-SAN using
iSCSI [3, 4, 10, 11, 12, 13].

Sarkar et al. [4] avoided the performance evaluation of the iSCSI. In particular,
this study paid attention to the CPU utilization of the iSCSI storage access since
it is extremely crucial for IP-SAN. They experimented with the performances of
the iSCSI storage accesses using various block sizes in a LAN environment. The
work demonstrated that the TCP/IP processing consumed considerable CPU
resources. Further, they showed that the CPU utilization reached 100% at the
peak throughput with block size of 64 KB.

Radkov et al. [13] presented a detailed comparison of the NFS and iSCSI.
Further, the comparison is very broad in scope. Their discussion not only includes
the performance and CPU utilization but also the number of network messages.
Both the micro- and macrobenchmarks were executed in some configurations
such as warm cache or cold cache and several network delays. It was shown
that the iSCSI and NFS are comparable for data-intensive workloads, while the
former outperforms the latter for meta-data intensive workloads.

These studies are obtained by executing various workloads outside the IP-SAN
system. Consequently, these studies do not reveal accurate behaviors inside IP-
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SAN systems. Our work presents very exact behaviors inside the IP-SAN system
including those in kernel space, for example TCP flow controlling. As far as
we know, there is no published report discussing the performance of the iSCSI
through the examination of the TCP/IP behavior, particularly the congestion
window size and receive window size. This type of monitoring is a novel feature
of our work. In addition, we have also identified the causes for the performance
decline by employing the proposed system while the existing studies reveal the
experimental results. This is also a novel feature of our work.

5 Conclusion

In this paper, we proposed and implemented an iSCSI storage access analysis
system and demonstrated that the iSCSI performance can be significantly im-
proved by detailed analysis using the proposed system and resolving the issues
identified by the system. The proposed system can point out the reasons for the
decline in performance. In our experiment, the performance improved more than
60 times and was comparable to the system limit performance.

In future work, our objectives are as follows: 1) to measure the performance
of the iSCSI access using a real storage device; 2) to analyze not only single-
threaded sequential read access but also write access, random access; and multi-
ple access, and 3) to analyze the iSCSI storage access of some applications such
as DBMS.
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